Abstract

Single-mode yields above threshold of complex-coupled (CC) distributed feedback (DFB) lasers with antireflection and high-reflection-coated facets for various values of κL and coupling coefficient ratio (CR) are presented and compared with the spatial hole burning- (SHB-) corrected yield at threshold. If the criterion necessary for the SHB-corrected yield is selected properly, the two yields give good agreement. We present two single-mode yields above threshold, showing the difference between in-phase (IP) and antiphase (AP) CC DFB lasers, even though the two yields are the same at threshold. Single-mode yields above threshold of IP CC DFB lasers are higher than those of AP CC DFB lasers, since the threshold gain of the next strongest mode of AP CC DFB lasers, increases rapidly compared with that of IP CC DFB lasers because of the SHB effect. As the CR increases, the single-mode yield of IP CC DFB lasers initially increases and has a nearly constant value of more than 90% for a CR greater than or equal to 0.3. As the CR and κL increase, the effect of the reflectivity of the antireflection facet on the single-mode yield decreases.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Nakano and K. Tada, "Recent progress in semiconductor gain coupled DFB laser research," in Proceedings of IEEE Lasers and Electro-Optics Society (LEOS) (IEEE Press, 1996), pp. 76-77.
  2. T. Makino, "High single-mode stability gain-coupled DFB laser for new applications," in Proceedings of Asia-Pacific Conference on Communications and Fourth Optoelectronics and Communications Conference (APCC/OECC) (Institute of Electronics, Information and Communications Engineers, Tokyo, Japan, 1999), pp. 1315-1319.
  3. N. Susa, "Fluctuations of the laser characteristics and the effect of the index-coupling component in the gain-coupled DFB laser," IEEE J. Quantum Electron. 33, 2255-2265 (1997).
    [CrossRef]
  4. K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, "Gain-coupled DFB lasers versus index-coupled and phase-shifted DFB lasers: a comparison based on spatial hole burning corrected yield," IEEE J. Quantum Electron. 27, 1714-1723 (1991).
    [CrossRef]
  5. J. Hong, K. W. Leong, T. Makino, J. Evans, X. Li, and W. P. Huang, "Impact of random facet phases on modal properties of partly gain-coupled distributed-feedback lasers," IEEE J. Sel. Top. Quantum Electron. 3, 555-568 (1997).
    [CrossRef]
  6. H. Lu, C. Blaauw, B. Benyon, G. P. Li, and T. Makino, "High power and high speed performance of 1.3 µm strained MQW gain-coupled DFB lasers," IEEE J. Sel. Top. Quantum Electron. 1, 375-380 (1995).
    [CrossRef]
  7. G. P. Li, T. Makino, R. Moore, N. Puetz, K.-W. Leong, and H. Lu, "Partly gain-coupled 1.55 µm strained-layer multiquantum-well DFB lasers," IEEE J. Quantum Electron. 33, 33-40 (1997).
    [CrossRef]
  8. B. Jonsson, A. J. Lowery, H. Olesen, and B. Tromborg, "Instabilities and nonlinear L-I characteristics in complex-coupled DFB lasers with antiphase gain and index gratings," IEEE J. Quantum Electron. 32, 839-850 (1996).
    [CrossRef]
  9. J. Chen, A. Champagne, R. Maciejko, and T. Makino, "Improvement of single-mode gain margin in gain-coupled DFB lasers," IEEE J. Quantum Electron. 33, 33-40 (1997).
    [CrossRef]
  10. Y. Nakano, Y. Luo, and K. Tada, "Facet reflection independent, single longitudinal mode oscillation in a GaAlAs/GaAs distributed feedback laser equipped with a gain-coupled mechanism," Appl. Phys. Lett. 55, 1606-1608 (1989).
    [CrossRef]
  11. B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, "1.55 µm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth," IEEE Photonics Technol. Lett. 3, 955-957 (1991).
    [CrossRef]
  12. C. Park, J. S. Kim, D. K. Oh, D. H. Jang, C. Y. Park, J. H. Ahn, H. M. Kim, H. R. Choo, H. Kim, and K. E. Pyun, "Low-threshold loss-coupled laser diode by new grating fabrication technique," IEEE Photonics Technol. Lett. 9, 22-24 (1997).
    [CrossRef]
  13. J. Zoz, T. W. Johannes, A. Rast, B. Borchert, U. Barabas, and W. Harth, "Dynamics and stability of complex-coupled DFB lasers with absorptive grating," IEEE J. Quantum Electron. 32, 1937-1949 (1996).
  14. T. W. Johannes, A. Rast, W. Harth, and J. Rieger, "Gain-coupled DFB lasers with a titanium surface Bragg grating," Electron. Lett. 31, 370-371 (1995).
    [CrossRef]
  15. T. W. Johannes, "Influence of standing waves on DFB lasers including saturable absorptive gratings," IEEE J. Quantum Electron. 34, 759-766 (1998).
    [CrossRef]
  16. S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, "Properties of loss-coupled distributed feedback laser arrays for wavelength division multiplexing systems," J. Lightwave Technol. 15, 1191-1197 (1997).
    [CrossRef]
  17. S. W. Park, C. K. Moon, J. C. Han, and J.-I. Song, "1.55-µm DFB lasers utilizing an automatically buried absorptive InAsP layer having a high single-mode yield," IEEE Photonics Technol. Lett. 16, 1426-1428 (2004).
    [CrossRef]
  18. H.-P. Shiao, C.-Y. Wang, T.-T. Shih, and Y.-K. Tu, "High performance and high reliability of 1.55-µm current-blocking grating complex-coupled DFB lasers," IEEE Photonics Technol. Lett. 10, 1238-1240 (1998).
    [CrossRef]
  19. A. Orth, J. P. Reithmaier, F. Faller, and A. Forchel, "Gain-coupled distributed-feedback GaInAs-GaAs laser structures defined by maskless patterning with focused ion beams," IEEE Photonics Technol. Lett. 7, 845-847 (1995).
    [CrossRef]
  20. K.-Y. Kwon, "Effect of grating phase difference on single-mode yield in complex-coupled DFB lasers with gain and index gratings," IEEE J. Quantum Electron. 32, 1937-1949 (1996).
    [CrossRef]
  21. J.-I. Kinoshita and K. Matsumoto, "Yield analysis of SLM DFB lasers with an axially-flattened internal field," IEEE J. Quantum Electron. 25, 1324-1332 (1989).
    [CrossRef]
  22. P. P. G. Mols, P. I. Kuindersma, W. V. Es-spiekman, and I. A. F. Baele, "Yield and device characteristics of DFB lasers: statistics and novel coating design in theory and experiment," IEEE J. Quantum Electron. 25, 1303-1313 (1989).
    [CrossRef]
  23. Y. Nakano, Y. Uchida, and K. Tada, "Highly efficient single longitudinal-mode oscillation capability of gain-coupled distributed feedback semiconductor laser--advantage of asymmetric facet coating," IEEE Photonics Technol. Lett. 4, 308-311 (1992).
    [CrossRef]
  24. B. S. K. Lo and H. Ghafouri-Shiraz, "Spectral characteristics of distributed feedback laser diodes with distributed coupling coefficient," J. Lightwave Technol. 13, 200-212 (1995).
    [CrossRef]
  25. H.-S. Lee, H. K. Kim, B.-G. Kim, and B. Lee, "Systematic comparisons of the effects of the linewidth enhancement factor, the confinement factor, the internal loss and the cavity length on the above threshold characteristics of quarter wavelength shifted DFB lasers," Microwave Opt. Technol. Lett. 27, 396-400 (2000).
    [CrossRef]
  26. B.-G. Kim, S.-C. Cho, and A. Shakouri, "The symmetry of the amplified spontaneous emission spectrum in complex-coupled DFB lasers," J. Lightwave Technol. 16, 1088-1094 (1998).
    [CrossRef]
  27. G. Morthier, P. Vankwikelberge, K. David, and R. Baets, "Improved performance of AR-coated DFB lasers by the introduction of gain coupling," IEEE Photonics Technol. Lett. 2, 170-172 (1990).
    [CrossRef]

2004 (1)

S. W. Park, C. K. Moon, J. C. Han, and J.-I. Song, "1.55-µm DFB lasers utilizing an automatically buried absorptive InAsP layer having a high single-mode yield," IEEE Photonics Technol. Lett. 16, 1426-1428 (2004).
[CrossRef]

2000 (1)

H.-S. Lee, H. K. Kim, B.-G. Kim, and B. Lee, "Systematic comparisons of the effects of the linewidth enhancement factor, the confinement factor, the internal loss and the cavity length on the above threshold characteristics of quarter wavelength shifted DFB lasers," Microwave Opt. Technol. Lett. 27, 396-400 (2000).
[CrossRef]

1998 (3)

B.-G. Kim, S.-C. Cho, and A. Shakouri, "The symmetry of the amplified spontaneous emission spectrum in complex-coupled DFB lasers," J. Lightwave Technol. 16, 1088-1094 (1998).
[CrossRef]

H.-P. Shiao, C.-Y. Wang, T.-T. Shih, and Y.-K. Tu, "High performance and high reliability of 1.55-µm current-blocking grating complex-coupled DFB lasers," IEEE Photonics Technol. Lett. 10, 1238-1240 (1998).
[CrossRef]

T. W. Johannes, "Influence of standing waves on DFB lasers including saturable absorptive gratings," IEEE J. Quantum Electron. 34, 759-766 (1998).
[CrossRef]

1997 (6)

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, "Properties of loss-coupled distributed feedback laser arrays for wavelength division multiplexing systems," J. Lightwave Technol. 15, 1191-1197 (1997).
[CrossRef]

C. Park, J. S. Kim, D. K. Oh, D. H. Jang, C. Y. Park, J. H. Ahn, H. M. Kim, H. R. Choo, H. Kim, and K. E. Pyun, "Low-threshold loss-coupled laser diode by new grating fabrication technique," IEEE Photonics Technol. Lett. 9, 22-24 (1997).
[CrossRef]

N. Susa, "Fluctuations of the laser characteristics and the effect of the index-coupling component in the gain-coupled DFB laser," IEEE J. Quantum Electron. 33, 2255-2265 (1997).
[CrossRef]

J. Hong, K. W. Leong, T. Makino, J. Evans, X. Li, and W. P. Huang, "Impact of random facet phases on modal properties of partly gain-coupled distributed-feedback lasers," IEEE J. Sel. Top. Quantum Electron. 3, 555-568 (1997).
[CrossRef]

G. P. Li, T. Makino, R. Moore, N. Puetz, K.-W. Leong, and H. Lu, "Partly gain-coupled 1.55 µm strained-layer multiquantum-well DFB lasers," IEEE J. Quantum Electron. 33, 33-40 (1997).
[CrossRef]

J. Chen, A. Champagne, R. Maciejko, and T. Makino, "Improvement of single-mode gain margin in gain-coupled DFB lasers," IEEE J. Quantum Electron. 33, 33-40 (1997).
[CrossRef]

1996 (3)

B. Jonsson, A. J. Lowery, H. Olesen, and B. Tromborg, "Instabilities and nonlinear L-I characteristics in complex-coupled DFB lasers with antiphase gain and index gratings," IEEE J. Quantum Electron. 32, 839-850 (1996).
[CrossRef]

J. Zoz, T. W. Johannes, A. Rast, B. Borchert, U. Barabas, and W. Harth, "Dynamics and stability of complex-coupled DFB lasers with absorptive grating," IEEE J. Quantum Electron. 32, 1937-1949 (1996).

K.-Y. Kwon, "Effect of grating phase difference on single-mode yield in complex-coupled DFB lasers with gain and index gratings," IEEE J. Quantum Electron. 32, 1937-1949 (1996).
[CrossRef]

1995 (4)

A. Orth, J. P. Reithmaier, F. Faller, and A. Forchel, "Gain-coupled distributed-feedback GaInAs-GaAs laser structures defined by maskless patterning with focused ion beams," IEEE Photonics Technol. Lett. 7, 845-847 (1995).
[CrossRef]

T. W. Johannes, A. Rast, W. Harth, and J. Rieger, "Gain-coupled DFB lasers with a titanium surface Bragg grating," Electron. Lett. 31, 370-371 (1995).
[CrossRef]

H. Lu, C. Blaauw, B. Benyon, G. P. Li, and T. Makino, "High power and high speed performance of 1.3 µm strained MQW gain-coupled DFB lasers," IEEE J. Sel. Top. Quantum Electron. 1, 375-380 (1995).
[CrossRef]

B. S. K. Lo and H. Ghafouri-Shiraz, "Spectral characteristics of distributed feedback laser diodes with distributed coupling coefficient," J. Lightwave Technol. 13, 200-212 (1995).
[CrossRef]

1992 (1)

Y. Nakano, Y. Uchida, and K. Tada, "Highly efficient single longitudinal-mode oscillation capability of gain-coupled distributed feedback semiconductor laser--advantage of asymmetric facet coating," IEEE Photonics Technol. Lett. 4, 308-311 (1992).
[CrossRef]

1991 (2)

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, "1.55 µm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth," IEEE Photonics Technol. Lett. 3, 955-957 (1991).
[CrossRef]

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, "Gain-coupled DFB lasers versus index-coupled and phase-shifted DFB lasers: a comparison based on spatial hole burning corrected yield," IEEE J. Quantum Electron. 27, 1714-1723 (1991).
[CrossRef]

1990 (1)

G. Morthier, P. Vankwikelberge, K. David, and R. Baets, "Improved performance of AR-coated DFB lasers by the introduction of gain coupling," IEEE Photonics Technol. Lett. 2, 170-172 (1990).
[CrossRef]

1989 (3)

Y. Nakano, Y. Luo, and K. Tada, "Facet reflection independent, single longitudinal mode oscillation in a GaAlAs/GaAs distributed feedback laser equipped with a gain-coupled mechanism," Appl. Phys. Lett. 55, 1606-1608 (1989).
[CrossRef]

J.-I. Kinoshita and K. Matsumoto, "Yield analysis of SLM DFB lasers with an axially-flattened internal field," IEEE J. Quantum Electron. 25, 1324-1332 (1989).
[CrossRef]

P. P. G. Mols, P. I. Kuindersma, W. V. Es-spiekman, and I. A. F. Baele, "Yield and device characteristics of DFB lasers: statistics and novel coating design in theory and experiment," IEEE J. Quantum Electron. 25, 1303-1313 (1989).
[CrossRef]

Ahn, J. H.

C. Park, J. S. Kim, D. K. Oh, D. H. Jang, C. Y. Park, J. H. Ahn, H. M. Kim, H. R. Choo, H. Kim, and K. E. Pyun, "Low-threshold loss-coupled laser diode by new grating fabrication technique," IEEE Photonics Technol. Lett. 9, 22-24 (1997).
[CrossRef]

Baele, I. A. F.

P. P. G. Mols, P. I. Kuindersma, W. V. Es-spiekman, and I. A. F. Baele, "Yield and device characteristics of DFB lasers: statistics and novel coating design in theory and experiment," IEEE J. Quantum Electron. 25, 1303-1313 (1989).
[CrossRef]

Baets, R.

G. Morthier, P. Vankwikelberge, K. David, and R. Baets, "Improved performance of AR-coated DFB lasers by the introduction of gain coupling," IEEE Photonics Technol. Lett. 2, 170-172 (1990).
[CrossRef]

Baets, R. G.

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, "Gain-coupled DFB lasers versus index-coupled and phase-shifted DFB lasers: a comparison based on spatial hole burning corrected yield," IEEE J. Quantum Electron. 27, 1714-1723 (1991).
[CrossRef]

Barabas, U.

J. Zoz, T. W. Johannes, A. Rast, B. Borchert, U. Barabas, and W. Harth, "Dynamics and stability of complex-coupled DFB lasers with absorptive grating," IEEE J. Quantum Electron. 32, 1937-1949 (1996).

Benyon, B.

H. Lu, C. Blaauw, B. Benyon, G. P. Li, and T. Makino, "High power and high speed performance of 1.3 µm strained MQW gain-coupled DFB lasers," IEEE J. Sel. Top. Quantum Electron. 1, 375-380 (1995).
[CrossRef]

Beschorner, M.

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, "1.55 µm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth," IEEE Photonics Technol. Lett. 3, 955-957 (1991).
[CrossRef]

Bimberg, D.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, "Properties of loss-coupled distributed feedback laser arrays for wavelength division multiplexing systems," J. Lightwave Technol. 15, 1191-1197 (1997).
[CrossRef]

Blaauw, C.

H. Lu, C. Blaauw, B. Benyon, G. P. Li, and T. Makino, "High power and high speed performance of 1.3 µm strained MQW gain-coupled DFB lasers," IEEE J. Sel. Top. Quantum Electron. 1, 375-380 (1995).
[CrossRef]

Borchert, B.

J. Zoz, T. W. Johannes, A. Rast, B. Borchert, U. Barabas, and W. Harth, "Dynamics and stability of complex-coupled DFB lasers with absorptive grating," IEEE J. Quantum Electron. 32, 1937-1949 (1996).

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, "Gain-coupled DFB lasers versus index-coupled and phase-shifted DFB lasers: a comparison based on spatial hole burning corrected yield," IEEE J. Quantum Electron. 27, 1714-1723 (1991).
[CrossRef]

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, "1.55 µm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth," IEEE Photonics Technol. Lett. 3, 955-957 (1991).
[CrossRef]

Burkhard, H.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, "Properties of loss-coupled distributed feedback laser arrays for wavelength division multiplexing systems," J. Lightwave Technol. 15, 1191-1197 (1997).
[CrossRef]

Champagne, A.

J. Chen, A. Champagne, R. Maciejko, and T. Makino, "Improvement of single-mode gain margin in gain-coupled DFB lasers," IEEE J. Quantum Electron. 33, 33-40 (1997).
[CrossRef]

Chen, J.

J. Chen, A. Champagne, R. Maciejko, and T. Makino, "Improvement of single-mode gain margin in gain-coupled DFB lasers," IEEE J. Quantum Electron. 33, 33-40 (1997).
[CrossRef]

Cho, S.-C.

Choo, H. R.

C. Park, J. S. Kim, D. K. Oh, D. H. Jang, C. Y. Park, J. H. Ahn, H. M. Kim, H. R. Choo, H. Kim, and K. E. Pyun, "Low-threshold loss-coupled laser diode by new grating fabrication technique," IEEE Photonics Technol. Lett. 9, 22-24 (1997).
[CrossRef]

Dahlhof, K.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, "Properties of loss-coupled distributed feedback laser arrays for wavelength division multiplexing systems," J. Lightwave Technol. 15, 1191-1197 (1997).
[CrossRef]

David, K.

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, "Gain-coupled DFB lasers versus index-coupled and phase-shifted DFB lasers: a comparison based on spatial hole burning corrected yield," IEEE J. Quantum Electron. 27, 1714-1723 (1991).
[CrossRef]

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, "1.55 µm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth," IEEE Photonics Technol. Lett. 3, 955-957 (1991).
[CrossRef]

G. Morthier, P. Vankwikelberge, K. David, and R. Baets, "Improved performance of AR-coated DFB lasers by the introduction of gain coupling," IEEE Photonics Technol. Lett. 2, 170-172 (1990).
[CrossRef]

Es-spiekman, W. V.

P. P. G. Mols, P. I. Kuindersma, W. V. Es-spiekman, and I. A. F. Baele, "Yield and device characteristics of DFB lasers: statistics and novel coating design in theory and experiment," IEEE J. Quantum Electron. 25, 1303-1313 (1989).
[CrossRef]

Evans, J.

J. Hong, K. W. Leong, T. Makino, J. Evans, X. Li, and W. P. Huang, "Impact of random facet phases on modal properties of partly gain-coupled distributed-feedback lasers," IEEE J. Sel. Top. Quantum Electron. 3, 555-568 (1997).
[CrossRef]

Faller, F.

A. Orth, J. P. Reithmaier, F. Faller, and A. Forchel, "Gain-coupled distributed-feedback GaInAs-GaAs laser structures defined by maskless patterning with focused ion beams," IEEE Photonics Technol. Lett. 7, 845-847 (1995).
[CrossRef]

Forchel, A.

A. Orth, J. P. Reithmaier, F. Faller, and A. Forchel, "Gain-coupled distributed-feedback GaInAs-GaAs laser structures defined by maskless patterning with focused ion beams," IEEE Photonics Technol. Lett. 7, 845-847 (1995).
[CrossRef]

Franz, G.

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, "1.55 µm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth," IEEE Photonics Technol. Lett. 3, 955-957 (1991).
[CrossRef]

Gessner, R.

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, "1.55 µm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth," IEEE Photonics Technol. Lett. 3, 955-957 (1991).
[CrossRef]

Ghafouri-Shiraz, H.

B. S. K. Lo and H. Ghafouri-Shiraz, "Spectral characteristics of distributed feedback laser diodes with distributed coupling coefficient," J. Lightwave Technol. 13, 200-212 (1995).
[CrossRef]

Gobel, R.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, "Properties of loss-coupled distributed feedback laser arrays for wavelength division multiplexing systems," J. Lightwave Technol. 15, 1191-1197 (1997).
[CrossRef]

Han, J. C.

S. W. Park, C. K. Moon, J. C. Han, and J.-I. Song, "1.55-µm DFB lasers utilizing an automatically buried absorptive InAsP layer having a high single-mode yield," IEEE Photonics Technol. Lett. 16, 1426-1428 (2004).
[CrossRef]

Hansmann, S.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, "Properties of loss-coupled distributed feedback laser arrays for wavelength division multiplexing systems," J. Lightwave Technol. 15, 1191-1197 (1997).
[CrossRef]

Harth, W.

J. Zoz, T. W. Johannes, A. Rast, B. Borchert, U. Barabas, and W. Harth, "Dynamics and stability of complex-coupled DFB lasers with absorptive grating," IEEE J. Quantum Electron. 32, 1937-1949 (1996).

T. W. Johannes, A. Rast, W. Harth, and J. Rieger, "Gain-coupled DFB lasers with a titanium surface Bragg grating," Electron. Lett. 31, 370-371 (1995).
[CrossRef]

Hong, J.

J. Hong, K. W. Leong, T. Makino, J. Evans, X. Li, and W. P. Huang, "Impact of random facet phases on modal properties of partly gain-coupled distributed-feedback lasers," IEEE J. Sel. Top. Quantum Electron. 3, 555-568 (1997).
[CrossRef]

Huang, W. P.

J. Hong, K. W. Leong, T. Makino, J. Evans, X. Li, and W. P. Huang, "Impact of random facet phases on modal properties of partly gain-coupled distributed-feedback lasers," IEEE J. Sel. Top. Quantum Electron. 3, 555-568 (1997).
[CrossRef]

Hubner, B.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, "Properties of loss-coupled distributed feedback laser arrays for wavelength division multiplexing systems," J. Lightwave Technol. 15, 1191-1197 (1997).
[CrossRef]

Jang, D. H.

C. Park, J. S. Kim, D. K. Oh, D. H. Jang, C. Y. Park, J. H. Ahn, H. M. Kim, H. R. Choo, H. Kim, and K. E. Pyun, "Low-threshold loss-coupled laser diode by new grating fabrication technique," IEEE Photonics Technol. Lett. 9, 22-24 (1997).
[CrossRef]

Johannes, T. W.

T. W. Johannes, "Influence of standing waves on DFB lasers including saturable absorptive gratings," IEEE J. Quantum Electron. 34, 759-766 (1998).
[CrossRef]

J. Zoz, T. W. Johannes, A. Rast, B. Borchert, U. Barabas, and W. Harth, "Dynamics and stability of complex-coupled DFB lasers with absorptive grating," IEEE J. Quantum Electron. 32, 1937-1949 (1996).

T. W. Johannes, A. Rast, W. Harth, and J. Rieger, "Gain-coupled DFB lasers with a titanium surface Bragg grating," Electron. Lett. 31, 370-371 (1995).
[CrossRef]

Jonsson, B.

B. Jonsson, A. J. Lowery, H. Olesen, and B. Tromborg, "Instabilities and nonlinear L-I characteristics in complex-coupled DFB lasers with antiphase gain and index gratings," IEEE J. Quantum Electron. 32, 839-850 (1996).
[CrossRef]

Kempf, B. E.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, "Properties of loss-coupled distributed feedback laser arrays for wavelength division multiplexing systems," J. Lightwave Technol. 15, 1191-1197 (1997).
[CrossRef]

Kim, B.-G.

H.-S. Lee, H. K. Kim, B.-G. Kim, and B. Lee, "Systematic comparisons of the effects of the linewidth enhancement factor, the confinement factor, the internal loss and the cavity length on the above threshold characteristics of quarter wavelength shifted DFB lasers," Microwave Opt. Technol. Lett. 27, 396-400 (2000).
[CrossRef]

B.-G. Kim, S.-C. Cho, and A. Shakouri, "The symmetry of the amplified spontaneous emission spectrum in complex-coupled DFB lasers," J. Lightwave Technol. 16, 1088-1094 (1998).
[CrossRef]

Kim, H.

C. Park, J. S. Kim, D. K. Oh, D. H. Jang, C. Y. Park, J. H. Ahn, H. M. Kim, H. R. Choo, H. Kim, and K. E. Pyun, "Low-threshold loss-coupled laser diode by new grating fabrication technique," IEEE Photonics Technol. Lett. 9, 22-24 (1997).
[CrossRef]

Kim, H. K.

H.-S. Lee, H. K. Kim, B.-G. Kim, and B. Lee, "Systematic comparisons of the effects of the linewidth enhancement factor, the confinement factor, the internal loss and the cavity length on the above threshold characteristics of quarter wavelength shifted DFB lasers," Microwave Opt. Technol. Lett. 27, 396-400 (2000).
[CrossRef]

Kim, H. M.

C. Park, J. S. Kim, D. K. Oh, D. H. Jang, C. Y. Park, J. H. Ahn, H. M. Kim, H. R. Choo, H. Kim, and K. E. Pyun, "Low-threshold loss-coupled laser diode by new grating fabrication technique," IEEE Photonics Technol. Lett. 9, 22-24 (1997).
[CrossRef]

Kim, J. S.

C. Park, J. S. Kim, D. K. Oh, D. H. Jang, C. Y. Park, J. H. Ahn, H. M. Kim, H. R. Choo, H. Kim, and K. E. Pyun, "Low-threshold loss-coupled laser diode by new grating fabrication technique," IEEE Photonics Technol. Lett. 9, 22-24 (1997).
[CrossRef]

Kinoshita, J.-I.

J.-I. Kinoshita and K. Matsumoto, "Yield analysis of SLM DFB lasers with an axially-flattened internal field," IEEE J. Quantum Electron. 25, 1324-1332 (1989).
[CrossRef]

Krost, A.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, "Properties of loss-coupled distributed feedback laser arrays for wavelength division multiplexing systems," J. Lightwave Technol. 15, 1191-1197 (1997).
[CrossRef]

Kuindersma, P. I.

P. P. G. Mols, P. I. Kuindersma, W. V. Es-spiekman, and I. A. F. Baele, "Yield and device characteristics of DFB lasers: statistics and novel coating design in theory and experiment," IEEE J. Quantum Electron. 25, 1303-1313 (1989).
[CrossRef]

Kuphal, E.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, "Properties of loss-coupled distributed feedback laser arrays for wavelength division multiplexing systems," J. Lightwave Technol. 15, 1191-1197 (1997).
[CrossRef]

Kwon, K.-Y.

K.-Y. Kwon, "Effect of grating phase difference on single-mode yield in complex-coupled DFB lasers with gain and index gratings," IEEE J. Quantum Electron. 32, 1937-1949 (1996).
[CrossRef]

Lee, B.

H.-S. Lee, H. K. Kim, B.-G. Kim, and B. Lee, "Systematic comparisons of the effects of the linewidth enhancement factor, the confinement factor, the internal loss and the cavity length on the above threshold characteristics of quarter wavelength shifted DFB lasers," Microwave Opt. Technol. Lett. 27, 396-400 (2000).
[CrossRef]

Lee, H.-S.

H.-S. Lee, H. K. Kim, B.-G. Kim, and B. Lee, "Systematic comparisons of the effects of the linewidth enhancement factor, the confinement factor, the internal loss and the cavity length on the above threshold characteristics of quarter wavelength shifted DFB lasers," Microwave Opt. Technol. Lett. 27, 396-400 (2000).
[CrossRef]

Leong, K. W.

J. Hong, K. W. Leong, T. Makino, J. Evans, X. Li, and W. P. Huang, "Impact of random facet phases on modal properties of partly gain-coupled distributed-feedback lasers," IEEE J. Sel. Top. Quantum Electron. 3, 555-568 (1997).
[CrossRef]

Leong, K.-W.

G. P. Li, T. Makino, R. Moore, N. Puetz, K.-W. Leong, and H. Lu, "Partly gain-coupled 1.55 µm strained-layer multiquantum-well DFB lasers," IEEE J. Quantum Electron. 33, 33-40 (1997).
[CrossRef]

Li, G. P.

G. P. Li, T. Makino, R. Moore, N. Puetz, K.-W. Leong, and H. Lu, "Partly gain-coupled 1.55 µm strained-layer multiquantum-well DFB lasers," IEEE J. Quantum Electron. 33, 33-40 (1997).
[CrossRef]

H. Lu, C. Blaauw, B. Benyon, G. P. Li, and T. Makino, "High power and high speed performance of 1.3 µm strained MQW gain-coupled DFB lasers," IEEE J. Sel. Top. Quantum Electron. 1, 375-380 (1995).
[CrossRef]

Li, X.

J. Hong, K. W. Leong, T. Makino, J. Evans, X. Li, and W. P. Huang, "Impact of random facet phases on modal properties of partly gain-coupled distributed-feedback lasers," IEEE J. Sel. Top. Quantum Electron. 3, 555-568 (1997).
[CrossRef]

Lo, B. S. K.

B. S. K. Lo and H. Ghafouri-Shiraz, "Spectral characteristics of distributed feedback laser diodes with distributed coupling coefficient," J. Lightwave Technol. 13, 200-212 (1995).
[CrossRef]

Lowery, A. J.

B. Jonsson, A. J. Lowery, H. Olesen, and B. Tromborg, "Instabilities and nonlinear L-I characteristics in complex-coupled DFB lasers with antiphase gain and index gratings," IEEE J. Quantum Electron. 32, 839-850 (1996).
[CrossRef]

Lu, H.

G. P. Li, T. Makino, R. Moore, N. Puetz, K.-W. Leong, and H. Lu, "Partly gain-coupled 1.55 µm strained-layer multiquantum-well DFB lasers," IEEE J. Quantum Electron. 33, 33-40 (1997).
[CrossRef]

H. Lu, C. Blaauw, B. Benyon, G. P. Li, and T. Makino, "High power and high speed performance of 1.3 µm strained MQW gain-coupled DFB lasers," IEEE J. Sel. Top. Quantum Electron. 1, 375-380 (1995).
[CrossRef]

Luo, Y.

Y. Nakano, Y. Luo, and K. Tada, "Facet reflection independent, single longitudinal mode oscillation in a GaAlAs/GaAs distributed feedback laser equipped with a gain-coupled mechanism," Appl. Phys. Lett. 55, 1606-1608 (1989).
[CrossRef]

Maciejko, R.

J. Chen, A. Champagne, R. Maciejko, and T. Makino, "Improvement of single-mode gain margin in gain-coupled DFB lasers," IEEE J. Quantum Electron. 33, 33-40 (1997).
[CrossRef]

Makino, T.

J. Chen, A. Champagne, R. Maciejko, and T. Makino, "Improvement of single-mode gain margin in gain-coupled DFB lasers," IEEE J. Quantum Electron. 33, 33-40 (1997).
[CrossRef]

G. P. Li, T. Makino, R. Moore, N. Puetz, K.-W. Leong, and H. Lu, "Partly gain-coupled 1.55 µm strained-layer multiquantum-well DFB lasers," IEEE J. Quantum Electron. 33, 33-40 (1997).
[CrossRef]

J. Hong, K. W. Leong, T. Makino, J. Evans, X. Li, and W. P. Huang, "Impact of random facet phases on modal properties of partly gain-coupled distributed-feedback lasers," IEEE J. Sel. Top. Quantum Electron. 3, 555-568 (1997).
[CrossRef]

H. Lu, C. Blaauw, B. Benyon, G. P. Li, and T. Makino, "High power and high speed performance of 1.3 µm strained MQW gain-coupled DFB lasers," IEEE J. Sel. Top. Quantum Electron. 1, 375-380 (1995).
[CrossRef]

T. Makino, "High single-mode stability gain-coupled DFB laser for new applications," in Proceedings of Asia-Pacific Conference on Communications and Fourth Optoelectronics and Communications Conference (APCC/OECC) (Institute of Electronics, Information and Communications Engineers, Tokyo, Japan, 1999), pp. 1315-1319.

Matsumoto, K.

J.-I. Kinoshita and K. Matsumoto, "Yield analysis of SLM DFB lasers with an axially-flattened internal field," IEEE J. Quantum Electron. 25, 1324-1332 (1989).
[CrossRef]

Mols, P. P. G.

P. P. G. Mols, P. I. Kuindersma, W. V. Es-spiekman, and I. A. F. Baele, "Yield and device characteristics of DFB lasers: statistics and novel coating design in theory and experiment," IEEE J. Quantum Electron. 25, 1303-1313 (1989).
[CrossRef]

Moon, C. K.

S. W. Park, C. K. Moon, J. C. Han, and J.-I. Song, "1.55-µm DFB lasers utilizing an automatically buried absorptive InAsP layer having a high single-mode yield," IEEE Photonics Technol. Lett. 16, 1426-1428 (2004).
[CrossRef]

Moore, R.

G. P. Li, T. Makino, R. Moore, N. Puetz, K.-W. Leong, and H. Lu, "Partly gain-coupled 1.55 µm strained-layer multiquantum-well DFB lasers," IEEE J. Quantum Electron. 33, 33-40 (1997).
[CrossRef]

Morthier, G.

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, "Gain-coupled DFB lasers versus index-coupled and phase-shifted DFB lasers: a comparison based on spatial hole burning corrected yield," IEEE J. Quantum Electron. 27, 1714-1723 (1991).
[CrossRef]

G. Morthier, P. Vankwikelberge, K. David, and R. Baets, "Improved performance of AR-coated DFB lasers by the introduction of gain coupling," IEEE Photonics Technol. Lett. 2, 170-172 (1990).
[CrossRef]

Nakano, Y.

Y. Nakano, Y. Uchida, and K. Tada, "Highly efficient single longitudinal-mode oscillation capability of gain-coupled distributed feedback semiconductor laser--advantage of asymmetric facet coating," IEEE Photonics Technol. Lett. 4, 308-311 (1992).
[CrossRef]

Y. Nakano, Y. Luo, and K. Tada, "Facet reflection independent, single longitudinal mode oscillation in a GaAlAs/GaAs distributed feedback laser equipped with a gain-coupled mechanism," Appl. Phys. Lett. 55, 1606-1608 (1989).
[CrossRef]

Y. Nakano and K. Tada, "Recent progress in semiconductor gain coupled DFB laser research," in Proceedings of IEEE Lasers and Electro-Optics Society (LEOS) (IEEE Press, 1996), pp. 76-77.

Oh, D. K.

C. Park, J. S. Kim, D. K. Oh, D. H. Jang, C. Y. Park, J. H. Ahn, H. M. Kim, H. R. Choo, H. Kim, and K. E. Pyun, "Low-threshold loss-coupled laser diode by new grating fabrication technique," IEEE Photonics Technol. Lett. 9, 22-24 (1997).
[CrossRef]

Olesen, H.

B. Jonsson, A. J. Lowery, H. Olesen, and B. Tromborg, "Instabilities and nonlinear L-I characteristics in complex-coupled DFB lasers with antiphase gain and index gratings," IEEE J. Quantum Electron. 32, 839-850 (1996).
[CrossRef]

Orth, A.

A. Orth, J. P. Reithmaier, F. Faller, and A. Forchel, "Gain-coupled distributed-feedback GaInAs-GaAs laser structures defined by maskless patterning with focused ion beams," IEEE Photonics Technol. Lett. 7, 845-847 (1995).
[CrossRef]

Park, C.

C. Park, J. S. Kim, D. K. Oh, D. H. Jang, C. Y. Park, J. H. Ahn, H. M. Kim, H. R. Choo, H. Kim, and K. E. Pyun, "Low-threshold loss-coupled laser diode by new grating fabrication technique," IEEE Photonics Technol. Lett. 9, 22-24 (1997).
[CrossRef]

Park, C. Y.

C. Park, J. S. Kim, D. K. Oh, D. H. Jang, C. Y. Park, J. H. Ahn, H. M. Kim, H. R. Choo, H. Kim, and K. E. Pyun, "Low-threshold loss-coupled laser diode by new grating fabrication technique," IEEE Photonics Technol. Lett. 9, 22-24 (1997).
[CrossRef]

Park, S. W.

S. W. Park, C. K. Moon, J. C. Han, and J.-I. Song, "1.55-µm DFB lasers utilizing an automatically buried absorptive InAsP layer having a high single-mode yield," IEEE Photonics Technol. Lett. 16, 1426-1428 (2004).
[CrossRef]

Puetz, N.

G. P. Li, T. Makino, R. Moore, N. Puetz, K.-W. Leong, and H. Lu, "Partly gain-coupled 1.55 µm strained-layer multiquantum-well DFB lasers," IEEE J. Quantum Electron. 33, 33-40 (1997).
[CrossRef]

Pyun, K. E.

C. Park, J. S. Kim, D. K. Oh, D. H. Jang, C. Y. Park, J. H. Ahn, H. M. Kim, H. R. Choo, H. Kim, and K. E. Pyun, "Low-threshold loss-coupled laser diode by new grating fabrication technique," IEEE Photonics Technol. Lett. 9, 22-24 (1997).
[CrossRef]

Rast, A.

J. Zoz, T. W. Johannes, A. Rast, B. Borchert, U. Barabas, and W. Harth, "Dynamics and stability of complex-coupled DFB lasers with absorptive grating," IEEE J. Quantum Electron. 32, 1937-1949 (1996).

T. W. Johannes, A. Rast, W. Harth, and J. Rieger, "Gain-coupled DFB lasers with a titanium surface Bragg grating," Electron. Lett. 31, 370-371 (1995).
[CrossRef]

Reithmaier, J. P.

A. Orth, J. P. Reithmaier, F. Faller, and A. Forchel, "Gain-coupled distributed-feedback GaInAs-GaAs laser structures defined by maskless patterning with focused ion beams," IEEE Photonics Technol. Lett. 7, 845-847 (1995).
[CrossRef]

Rieger, J.

T. W. Johannes, A. Rast, W. Harth, and J. Rieger, "Gain-coupled DFB lasers with a titanium surface Bragg grating," Electron. Lett. 31, 370-371 (1995).
[CrossRef]

Sacher, D.

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, "1.55 µm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth," IEEE Photonics Technol. Lett. 3, 955-957 (1991).
[CrossRef]

Schatke, K.

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, "Properties of loss-coupled distributed feedback laser arrays for wavelength division multiplexing systems," J. Lightwave Technol. 15, 1191-1197 (1997).
[CrossRef]

Shakouri, A.

Shiao, H.-P.

H.-P. Shiao, C.-Y. Wang, T.-T. Shih, and Y.-K. Tu, "High performance and high reliability of 1.55-µm current-blocking grating complex-coupled DFB lasers," IEEE Photonics Technol. Lett. 10, 1238-1240 (1998).
[CrossRef]

Shih, T.-T.

H.-P. Shiao, C.-Y. Wang, T.-T. Shih, and Y.-K. Tu, "High performance and high reliability of 1.55-µm current-blocking grating complex-coupled DFB lasers," IEEE Photonics Technol. Lett. 10, 1238-1240 (1998).
[CrossRef]

Song, J.-I.

S. W. Park, C. K. Moon, J. C. Han, and J.-I. Song, "1.55-µm DFB lasers utilizing an automatically buried absorptive InAsP layer having a high single-mode yield," IEEE Photonics Technol. Lett. 16, 1426-1428 (2004).
[CrossRef]

Stegmuller, B.

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, "1.55 µm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth," IEEE Photonics Technol. Lett. 3, 955-957 (1991).
[CrossRef]

Susa, N.

N. Susa, "Fluctuations of the laser characteristics and the effect of the index-coupling component in the gain-coupled DFB laser," IEEE J. Quantum Electron. 33, 2255-2265 (1997).
[CrossRef]

Tada, K.

Y. Nakano, Y. Uchida, and K. Tada, "Highly efficient single longitudinal-mode oscillation capability of gain-coupled distributed feedback semiconductor laser--advantage of asymmetric facet coating," IEEE Photonics Technol. Lett. 4, 308-311 (1992).
[CrossRef]

Y. Nakano, Y. Luo, and K. Tada, "Facet reflection independent, single longitudinal mode oscillation in a GaAlAs/GaAs distributed feedback laser equipped with a gain-coupled mechanism," Appl. Phys. Lett. 55, 1606-1608 (1989).
[CrossRef]

Y. Nakano and K. Tada, "Recent progress in semiconductor gain coupled DFB laser research," in Proceedings of IEEE Lasers and Electro-Optics Society (LEOS) (IEEE Press, 1996), pp. 76-77.

Tromborg, B.

B. Jonsson, A. J. Lowery, H. Olesen, and B. Tromborg, "Instabilities and nonlinear L-I characteristics in complex-coupled DFB lasers with antiphase gain and index gratings," IEEE J. Quantum Electron. 32, 839-850 (1996).
[CrossRef]

Tu, Y.-K.

H.-P. Shiao, C.-Y. Wang, T.-T. Shih, and Y.-K. Tu, "High performance and high reliability of 1.55-µm current-blocking grating complex-coupled DFB lasers," IEEE Photonics Technol. Lett. 10, 1238-1240 (1998).
[CrossRef]

Uchida, Y.

Y. Nakano, Y. Uchida, and K. Tada, "Highly efficient single longitudinal-mode oscillation capability of gain-coupled distributed feedback semiconductor laser--advantage of asymmetric facet coating," IEEE Photonics Technol. Lett. 4, 308-311 (1992).
[CrossRef]

Vankwikelberge, P.

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, "Gain-coupled DFB lasers versus index-coupled and phase-shifted DFB lasers: a comparison based on spatial hole burning corrected yield," IEEE J. Quantum Electron. 27, 1714-1723 (1991).
[CrossRef]

G. Morthier, P. Vankwikelberge, K. David, and R. Baets, "Improved performance of AR-coated DFB lasers by the introduction of gain coupling," IEEE Photonics Technol. Lett. 2, 170-172 (1990).
[CrossRef]

Wang, C.-Y.

H.-P. Shiao, C.-Y. Wang, T.-T. Shih, and Y.-K. Tu, "High performance and high reliability of 1.55-µm current-blocking grating complex-coupled DFB lasers," IEEE Photonics Technol. Lett. 10, 1238-1240 (1998).
[CrossRef]

Wolf, T.

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, "Gain-coupled DFB lasers versus index-coupled and phase-shifted DFB lasers: a comparison based on spatial hole burning corrected yield," IEEE J. Quantum Electron. 27, 1714-1723 (1991).
[CrossRef]

Zoz, J.

J. Zoz, T. W. Johannes, A. Rast, B. Borchert, U. Barabas, and W. Harth, "Dynamics and stability of complex-coupled DFB lasers with absorptive grating," IEEE J. Quantum Electron. 32, 1937-1949 (1996).

Appl. Phys. Lett. (1)

Y. Nakano, Y. Luo, and K. Tada, "Facet reflection independent, single longitudinal mode oscillation in a GaAlAs/GaAs distributed feedback laser equipped with a gain-coupled mechanism," Appl. Phys. Lett. 55, 1606-1608 (1989).
[CrossRef]

Electron. Lett. (1)

T. W. Johannes, A. Rast, W. Harth, and J. Rieger, "Gain-coupled DFB lasers with a titanium surface Bragg grating," Electron. Lett. 31, 370-371 (1995).
[CrossRef]

IEEE J. Quantum Electron. (10)

T. W. Johannes, "Influence of standing waves on DFB lasers including saturable absorptive gratings," IEEE J. Quantum Electron. 34, 759-766 (1998).
[CrossRef]

K.-Y. Kwon, "Effect of grating phase difference on single-mode yield in complex-coupled DFB lasers with gain and index gratings," IEEE J. Quantum Electron. 32, 1937-1949 (1996).
[CrossRef]

J.-I. Kinoshita and K. Matsumoto, "Yield analysis of SLM DFB lasers with an axially-flattened internal field," IEEE J. Quantum Electron. 25, 1324-1332 (1989).
[CrossRef]

P. P. G. Mols, P. I. Kuindersma, W. V. Es-spiekman, and I. A. F. Baele, "Yield and device characteristics of DFB lasers: statistics and novel coating design in theory and experiment," IEEE J. Quantum Electron. 25, 1303-1313 (1989).
[CrossRef]

N. Susa, "Fluctuations of the laser characteristics and the effect of the index-coupling component in the gain-coupled DFB laser," IEEE J. Quantum Electron. 33, 2255-2265 (1997).
[CrossRef]

K. David, G. Morthier, P. Vankwikelberge, R. G. Baets, T. Wolf, and B. Borchert, "Gain-coupled DFB lasers versus index-coupled and phase-shifted DFB lasers: a comparison based on spatial hole burning corrected yield," IEEE J. Quantum Electron. 27, 1714-1723 (1991).
[CrossRef]

G. P. Li, T. Makino, R. Moore, N. Puetz, K.-W. Leong, and H. Lu, "Partly gain-coupled 1.55 µm strained-layer multiquantum-well DFB lasers," IEEE J. Quantum Electron. 33, 33-40 (1997).
[CrossRef]

B. Jonsson, A. J. Lowery, H. Olesen, and B. Tromborg, "Instabilities and nonlinear L-I characteristics in complex-coupled DFB lasers with antiphase gain and index gratings," IEEE J. Quantum Electron. 32, 839-850 (1996).
[CrossRef]

J. Chen, A. Champagne, R. Maciejko, and T. Makino, "Improvement of single-mode gain margin in gain-coupled DFB lasers," IEEE J. Quantum Electron. 33, 33-40 (1997).
[CrossRef]

J. Zoz, T. W. Johannes, A. Rast, B. Borchert, U. Barabas, and W. Harth, "Dynamics and stability of complex-coupled DFB lasers with absorptive grating," IEEE J. Quantum Electron. 32, 1937-1949 (1996).

IEEE J. Sel. Top. Quantum Electron. (2)

J. Hong, K. W. Leong, T. Makino, J. Evans, X. Li, and W. P. Huang, "Impact of random facet phases on modal properties of partly gain-coupled distributed-feedback lasers," IEEE J. Sel. Top. Quantum Electron. 3, 555-568 (1997).
[CrossRef]

H. Lu, C. Blaauw, B. Benyon, G. P. Li, and T. Makino, "High power and high speed performance of 1.3 µm strained MQW gain-coupled DFB lasers," IEEE J. Sel. Top. Quantum Electron. 1, 375-380 (1995).
[CrossRef]

IEEE Photonics Technol. Lett. (7)

Y. Nakano, Y. Uchida, and K. Tada, "Highly efficient single longitudinal-mode oscillation capability of gain-coupled distributed feedback semiconductor laser--advantage of asymmetric facet coating," IEEE Photonics Technol. Lett. 4, 308-311 (1992).
[CrossRef]

B. Borchert, K. David, B. Stegmuller, R. Gessner, M. Beschorner, D. Sacher, and G. Franz, "1.55 µm gain-coupled quantum-well distributed feedback lasers with high single-mode yield and narrow linewidth," IEEE Photonics Technol. Lett. 3, 955-957 (1991).
[CrossRef]

C. Park, J. S. Kim, D. K. Oh, D. H. Jang, C. Y. Park, J. H. Ahn, H. M. Kim, H. R. Choo, H. Kim, and K. E. Pyun, "Low-threshold loss-coupled laser diode by new grating fabrication technique," IEEE Photonics Technol. Lett. 9, 22-24 (1997).
[CrossRef]

S. W. Park, C. K. Moon, J. C. Han, and J.-I. Song, "1.55-µm DFB lasers utilizing an automatically buried absorptive InAsP layer having a high single-mode yield," IEEE Photonics Technol. Lett. 16, 1426-1428 (2004).
[CrossRef]

H.-P. Shiao, C.-Y. Wang, T.-T. Shih, and Y.-K. Tu, "High performance and high reliability of 1.55-µm current-blocking grating complex-coupled DFB lasers," IEEE Photonics Technol. Lett. 10, 1238-1240 (1998).
[CrossRef]

A. Orth, J. P. Reithmaier, F. Faller, and A. Forchel, "Gain-coupled distributed-feedback GaInAs-GaAs laser structures defined by maskless patterning with focused ion beams," IEEE Photonics Technol. Lett. 7, 845-847 (1995).
[CrossRef]

G. Morthier, P. Vankwikelberge, K. David, and R. Baets, "Improved performance of AR-coated DFB lasers by the introduction of gain coupling," IEEE Photonics Technol. Lett. 2, 170-172 (1990).
[CrossRef]

J. Lightwave Technol. (3)

B.-G. Kim, S.-C. Cho, and A. Shakouri, "The symmetry of the amplified spontaneous emission spectrum in complex-coupled DFB lasers," J. Lightwave Technol. 16, 1088-1094 (1998).
[CrossRef]

S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, "Properties of loss-coupled distributed feedback laser arrays for wavelength division multiplexing systems," J. Lightwave Technol. 15, 1191-1197 (1997).
[CrossRef]

B. S. K. Lo and H. Ghafouri-Shiraz, "Spectral characteristics of distributed feedback laser diodes with distributed coupling coefficient," J. Lightwave Technol. 13, 200-212 (1995).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

H.-S. Lee, H. K. Kim, B.-G. Kim, and B. Lee, "Systematic comparisons of the effects of the linewidth enhancement factor, the confinement factor, the internal loss and the cavity length on the above threshold characteristics of quarter wavelength shifted DFB lasers," Microwave Opt. Technol. Lett. 27, 396-400 (2000).
[CrossRef]

Other (2)

Y. Nakano and K. Tada, "Recent progress in semiconductor gain coupled DFB laser research," in Proceedings of IEEE Lasers and Electro-Optics Society (LEOS) (IEEE Press, 1996), pp. 76-77.

T. Makino, "High single-mode stability gain-coupled DFB laser for new applications," in Proceedings of Asia-Pacific Conference on Communications and Fourth Optoelectronics and Communications Conference (APCC/OECC) (Institute of Electronics, Information and Communications Engineers, Tokyo, Japan, 1999), pp. 1315-1319.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of a CC DFB laser.

Fig. 2
Fig. 2

SHB-corrected yield of CC DFB lasers at threshold as a function of f c for several values of κ L with an AR(1%)–HR(90%) facet reflectivity combination and a CR of 0.1.

Fig. 3
Fig. 3

Single-mode yields of IP and AP CC DFB lasers above threshold for several values of J J th versus κ L when the facet reflectivity combination is AR(1%)–HR(90%) and the CR is 0.1.

Fig. 4
Fig. 4

(a) and (b) Round-trip gain spectrum and mode positions at J J th = 1 (solid curve) and J J th = 1.5 (dotted curve) for the IP and AP CC DFB lasers, respectively. (c) and (d) Mode variations above threshold for the IP and AP CC DFB lasers, respectively. ϕ AR = 11 π 8 and ϕ HR = 3 π 8 for the IP CC DFB laser, and ϕ AR = 13 π 8 and ϕ HR = 5 π 8 for the AP CC DFB laser.

Fig. 5
Fig. 5

Comparison between the single-mode yield at J J th = 3 (filled squares) as shown in Fig. 3 and the SHB-corrected yield at threshold (filled circles) as shown in Fig. 2 versus κ L for IP and AP CC DFB lasers, respectively.

Fig. 6
Fig. 6

Single-mode yields at J J th = 3 of IP and AP CC DFB lasers as a function of the CR for several values of κ L .

Fig. 7
Fig. 7

Single-mode yields of IP CC DFB lasers at J J th = 3 as a function of the reflectivity of the AR facet.

Tables (1)

Tables Icon

Table 1 Parameters Used in the Simulation

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ α L Δ α L SM ,

Metrics