Abstract

This work investigates the impact of surface and bulk polaritons on the optical properties, especially the reflectance, of a negative index metamaterial (NIM) sandwiched between different dielectric layers. Regime maps are developed to describe the polariton dispersion relations and to help understand the effect of the NIM layer thickness on the polariton resonance frequencies. It is shown that polaritons exist for both p and s polarizations in the same frequency region where the refractive index is negative; beyond this region, surface polaritons exist for p polarization only. For an NIM layer, the dispersion curves of a surface polariton and a bulk polariton are smoothly connected, suggesting that a surface mode can be converted into a bulk mode, and vice versa. In an attenuated total reflection configuration, the width of the gap between the prism and the NIM layer has a strong influence on the location and the magnitude of the reflectance minimum. Furthermore, surface polaritons may exist at a single boundary and enhance the energy transmission via photon tunneling. The results demonstrate that NIMs may be used to effectively “tune” the optical properties of a layered structure in connection with surface and bulk polaritons.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  2. N. A. Janunts and Kh. V. Nerkararyan, "Modulation of light radiation during input into waveguide by resonance excitation of surface plasmons," Appl. Phys. Lett. 79, 299-301 (2001).
    [CrossRef]
  3. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Lotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature (London) 417, 156-159 (2002).
    [CrossRef]
  4. J. Dostálek, J. Ctyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Spirková, J. Skvor, and J. Schröfel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
    [CrossRef]
  5. T. Tanaka and S. Yamamoto, "Laser-scanning surface plasmon polariton resonance microscopy with multiple photodetectors," Appl. Opt. 42, 4002-4007 (2003).
    [CrossRef] [PubMed]
  6. A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A Pure Appl. Opt. 5, S16-S50 (2003).
    [CrossRef]
  7. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  8. A. Naweed, F. Baumann, W. A. Bailey, Jr., A. S. Karakashian, and W. D. Goodhue, "Evidence for radiative damping in surface-plasmon-mediated light transmission through perforated conducting films," J. Opt. Soc. Am. B 20, 2534-2538 (2003).
    [CrossRef]
  9. K. L. Kliewer and R. Fuchs, "Optical modes of vibration in an ionic crystal slab including retardation. I. Nonradiative Region," Phys. Rev. 144, 495-503 (1966).
    [CrossRef]
  10. B. Buckman, Guided Wave Photonics (Saunders, Orlando, Fla., 1992).
  11. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  12. A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's law," Phys. Rev. Lett. 90, 137401 (2003).
    [CrossRef]
  13. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  14. R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001).
    [CrossRef]
  15. D. R. Smith, D. Schurig, and J. B. Pendry, "Negative refraction of modulated electromagnetic waves," Appl. Phys. Lett. 81, 2713-2715 (2002).
    [CrossRef]
  16. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003).
    [CrossRef] [PubMed]
  17. Z. M. Zhang and K. Park, "On the group front and group velocity in a dispersive medium upon refraction from a nondispersive medium," J. Heat Transfer 126, 244-249 (2004).
    [CrossRef]
  18. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  19. Z. M. Zhang and C. J. Fu, "Unusual photon tunneling in the presence of a layer with a negative refractive index," Appl. Phys. Lett. 80, 1097-1099 (2002).
    [CrossRef]
  20. C. J. Fu and Z. M. Zhang, "Transmission enhancement using a negative-refraction layer," Microscale Thermophys. Eng. 7, 221-234 (2003).
    [CrossRef]
  21. R. Ruppin, "Surface polaritons of a left-handed medium," Phys. Lett. A 277, 61-64 (2000).
    [CrossRef]
  22. S. A. Darmanyan, M. Nevière, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Opt. Commun. 225, 233-240 (2003).
    [CrossRef]
  23. R. Ruppin, "Surface polaritons of a left-handed material slab," J. Phys.: Condens. Matter 13, 1811-1819 (2001).
  24. D. R. Smith, W. J. Padilla, S. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  25. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires and left-handed materials," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
    [CrossRef]
  26. G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B 67, 035109 (2003).
    [CrossRef]
  27. K. L. Kliewer and R. Fuchs, "Collective electronic motion in a metallic slab," Phys. Rev. 153, 498-512 (1967).
    [CrossRef]
  28. K. L. Kliewer and R. Fuchs, "Theory of dynamical properties of dielectric surfaces," Adv. Chem. Phys. 27, 355-541 (1974).
  29. G. S. Kovener, R. W. Alexander, and R. J. Bell, "Surface electromagnetic waves with damping. I. Isotropic media," Phys. Rev. B 14, 1458-1464 (1976).
    [CrossRef]
  30. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
    [CrossRef]
  31. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
    [CrossRef]

2004 (1)

Z. M. Zhang and K. Park, "On the group front and group velocity in a dispersive medium upon refraction from a nondispersive medium," J. Heat Transfer 126, 244-249 (2004).
[CrossRef]

2003 (8)

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef]

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003).
[CrossRef] [PubMed]

C. J. Fu and Z. M. Zhang, "Transmission enhancement using a negative-refraction layer," Microscale Thermophys. Eng. 7, 221-234 (2003).
[CrossRef]

S. A. Darmanyan, M. Nevière, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Opt. Commun. 225, 233-240 (2003).
[CrossRef]

G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B 67, 035109 (2003).
[CrossRef]

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A Pure Appl. Opt. 5, S16-S50 (2003).
[CrossRef]

T. Tanaka and S. Yamamoto, "Laser-scanning surface plasmon polariton resonance microscopy with multiple photodetectors," Appl. Opt. 42, 4002-4007 (2003).
[CrossRef] [PubMed]

A. Naweed, F. Baumann, W. A. Bailey, Jr., A. S. Karakashian, and W. D. Goodhue, "Evidence for radiative damping in surface-plasmon-mediated light transmission through perforated conducting films," J. Opt. Soc. Am. B 20, 2534-2538 (2003).
[CrossRef]

2002 (5)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires and left-handed materials," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Lotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature (London) 417, 156-159 (2002).
[CrossRef]

Z. M. Zhang and C. J. Fu, "Unusual photon tunneling in the presence of a layer with a negative refractive index," Appl. Phys. Lett. 80, 1097-1099 (2002).
[CrossRef]

D. R. Smith, D. Schurig, and J. B. Pendry, "Negative refraction of modulated electromagnetic waves," Appl. Phys. Lett. 81, 2713-2715 (2002).
[CrossRef]

2001 (5)

R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

R. Ruppin, "Surface polaritons of a left-handed material slab," J. Phys.: Condens. Matter 13, 1811-1819 (2001).

J. Dostálek, J. Ctyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Spirková, J. Skvor, and J. Schröfel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

N. A. Janunts and Kh. V. Nerkararyan, "Modulation of light radiation during input into waveguide by resonance excitation of surface plasmons," Appl. Phys. Lett. 79, 299-301 (2001).
[CrossRef]

2000 (3)

D. R. Smith, W. J. Padilla, S. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

R. Ruppin, "Surface polaritons of a left-handed medium," Phys. Lett. A 277, 61-64 (2000).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

1981 (1)

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

1976 (1)

G. S. Kovener, R. W. Alexander, and R. J. Bell, "Surface electromagnetic waves with damping. I. Isotropic media," Phys. Rev. B 14, 1458-1464 (1976).
[CrossRef]

1974 (1)

K. L. Kliewer and R. Fuchs, "Theory of dynamical properties of dielectric surfaces," Adv. Chem. Phys. 27, 355-541 (1974).

1968 (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

1967 (1)

K. L. Kliewer and R. Fuchs, "Collective electronic motion in a metallic slab," Phys. Rev. 153, 498-512 (1967).
[CrossRef]

1966 (1)

K. L. Kliewer and R. Fuchs, "Optical modes of vibration in an ionic crystal slab including retardation. I. Nonradiative Region," Phys. Rev. 144, 495-503 (1966).
[CrossRef]

Alexander, R. W.

G. S. Kovener, R. W. Alexander, and R. J. Bell, "Surface electromagnetic waves with damping. I. Isotropic media," Phys. Rev. B 14, 1458-1464 (1976).
[CrossRef]

Bailey, W. A.

Baumann, F.

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Lotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature (London) 417, 156-159 (2002).
[CrossRef]

Bell, R. J.

G. S. Kovener, R. W. Alexander, and R. J. Bell, "Surface electromagnetic waves with damping. I. Isotropic media," Phys. Rev. B 14, 1458-1464 (1976).
[CrossRef]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Lotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature (London) 417, 156-159 (2002).
[CrossRef]

Brock, J. B.

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef]

Brynda, E.

J. Dostálek, J. Ctyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Spirková, J. Skvor, and J. Schröfel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Buckman, B.

B. Buckman, Guided Wave Photonics (Saunders, Orlando, Fla., 1992).

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Chuang, I. L.

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef]

Ctyroký, J.

J. Dostálek, J. Ctyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Spirková, J. Skvor, and J. Schröfel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Darmanyan, S. A.

S. A. Darmanyan, M. Nevière, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Opt. Commun. 225, 233-240 (2003).
[CrossRef]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Lotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature (London) 417, 156-159 (2002).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Dostálek, J.

J. Dostálek, J. Ctyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Spirková, J. Skvor, and J. Schröfel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Economou, E. N.

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003).
[CrossRef] [PubMed]

Foteinopoulou, S.

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003).
[CrossRef] [PubMed]

Fu, C. J.

C. J. Fu and Z. M. Zhang, "Transmission enhancement using a negative-refraction layer," Microscale Thermophys. Eng. 7, 221-234 (2003).
[CrossRef]

Z. M. Zhang and C. J. Fu, "Unusual photon tunneling in the presence of a layer with a negative refractive index," Appl. Phys. Lett. 80, 1097-1099 (2002).
[CrossRef]

Fuchs, R.

K. L. Kliewer and R. Fuchs, "Theory of dynamical properties of dielectric surfaces," Adv. Chem. Phys. 27, 355-541 (1974).

K. L. Kliewer and R. Fuchs, "Collective electronic motion in a metallic slab," Phys. Rev. 153, 498-512 (1967).
[CrossRef]

K. L. Kliewer and R. Fuchs, "Optical modes of vibration in an ionic crystal slab including retardation. I. Nonradiative Region," Phys. Rev. 144, 495-503 (1966).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Goodhue, W. D.

Heyman, E.

R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001).
[CrossRef]

Homola, J.

J. Dostálek, J. Ctyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Spirková, J. Skvor, and J. Schröfel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Houck, A. A.

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef]

Janunts, N. A.

N. A. Janunts and Kh. V. Nerkararyan, "Modulation of light radiation during input into waveguide by resonance excitation of surface plasmons," Appl. Phys. Lett. 79, 299-301 (2001).
[CrossRef]

Karakashian, A. S.

Kliewer, K. L.

K. L. Kliewer and R. Fuchs, "Theory of dynamical properties of dielectric surfaces," Adv. Chem. Phys. 27, 355-541 (1974).

K. L. Kliewer and R. Fuchs, "Collective electronic motion in a metallic slab," Phys. Rev. 153, 498-512 (1967).
[CrossRef]

K. L. Kliewer and R. Fuchs, "Optical modes of vibration in an ionic crystal slab including retardation. I. Nonradiative Region," Phys. Rev. 144, 495-503 (1966).
[CrossRef]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Lotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature (London) 417, 156-159 (2002).
[CrossRef]

Kovener, G. S.

G. S. Kovener, R. W. Alexander, and R. J. Bell, "Surface electromagnetic waves with damping. I. Isotropic media," Phys. Rev. B 14, 1458-1464 (1976).
[CrossRef]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Lotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature (London) 417, 156-159 (2002).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Lotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Lotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature (London) 417, 156-159 (2002).
[CrossRef]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Naweed, A.

Nekvindová, P.

J. Dostálek, J. Ctyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Spirková, J. Skvor, and J. Schröfel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, S. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Nerkararyan, Kh. V.

N. A. Janunts and Kh. V. Nerkararyan, "Modulation of light radiation during input into waveguide by resonance excitation of surface plasmons," Appl. Phys. Lett. 79, 299-301 (2001).
[CrossRef]

Nevière, M.

S. A. Darmanyan, M. Nevière, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Opt. Commun. 225, 233-240 (2003).
[CrossRef]

Padilla, W. J.

D. R. Smith, W. J. Padilla, S. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Park, K.

Z. M. Zhang and K. Park, "On the group front and group velocity in a dispersive medium upon refraction from a nondispersive medium," J. Heat Transfer 126, 244-249 (2004).
[CrossRef]

Pendry, J. B.

D. R. Smith, D. Schurig, and J. B. Pendry, "Negative refraction of modulated electromagnetic waves," Appl. Phys. Lett. 81, 2713-2715 (2002).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Podolskiy, V. A.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires and left-handed materials," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Lotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature (London) 417, 156-159 (2002).
[CrossRef]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Lotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature (London) 417, 156-159 (2002).
[CrossRef]

Ruppin, R.

R. Ruppin, "Surface polaritons of a left-handed material slab," J. Phys.: Condens. Matter 13, 1811-1819 (2001).

R. Ruppin, "Surface polaritons of a left-handed medium," Phys. Lett. A 277, 61-64 (2000).
[CrossRef]

Sarid, D.

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

Sarychev, A. K.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires and left-handed materials," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
[CrossRef]

Schröfel, J.

J. Dostálek, J. Ctyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Spirková, J. Skvor, and J. Schröfel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, S. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

D. R. Smith, D. Schurig, and J. B. Pendry, "Negative refraction of modulated electromagnetic waves," Appl. Phys. Lett. 81, 2713-2715 (2002).
[CrossRef]

Shalaev, V. M.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires and left-handed materials," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Shvets, G.

G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B 67, 035109 (2003).
[CrossRef]

Skalský, M.

J. Dostálek, J. Ctyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Spirková, J. Skvor, and J. Schröfel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Skvor, J.

J. Dostálek, J. Ctyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Spirková, J. Skvor, and J. Schröfel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Smith, D. R.

D. R. Smith, D. Schurig, and J. B. Pendry, "Negative refraction of modulated electromagnetic waves," Appl. Phys. Lett. 81, 2713-2715 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, S. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Smolyaninov, I. I.

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A Pure Appl. Opt. 5, S16-S50 (2003).
[CrossRef]

Soukoulis, C. M.

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003).
[CrossRef] [PubMed]

Spirková, J.

J. Dostálek, J. Ctyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Spirková, J. Skvor, and J. Schröfel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Tanaka, T.

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Lotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature (London) 417, 156-159 (2002).
[CrossRef]

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Vier, S. C.

D. R. Smith, W. J. Padilla, S. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Yamamoto, S.

Zakhidov, A. A.

S. A. Darmanyan, M. Nevière, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Opt. Commun. 225, 233-240 (2003).
[CrossRef]

Zayats, A. V.

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A Pure Appl. Opt. 5, S16-S50 (2003).
[CrossRef]

Zhang, Z. M.

Z. M. Zhang and K. Park, "On the group front and group velocity in a dispersive medium upon refraction from a nondispersive medium," J. Heat Transfer 126, 244-249 (2004).
[CrossRef]

C. J. Fu and Z. M. Zhang, "Transmission enhancement using a negative-refraction layer," Microscale Thermophys. Eng. 7, 221-234 (2003).
[CrossRef]

Z. M. Zhang and C. J. Fu, "Unusual photon tunneling in the presence of a layer with a negative refractive index," Appl. Phys. Lett. 80, 1097-1099 (2002).
[CrossRef]

Ziolkowski, R. W.

R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001).
[CrossRef]

Adv. Chem. Phys. (1)

K. L. Kliewer and R. Fuchs, "Theory of dynamical properties of dielectric surfaces," Adv. Chem. Phys. 27, 355-541 (1974).

Appl. Opt. (1)

Appl. Phys. Lett. (3)

N. A. Janunts and Kh. V. Nerkararyan, "Modulation of light radiation during input into waveguide by resonance excitation of surface plasmons," Appl. Phys. Lett. 79, 299-301 (2001).
[CrossRef]

D. R. Smith, D. Schurig, and J. B. Pendry, "Negative refraction of modulated electromagnetic waves," Appl. Phys. Lett. 81, 2713-2715 (2002).
[CrossRef]

Z. M. Zhang and C. J. Fu, "Unusual photon tunneling in the presence of a layer with a negative refractive index," Appl. Phys. Lett. 80, 1097-1099 (2002).
[CrossRef]

J. Heat Transfer (1)

Z. M. Zhang and K. Park, "On the group front and group velocity in a dispersive medium upon refraction from a nondispersive medium," J. Heat Transfer 126, 244-249 (2004).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires and left-handed materials," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A Pure Appl. Opt. 5, S16-S50 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

R. Ruppin, "Surface polaritons of a left-handed material slab," J. Phys.: Condens. Matter 13, 1811-1819 (2001).

Microscale Thermophys. Eng. (1)

C. J. Fu and Z. M. Zhang, "Transmission enhancement using a negative-refraction layer," Microscale Thermophys. Eng. 7, 221-234 (2003).
[CrossRef]

Nature (London) (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Lotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature (London) 417, 156-159 (2002).
[CrossRef]

Opt. Commun. (1)

S. A. Darmanyan, M. Nevière, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Opt. Commun. 225, 233-240 (2003).
[CrossRef]

Phys. Lett. A (1)

R. Ruppin, "Surface polaritons of a left-handed medium," Phys. Lett. A 277, 61-64 (2000).
[CrossRef]

Phys. Rev. (2)

K. L. Kliewer and R. Fuchs, "Optical modes of vibration in an ionic crystal slab including retardation. I. Nonradiative Region," Phys. Rev. 144, 495-503 (1966).
[CrossRef]

K. L. Kliewer and R. Fuchs, "Collective electronic motion in a metallic slab," Phys. Rev. 153, 498-512 (1967).
[CrossRef]

Phys. Rev. B (3)

G. S. Kovener, R. W. Alexander, and R. J. Bell, "Surface electromagnetic waves with damping. I. Isotropic media," Phys. Rev. B 14, 1458-1464 (1976).
[CrossRef]

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B 67, 035109 (2003).
[CrossRef]

Phys. Rev. E (1)

R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001).
[CrossRef]

Phys. Rev. Lett. (5)

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's law," Phys. Rev. Lett. 90, 137401 (2003).
[CrossRef]

D. R. Smith, W. J. Padilla, S. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

Science (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Sens. Actuators B (1)

J. Dostálek, J. Ctyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Spirková, J. Skvor, and J. Schröfel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Sov. Phys. Usp. (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Other (2)

B. Buckman, Guided Wave Photonics (Saunders, Orlando, Fla., 1992).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The geometry of attenuated total reflection (ATR) configuration used for the calculation of optical properties with an NIM layer.

Fig. 2
Fig. 2

Illustration of a slab between two semi-infinite media for the study of the polariton dispersion relations.

Fig. 3
Fig. 3

The polariton regime map in k x ω space. Here, media 1 and 3 are dielectric with ϵ 1 < ϵ 3 , and medium 2 is an NIM with ω 0 ω p = 0.4 , F = 0.56 , and γ = 0 . Curves (i), (ii), and (iii) correspond to k z = 0 in media 1, 2, and 3, respectively. In the shaded area, 0.4 ω p < ω < 0.6 ω p , the refractive index of medium 2 is negative. No polaritons exist in regions R1 through R4; in regions SS1 and SS2, surface polaritons can occur at a single boundary; in regions SD1 and SD2, surface polaritons may occur at dual boundaries; and in BK region, several bulk polaritons may occur.

Fig. 4
Fig. 4

Surface and bulk polariton dispersion curves for s polarization with different NIM thicknesses: (a) d λ p = 0.5 and (b) d λ p = 0.1 . Dotted curves are the same as the corresponding ones in Fig. 3, with ϵ 1 = 1 and ϵ 3 = 2 . The dash-dotted lines (I) and (II) represent different angles of incidence. The thin solid curves are for surface polaritons, dashed curves for bulk polaritons, and thick solid curves for uncoupled surface polaritons ( d ) .

Fig. 5
Fig. 5

Surface and bulk polariton dispersion curves for p polarization: (a) d λ p = 0.25 and (b) d λ p = 0.1 . All other conditions are the same as in Fig. 4. Note that in Fig. 5a below ω = ω 0 , the coupled and uncoupled curves are indistinguishable.

Fig. 6
Fig. 6

Reflectance for different thicknesses of the NIM layer with a vacuum gap width h = 0.25 λ p . The parameters used for the calculation are ϵ 1 = 1 (vacuum), ϵ 3 = 2 , ϵ prism = 6 , and θ i = 60 ° . For the NIM, ω 0 ω p = 0.4 , F = 0.56 , and γ = 0.012 ω p . In the shaded frequency region, the refractive index of the NIM is negative. Solid curves are for p polarization and dotted ones for s polarization. The triangular and circular marks represent, respectively, surface and bulk polariton resonance frequencies obtained from the polariton dispersion relations for γ = 0 .

Fig. 7
Fig. 7

Effects of the vacuum gap width on the reflectance for d λ p = 0.25 . All other parameters used for the calculation remain the same as those for Fig. 6.

Fig. 8
Fig. 8

Optical properties (i.e., reflectance R, transmittance T, and absorptance A) for (a) d λ p = 0.1 and (b) d λ p = 1 . All the parameters are the same as those used in Fig. 6, except that the angle of incidence is changed to θ i = 30 ° . The diamond mark corresponds to the single SPR frequency predicted from the dispersion relations for semi-infinite media.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E = y ̂ { A exp ( β 1 z ) exp ( i k x x ) z < 0 [ B exp ( β 2 z ) + C exp ( β 2 z ) ] exp ( i k x x ) 0 < z < d , D exp [ β 3 ( z d ) ] exp ( i k x x ) z > d }
β j = ( k x 2 ϵ j μ j ω 2 c 2 ) 1 2 , j = 1 , 2 , and 3 .
H x = { i β 1 ω μ 0 μ 1 A exp ( β 1 z ) exp ( i k x x ) z < 0 i β 2 ω μ 0 μ 2 [ B exp ( β 2 z ) C exp ( β 2 x ) ] exp ( i k x x ) 0 < z < d , i β 3 ω μ 0 μ 3 D exp [ ( β 3 ) ( z d ) ] exp ( i k x x ) z > d }
( β 2 μ 2 ) 2 + coth ( β 2 d ) ( β 1 μ 1 + β 3 μ 3 ) β 2 μ 2 + β 1 β 3 μ 1 μ 3 = 0 .
( k z , 2 μ 2 ) 2 cot ( k z , 2 d ) ( β 1 μ 1 + β 3 μ 3 ) k z , 2 μ 2 β 1 β 3 μ 1 μ 3 = 0 .
ϵ 2 ( ω ) = 1 ω p 2 ω 2 + i γ ω ,
μ 2 ( ω ) = 1 F ω 2 ω 2 ω 0 2 + i γ ω ,
β 1 μ 1 + β 2 μ 2 = 0 for s polarization ,
β 1 ϵ 1 + β 2 ϵ 2 = 0 for p polarization .

Metrics