Abstract

Results are presented showing that high laser output efficiencies and a significant reduction in thermal effects can be achieved by a spinning of an optically pumped disk of gain material in a laser cavity. Waste heat is removed from the disk by conduction to cold plates across a thin gas layer. With this approach, a diode-pumped Nd:YAG laser has been demonstrated at 10.3-W cw output power, TEM00 mode, with a slope efficiency of 59%. A Nd:glass spinning-disk laser has also been demonstrated at 35-W cw, multimode, with a slope efficiency of 40%. As the disk revolution rate was scanned from 1  to  26Hz, the laser power first increased to a maximum value then decreased for increasingly higher rates. However, when the laser resonator axis was advanced with respect to the pump, the optimum spin rate shifted to higher values.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
    [CrossRef]
  2. J. Limpert, A. Liem, H. Zellmer, and A. Tünnermann, "500 W continuous-wave fibre laser with excellent beam quality," Electron. Lett. 39, 645-647 (2003).
    [CrossRef]
  3. T. Y. Fan, T. Crow, and B. Holden, "Cooled Yb:YAG for high-power solid state lasers," in Airborne Laser Advanced Technology, T.D.Steiner and P.H.Merritt, eds., Proc. SPIE 3381, 200-205 (1998).
    [CrossRef]
  4. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1999).
    [CrossRef]
  5. R. J. St. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, "Active Tracker Laser (ATLAS)," IEEE J. Sel. Top. Quantum Electron. 3, 64-70 (1997).
    [CrossRef]
  6. C. B. Dane, L. Flath, M. Rotter, S. Fochs, and J. Brase, "The design and operation of a 10 kW solid-state heat-capacity laser," in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. xvii-xviii.
  7. E. A. Stappaerts, "Hybrid heat-capacity-moving-slab solid-state laser," Laser Part. Beams 20, 537-539 (2002).
    [CrossRef]
  8. R. L. Byer, "High power solid state laser," U.S. Patent 4,555,786 (November 26, 1985).
  9. S. Basu, T. J. Kane, and R. L. Byer, "A proposed 1-kW average power moving slab Nd-glass laser," IEEE J. Quantum Electron. 22, 2052-2057 (1986).
    [CrossRef]
  10. S. Basu and R. L. Byer, "Average power limits of diode-laser-pumped solid state lasers," Appl. Opt. 29, 1765-1771 (1990).
    [CrossRef] [PubMed]
  11. D. L. Hecht, W. L. Bond, R. H. Pantell, and H. E. Puthoff, "Dye lasers with ultrafast transverse flow," IEEE J. Quantum Electron. 8, 15-19 (1972).
    [CrossRef]
  12. J. Korn, T. H. Jeys, and T. Y. Fan, "Continuous-wave operation of a diode-pumped rotating Nd:glass disk laser," Opt. Lett. 16, 1741-1743 (1991).
    [CrossRef] [PubMed]
  13. Y. Chen and V. Kushawaha, "Rotating-disk diode-pumped continuous-wave Nd:YAG laser," Appl. Phys. B: Lasers Opt. 61, 525-528 (1995).
    [CrossRef]
  14. F. Zhou, G. Huang, and S. Gu, "A high average power rotating hollow cylinder Nd:glass laser," Appl. Phys. B: Lasers Opt. 63, 585-591 (1996).
    [CrossRef]
  15. A. H. Paxton, S. M. Massey, J. B. McKay, and H. C. Miller, "Rotating-disk solid-state lasers, thermal properties," in Laser Resonators and Beam Control VII, A.V.Kudryashov, ed., Proc. SPIE 5333, 12-17 (2004).
    [CrossRef]
  16. R. J. St. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, and G. Harpole, "Diode array pumped kilowatt laser," in High-Power Lasers, S.Basu, ed., Proc. SPIE 3264, 2-8 (1998).
    [CrossRef]
  17. J. Lu, M. Prabhu, J. Xu, H. Yagi, T. Yanagitani, A. A. Kaminskii, and K. Ueda, "Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser," Appl. Phys. Lett. 77, 3707-3709 (2000).
    [CrossRef]

2003 (1)

J. Limpert, A. Liem, H. Zellmer, and A. Tünnermann, "500 W continuous-wave fibre laser with excellent beam quality," Electron. Lett. 39, 645-647 (2003).
[CrossRef]

2002 (1)

E. A. Stappaerts, "Hybrid heat-capacity-moving-slab solid-state laser," Laser Part. Beams 20, 537-539 (2002).
[CrossRef]

2000 (2)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. Xu, H. Yagi, T. Yanagitani, A. A. Kaminskii, and K. Ueda, "Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser," Appl. Phys. Lett. 77, 3707-3709 (2000).
[CrossRef]

1997 (1)

R. J. St. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, "Active Tracker Laser (ATLAS)," IEEE J. Sel. Top. Quantum Electron. 3, 64-70 (1997).
[CrossRef]

1996 (1)

F. Zhou, G. Huang, and S. Gu, "A high average power rotating hollow cylinder Nd:glass laser," Appl. Phys. B: Lasers Opt. 63, 585-591 (1996).
[CrossRef]

1995 (1)

Y. Chen and V. Kushawaha, "Rotating-disk diode-pumped continuous-wave Nd:YAG laser," Appl. Phys. B: Lasers Opt. 61, 525-528 (1995).
[CrossRef]

1991 (1)

1990 (1)

1986 (1)

S. Basu, T. J. Kane, and R. L. Byer, "A proposed 1-kW average power moving slab Nd-glass laser," IEEE J. Quantum Electron. 22, 2052-2057 (1986).
[CrossRef]

1972 (1)

D. L. Hecht, W. L. Bond, R. H. Pantell, and H. E. Puthoff, "Dye lasers with ultrafast transverse flow," IEEE J. Quantum Electron. 8, 15-19 (1972).
[CrossRef]

Basu, S.

S. Basu and R. L. Byer, "Average power limits of diode-laser-pumped solid state lasers," Appl. Opt. 29, 1765-1771 (1990).
[CrossRef] [PubMed]

S. Basu, T. J. Kane, and R. L. Byer, "A proposed 1-kW average power moving slab Nd-glass laser," IEEE J. Quantum Electron. 22, 2052-2057 (1986).
[CrossRef]

Berg, J. G.

R. J. St. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, "Active Tracker Laser (ATLAS)," IEEE J. Sel. Top. Quantum Electron. 3, 64-70 (1997).
[CrossRef]

R. J. St. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, and G. Harpole, "Diode array pumped kilowatt laser," in High-Power Lasers, S.Basu, ed., Proc. SPIE 3264, 2-8 (1998).
[CrossRef]

Bond, W. L.

D. L. Hecht, W. L. Bond, R. H. Pantell, and H. E. Puthoff, "Dye lasers with ultrafast transverse flow," IEEE J. Quantum Electron. 8, 15-19 (1972).
[CrossRef]

Brase, J.

C. B. Dane, L. Flath, M. Rotter, S. Fochs, and J. Brase, "The design and operation of a 10 kW solid-state heat-capacity laser," in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. xvii-xviii.

Byer, R. L.

S. Basu and R. L. Byer, "Average power limits of diode-laser-pumped solid state lasers," Appl. Opt. 29, 1765-1771 (1990).
[CrossRef] [PubMed]

S. Basu, T. J. Kane, and R. L. Byer, "A proposed 1-kW average power moving slab Nd-glass laser," IEEE J. Quantum Electron. 22, 2052-2057 (1986).
[CrossRef]

R. L. Byer, "High power solid state laser," U.S. Patent 4,555,786 (November 26, 1985).

Chen, Y.

Y. Chen and V. Kushawaha, "Rotating-disk diode-pumped continuous-wave Nd:YAG laser," Appl. Phys. B: Lasers Opt. 61, 525-528 (1995).
[CrossRef]

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Crow, T.

T. Y. Fan, T. Crow, and B. Holden, "Cooled Yb:YAG for high-power solid state lasers," in Airborne Laser Advanced Technology, T.D.Steiner and P.H.Merritt, eds., Proc. SPIE 3381, 200-205 (1998).
[CrossRef]

Dane, C. B.

C. B. Dane, L. Flath, M. Rotter, S. Fochs, and J. Brase, "The design and operation of a 10 kW solid-state heat-capacity laser," in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. xvii-xviii.

Engler, T.

R. J. St. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, "Active Tracker Laser (ATLAS)," IEEE J. Sel. Top. Quantum Electron. 3, 64-70 (1997).
[CrossRef]

Fan, T. Y.

J. Korn, T. H. Jeys, and T. Y. Fan, "Continuous-wave operation of a diode-pumped rotating Nd:glass disk laser," Opt. Lett. 16, 1741-1743 (1991).
[CrossRef] [PubMed]

T. Y. Fan, T. Crow, and B. Holden, "Cooled Yb:YAG for high-power solid state lasers," in Airborne Laser Advanced Technology, T.D.Steiner and P.H.Merritt, eds., Proc. SPIE 3381, 200-205 (1998).
[CrossRef]

Flath, L.

C. B. Dane, L. Flath, M. Rotter, S. Fochs, and J. Brase, "The design and operation of a 10 kW solid-state heat-capacity laser," in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. xvii-xviii.

Fochs, S.

C. B. Dane, L. Flath, M. Rotter, S. Fochs, and J. Brase, "The design and operation of a 10 kW solid-state heat-capacity laser," in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. xvii-xviii.

Giesen, A.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Gu, S.

F. Zhou, G. Huang, and S. Gu, "A high average power rotating hollow cylinder Nd:glass laser," Appl. Phys. B: Lasers Opt. 63, 585-591 (1996).
[CrossRef]

Hall, D.

R. J. St. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, "Active Tracker Laser (ATLAS)," IEEE J. Sel. Top. Quantum Electron. 3, 64-70 (1997).
[CrossRef]

Harpole, G.

R. J. St. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, and G. Harpole, "Diode array pumped kilowatt laser," in High-Power Lasers, S.Basu, ed., Proc. SPIE 3264, 2-8 (1998).
[CrossRef]

Harpole, G. M.

R. J. St. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, "Active Tracker Laser (ATLAS)," IEEE J. Sel. Top. Quantum Electron. 3, 64-70 (1997).
[CrossRef]

Hecht, D. L.

D. L. Hecht, W. L. Bond, R. H. Pantell, and H. E. Puthoff, "Dye lasers with ultrafast transverse flow," IEEE J. Quantum Electron. 8, 15-19 (1972).
[CrossRef]

Hilyard, R. C.

R. J. St. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, "Active Tracker Laser (ATLAS)," IEEE J. Sel. Top. Quantum Electron. 3, 64-70 (1997).
[CrossRef]

R. J. St. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, and G. Harpole, "Diode array pumped kilowatt laser," in High-Power Lasers, S.Basu, ed., Proc. SPIE 3264, 2-8 (1998).
[CrossRef]

Holden, B.

T. Y. Fan, T. Crow, and B. Holden, "Cooled Yb:YAG for high-power solid state lasers," in Airborne Laser Advanced Technology, T.D.Steiner and P.H.Merritt, eds., Proc. SPIE 3381, 200-205 (1998).
[CrossRef]

Holleman, G. W.

R. J. St. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, "Active Tracker Laser (ATLAS)," IEEE J. Sel. Top. Quantum Electron. 3, 64-70 (1997).
[CrossRef]

Huang, G.

F. Zhou, G. Huang, and S. Gu, "A high average power rotating hollow cylinder Nd:glass laser," Appl. Phys. B: Lasers Opt. 63, 585-591 (1996).
[CrossRef]

Hügel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Injeyan, H.

R. J. St. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, "Active Tracker Laser (ATLAS)," IEEE J. Sel. Top. Quantum Electron. 3, 64-70 (1997).
[CrossRef]

R. J. St. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, and G. Harpole, "Diode array pumped kilowatt laser," in High-Power Lasers, S.Basu, ed., Proc. SPIE 3264, 2-8 (1998).
[CrossRef]

Jeys, T. H.

Kaminskii, A. A.

J. Lu, M. Prabhu, J. Xu, H. Yagi, T. Yanagitani, A. A. Kaminskii, and K. Ueda, "Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser," Appl. Phys. Lett. 77, 3707-3709 (2000).
[CrossRef]

Kane, T. J.

S. Basu, T. J. Kane, and R. L. Byer, "A proposed 1-kW average power moving slab Nd-glass laser," IEEE J. Quantum Electron. 22, 2052-2057 (1986).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1999).
[CrossRef]

Korn, J.

Kushawaha, V.

Y. Chen and V. Kushawaha, "Rotating-disk diode-pumped continuous-wave Nd:YAG laser," Appl. Phys. B: Lasers Opt. 61, 525-528 (1995).
[CrossRef]

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Liem, A.

J. Limpert, A. Liem, H. Zellmer, and A. Tünnermann, "500 W continuous-wave fibre laser with excellent beam quality," Electron. Lett. 39, 645-647 (2003).
[CrossRef]

Limpert, J.

J. Limpert, A. Liem, H. Zellmer, and A. Tünnermann, "500 W continuous-wave fibre laser with excellent beam quality," Electron. Lett. 39, 645-647 (2003).
[CrossRef]

Lu, J.

J. Lu, M. Prabhu, J. Xu, H. Yagi, T. Yanagitani, A. A. Kaminskii, and K. Ueda, "Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser," Appl. Phys. Lett. 77, 3707-3709 (2000).
[CrossRef]

Machan, J.

R. J. St. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, "Active Tracker Laser (ATLAS)," IEEE J. Sel. Top. Quantum Electron. 3, 64-70 (1997).
[CrossRef]

Massey, S. M.

A. H. Paxton, S. M. Massey, J. B. McKay, and H. C. Miller, "Rotating-disk solid-state lasers, thermal properties," in Laser Resonators and Beam Control VII, A.V.Kudryashov, ed., Proc. SPIE 5333, 12-17 (2004).
[CrossRef]

McKay, J. B.

A. H. Paxton, S. M. Massey, J. B. McKay, and H. C. Miller, "Rotating-disk solid-state lasers, thermal properties," in Laser Resonators and Beam Control VII, A.V.Kudryashov, ed., Proc. SPIE 5333, 12-17 (2004).
[CrossRef]

Miller, H. C.

A. H. Paxton, S. M. Massey, J. B. McKay, and H. C. Miller, "Rotating-disk solid-state lasers, thermal properties," in Laser Resonators and Beam Control VII, A.V.Kudryashov, ed., Proc. SPIE 5333, 12-17 (2004).
[CrossRef]

Mitchell, M.

R. J. St. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, "Active Tracker Laser (ATLAS)," IEEE J. Sel. Top. Quantum Electron. 3, 64-70 (1997).
[CrossRef]

Mordaunt, D. W.

R. J. St. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, and G. Harpole, "Diode array pumped kilowatt laser," in High-Power Lasers, S.Basu, ed., Proc. SPIE 3264, 2-8 (1998).
[CrossRef]

Pantell, R. H.

D. L. Hecht, W. L. Bond, R. H. Pantell, and H. E. Puthoff, "Dye lasers with ultrafast transverse flow," IEEE J. Quantum Electron. 8, 15-19 (1972).
[CrossRef]

Paxton, A. H.

A. H. Paxton, S. M. Massey, J. B. McKay, and H. C. Miller, "Rotating-disk solid-state lasers, thermal properties," in Laser Resonators and Beam Control VII, A.V.Kudryashov, ed., Proc. SPIE 5333, 12-17 (2004).
[CrossRef]

Prabhu, M.

J. Lu, M. Prabhu, J. Xu, H. Yagi, T. Yanagitani, A. A. Kaminskii, and K. Ueda, "Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser," Appl. Phys. Lett. 77, 3707-3709 (2000).
[CrossRef]

Puthoff, H. E.

D. L. Hecht, W. L. Bond, R. H. Pantell, and H. E. Puthoff, "Dye lasers with ultrafast transverse flow," IEEE J. Quantum Electron. 8, 15-19 (1972).
[CrossRef]

Rotter, M.

C. B. Dane, L. Flath, M. Rotter, S. Fochs, and J. Brase, "The design and operation of a 10 kW solid-state heat-capacity laser," in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. xvii-xviii.

St. Pierre, R. J.

R. J. St. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, "Active Tracker Laser (ATLAS)," IEEE J. Sel. Top. Quantum Electron. 3, 64-70 (1997).
[CrossRef]

R. J. St. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, and G. Harpole, "Diode array pumped kilowatt laser," in High-Power Lasers, S.Basu, ed., Proc. SPIE 3264, 2-8 (1998).
[CrossRef]

Stappaerts, E. A.

E. A. Stappaerts, "Hybrid heat-capacity-moving-slab solid-state laser," Laser Part. Beams 20, 537-539 (2002).
[CrossRef]

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

Tinti, R.

R. J. St. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, "Active Tracker Laser (ATLAS)," IEEE J. Sel. Top. Quantum Electron. 3, 64-70 (1997).
[CrossRef]

Tünnermann, A.

J. Limpert, A. Liem, H. Zellmer, and A. Tünnermann, "500 W continuous-wave fibre laser with excellent beam quality," Electron. Lett. 39, 645-647 (2003).
[CrossRef]

Ueda, K.

J. Lu, M. Prabhu, J. Xu, H. Yagi, T. Yanagitani, A. A. Kaminskii, and K. Ueda, "Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser," Appl. Phys. Lett. 77, 3707-3709 (2000).
[CrossRef]

Valley, M.

R. J. St. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, "Active Tracker Laser (ATLAS)," IEEE J. Sel. Top. Quantum Electron. 3, 64-70 (1997).
[CrossRef]

Weber, M. E.

R. J. St. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, "Active Tracker Laser (ATLAS)," IEEE J. Sel. Top. Quantum Electron. 3, 64-70 (1997).
[CrossRef]

R. J. St. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, and G. Harpole, "Diode array pumped kilowatt laser," in High-Power Lasers, S.Basu, ed., Proc. SPIE 3264, 2-8 (1998).
[CrossRef]

Wickham, M. G.

R. J. St. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, and G. Harpole, "Diode array pumped kilowatt laser," in High-Power Lasers, S.Basu, ed., Proc. SPIE 3264, 2-8 (1998).
[CrossRef]

Xu, J.

J. Lu, M. Prabhu, J. Xu, H. Yagi, T. Yanagitani, A. A. Kaminskii, and K. Ueda, "Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser," Appl. Phys. Lett. 77, 3707-3709 (2000).
[CrossRef]

Yagi, H.

J. Lu, M. Prabhu, J. Xu, H. Yagi, T. Yanagitani, A. A. Kaminskii, and K. Ueda, "Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser," Appl. Phys. Lett. 77, 3707-3709 (2000).
[CrossRef]

Yanagitani, T.

J. Lu, M. Prabhu, J. Xu, H. Yagi, T. Yanagitani, A. A. Kaminskii, and K. Ueda, "Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser," Appl. Phys. Lett. 77, 3707-3709 (2000).
[CrossRef]

Zamel, J.

R. J. St. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, "Active Tracker Laser (ATLAS)," IEEE J. Sel. Top. Quantum Electron. 3, 64-70 (1997).
[CrossRef]

Zellmer, H.

J. Limpert, A. Liem, H. Zellmer, and A. Tünnermann, "500 W continuous-wave fibre laser with excellent beam quality," Electron. Lett. 39, 645-647 (2003).
[CrossRef]

Zhou, F.

F. Zhou, G. Huang, and S. Gu, "A high average power rotating hollow cylinder Nd:glass laser," Appl. Phys. B: Lasers Opt. 63, 585-591 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (2)

Y. Chen and V. Kushawaha, "Rotating-disk diode-pumped continuous-wave Nd:YAG laser," Appl. Phys. B: Lasers Opt. 61, 525-528 (1995).
[CrossRef]

F. Zhou, G. Huang, and S. Gu, "A high average power rotating hollow cylinder Nd:glass laser," Appl. Phys. B: Lasers Opt. 63, 585-591 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

J. Lu, M. Prabhu, J. Xu, H. Yagi, T. Yanagitani, A. A. Kaminskii, and K. Ueda, "Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser," Appl. Phys. Lett. 77, 3707-3709 (2000).
[CrossRef]

Electron. Lett. (1)

J. Limpert, A. Liem, H. Zellmer, and A. Tünnermann, "500 W continuous-wave fibre laser with excellent beam quality," Electron. Lett. 39, 645-647 (2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Basu, T. J. Kane, and R. L. Byer, "A proposed 1-kW average power moving slab Nd-glass laser," IEEE J. Quantum Electron. 22, 2052-2057 (1986).
[CrossRef]

D. L. Hecht, W. L. Bond, R. H. Pantell, and H. E. Puthoff, "Dye lasers with ultrafast transverse flow," IEEE J. Quantum Electron. 8, 15-19 (1972).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000).
[CrossRef]

R. J. St. Pierre, G. W. Holleman, M. Valley, H. Injeyan, J. G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M. E. Weber, J. Zamel, T. Engler, D. Hall, R. Tinti, and J. Machan, "Active Tracker Laser (ATLAS)," IEEE J. Sel. Top. Quantum Electron. 3, 64-70 (1997).
[CrossRef]

Laser Part. Beams (1)

E. A. Stappaerts, "Hybrid heat-capacity-moving-slab solid-state laser," Laser Part. Beams 20, 537-539 (2002).
[CrossRef]

Opt. Lett. (1)

Other (6)

A. H. Paxton, S. M. Massey, J. B. McKay, and H. C. Miller, "Rotating-disk solid-state lasers, thermal properties," in Laser Resonators and Beam Control VII, A.V.Kudryashov, ed., Proc. SPIE 5333, 12-17 (2004).
[CrossRef]

R. J. St. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, and G. Harpole, "Diode array pumped kilowatt laser," in High-Power Lasers, S.Basu, ed., Proc. SPIE 3264, 2-8 (1998).
[CrossRef]

R. L. Byer, "High power solid state laser," U.S. Patent 4,555,786 (November 26, 1985).

C. B. Dane, L. Flath, M. Rotter, S. Fochs, and J. Brase, "The design and operation of a 10 kW solid-state heat-capacity laser," in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. xvii-xviii.

T. Y. Fan, T. Crow, and B. Holden, "Cooled Yb:YAG for high-power solid state lasers," in Airborne Laser Advanced Technology, T.D.Steiner and P.H.Merritt, eds., Proc. SPIE 3381, 200-205 (1998).
[CrossRef]

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Spinning-disk laser experimental diagram (top view) showing both the end-pumped and side-pumped configurations.

Fig. 2
Fig. 2

Spinning disk with cold plates as viewed from the face. Separate experiments were conducted with pumping and lasing at positions (a) and (b). In position (a), the preferred laser polarization is not aligned with a thermal stress direction σ, whereas in position (b), the laser polarization is aligned with the tangential stress component σ φ .

Fig. 3
Fig. 3

TEM 0 , 0 Nd:YAG laser output power versus absorbed pump power. The slope efficiency is 59%.

Fig. 4
Fig. 4

Nd:YAG spinning disk laser beam profile at 10.2 W .

Fig. 5
Fig. 5

Output power and cavity loss plotted as a function of revolution rate for the Nd:YAG spinning disk laser. The circles are the laser power and loss data taken at position (a) in Fig. 2. The filled circles are for the case where the pump overlaps the cavity axis. The hollow circles are measurements taken with the laser cavity axis advanced in position with respect to the pump spot. Similarly, the filled squares and the hollow squares are the overlapped and the advanced laser power measurements, respectively, for position (b). The cavity loss data (shown only for the overlapped cases) are the half-filled circles and squares for positions (a) and (b), respectively. The cavity loss in this case is a measurement of the sum of the intracavity laser power that reflected off the Brewster angle faces of the disk.

Fig. 6
Fig. 6

Calculated output power as a function of the spin rate. Values for the parameters are B = 1.3 × 10 2 sec rad and g 0 g ¯ = 22.2 .

Fig. 7
Fig. 7

TEM 0 , 0 Nd:glass output power as a function of absorbed pump power. The curves represent end pumping with 30 W of available pump power (squares) and side pumping (circles) with 40 W of pump power. The 45 - cm -long cavity had a flat high reflector and a 1 - m concave output coupler with 98% reflectivity. The spinning disk was located approximately 5 cm from the high reflector.

Fig. 8
Fig. 8

Steady-state thermal image of the Nd:glass disk with 63 W of absorbed pump power and 21 W of extracted laser output power. The disk is rotating counterclockwise. The maximum temperature in each encircled region is shown in the legend.

Fig. 9
Fig. 9

Expanded view of the glass surface temperature as a function of the disk radius for the radial cut through the pump spot shown in Fig. 8.

Fig. 10
Fig. 10

Modeled glass disk surface temperature with 63 - W absorbed pump power and 21 - W output power while rotating at 6.0 Hz . The upper curve shows temperature calculated along a radial line through the center of the pumped spot. The lower curve shows temperature along a radial line between where a point fixed on the disk exits from the cooler and where it enters the pumped spot.

Fig. 11
Fig. 11

Modeled temperature profile for Nd:YAG rotating at 6.8 Hz with helium in the cooling gaps. The absorbed pump power was 19 W , and the output power was 10.3 W . The plot shows the surface temperature of the disk along a radial cut through the pump spot.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d N 2 d t = R 2 γ 2 N 2 2 I σ eff h ν N 2 .
d d t ω d d θ ,
d g d θ + γ ω ( 1 + 2 I I s ) g = ( γ ω ) g 0 ,
g = g 0 Q [ 1 exp ( γ Q θ ω ) ] ,
g ¯ = g 0 Q θ 1 0 θ 1 [ 1 exp ( γ Q θ ω ) ] d θ ,
Q = g 0 g ¯ { 1 ω γ θ 1 Q [ 1 exp ( γ θ 1 Q ω ) ] } .
g 0 g ¯ g 0 ( 1 R oc ) g ¯ [ 1 R oc + Λ ( ω ) ]
Λ ( ω ) = B ω .
Q = { g 0 ( 1 R oc ) g ¯ [ 1 R oc + Λ ( ω ) ] } { 1 ω γ θ 1 Q [ 1 exp ( γ θ 1 Q ω ) ] } .
P = A { R oc Λ ( ω ) 4 } I ,

Metrics