Abstract

Upconversion fluorescence in an erbium-doped transparent oxyfluoride glass ceramic is studied by use of fluorescence decays and time-dependent fluorescence and excitation spectra. Sequential two-photon absorption upconversion and energy transfer upconversion are reported, and their origins are identified. Sequential two-photon absorption upconversion is produced primarily in the glass phase, and energy transfer upconversion originates exclusively in the crystalline phase.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Tong, W. P. Risk, R. M. MacFarlane, and W. Lenth, "551 nm diode-laser-pumped upconversion laser," Electron. Lett. 25, 1389-1391 (1989).
    [CrossRef]
  2. R. Scheps, "Er3+:YALO3 upconversion laser," IEEE J. Quantum Electron. 30, 2914-2924 (1994).
    [CrossRef]
  3. T. Danger, J. Koetke, E. Heumann, G. Huber, and B. H. T. Chai, "Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature," J. Appl. Phys. 76, 1413-1422 (1994).
    [CrossRef]
  4. D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, "Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications," J. Appl. Phys. 85, 2502-2507 (1999).
    [CrossRef]
  5. P. Xie and S. C. Rand, "Visible cooperative upconversion laser in Er:LiYF4," Opt. Lett. 17, 1198-1200 (1992).
    [CrossRef] [PubMed]
  6. M. J. Dejneka, "Transparent oxyfluoride glass ceramics," MRS Bull. 23, 57-62 (1998).
  7. Y. Wang and J. Ohwaki, "New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion," Appl. Phys. Lett. 63, 3268-3270 (1993).
    [CrossRef]
  8. M. J. Dejneka, "The luminescence and structure of novel transparent oxyfluoride glass-ceramics," J. Non-Cryst. Solids 239, 149-155 (1998).
    [CrossRef]
  9. M. J. Weber, "Selective excitation and decay of Er3+ fluorescence in LaF3," Phys. Rev. 156, 231-241 (1967).
    [CrossRef]
  10. X. Zou and T. Izumitani, "Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses," J. Non-Cryst. Solids 162, 68-80 (1993).
    [CrossRef]
  11. F. Auzel, "Multiphonon processes, cross-relaxation and up-conversion in ion-activated solids, exemplified by minilaser materials," in Radiationless Processes , B. diBartolo, ed. (Plenum, New York, 1980), pp. 213-286.
  12. T. Kushida, "Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability Calculation," J. Phys. Soc. Jpn. 34, 1318-1326 (1973).
    [CrossRef]
  13. O. V. Kudryavtseva, L. S. Garashina, K. K. Rivkina, and B. P. Sobolev, "Solubility of LnF3 in lanthanum fluoride," Sov. Phys. Crystallogr. 18, 531 (1974).
  14. P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, "Transparent glass ceramics for 1300 nm amplifier applications," J. Appl. Phys. 78, 6367-6374 (1995).
    [CrossRef]
  15. P. A. Tick, N. F. Borrelli, and I. M. Reaney, "The relationship between structure and transparency in glass-ceramic materials," Opt. Mater. (Amsterdam, Neth.) 15, 81-91 (2000).
    [CrossRef]
  16. W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, "Energy level structure and transition probabilities of the trivalent lanthanides in LaF3 , " Argonne National Laboratory Rep. ANL-78-95 (Argonne National Laboratory, Argonne, Ill., 1979).
  17. W. F. Krupke and J. B. Gruber, "Energy levels of Er3+ in LaF3 and coherent emission at 1.61 microns," J. Chem. Phys. 41, 1225-1232 (1964).
    [CrossRef]

2000 (1)

P. A. Tick, N. F. Borrelli, and I. M. Reaney, "The relationship between structure and transparency in glass-ceramic materials," Opt. Mater. (Amsterdam, Neth.) 15, 81-91 (2000).
[CrossRef]

1999 (1)

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, "Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications," J. Appl. Phys. 85, 2502-2507 (1999).
[CrossRef]

1998 (2)

M. J. Dejneka, "Transparent oxyfluoride glass ceramics," MRS Bull. 23, 57-62 (1998).

M. J. Dejneka, "The luminescence and structure of novel transparent oxyfluoride glass-ceramics," J. Non-Cryst. Solids 239, 149-155 (1998).
[CrossRef]

1995 (1)

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, "Transparent glass ceramics for 1300 nm amplifier applications," J. Appl. Phys. 78, 6367-6374 (1995).
[CrossRef]

1994 (2)

R. Scheps, "Er3+:YALO3 upconversion laser," IEEE J. Quantum Electron. 30, 2914-2924 (1994).
[CrossRef]

T. Danger, J. Koetke, E. Heumann, G. Huber, and B. H. T. Chai, "Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature," J. Appl. Phys. 76, 1413-1422 (1994).
[CrossRef]

1993 (2)

X. Zou and T. Izumitani, "Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses," J. Non-Cryst. Solids 162, 68-80 (1993).
[CrossRef]

Y. Wang and J. Ohwaki, "New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion," Appl. Phys. Lett. 63, 3268-3270 (1993).
[CrossRef]

1992 (1)

1989 (1)

F. Tong, W. P. Risk, R. M. MacFarlane, and W. Lenth, "551 nm diode-laser-pumped upconversion laser," Electron. Lett. 25, 1389-1391 (1989).
[CrossRef]

1974 (1)

O. V. Kudryavtseva, L. S. Garashina, K. K. Rivkina, and B. P. Sobolev, "Solubility of LnF3 in lanthanum fluoride," Sov. Phys. Crystallogr. 18, 531 (1974).

1973 (1)

T. Kushida, "Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability Calculation," J. Phys. Soc. Jpn. 34, 1318-1326 (1973).
[CrossRef]

1967 (1)

M. J. Weber, "Selective excitation and decay of Er3+ fluorescence in LaF3," Phys. Rev. 156, 231-241 (1967).
[CrossRef]

1964 (1)

W. F. Krupke and J. B. Gruber, "Energy levels of Er3+ in LaF3 and coherent emission at 1.61 microns," J. Chem. Phys. 41, 1225-1232 (1964).
[CrossRef]

Bell, M. J. V.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, "Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications," J. Appl. Phys. 85, 2502-2507 (1999).
[CrossRef]

Borrelli, N. F.

P. A. Tick, N. F. Borrelli, and I. M. Reaney, "The relationship between structure and transparency in glass-ceramic materials," Opt. Mater. (Amsterdam, Neth.) 15, 81-91 (2000).
[CrossRef]

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, "Transparent glass ceramics for 1300 nm amplifier applications," J. Appl. Phys. 78, 6367-6374 (1995).
[CrossRef]

Chai, B. H. T.

T. Danger, J. Koetke, E. Heumann, G. Huber, and B. H. T. Chai, "Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature," J. Appl. Phys. 76, 1413-1422 (1994).
[CrossRef]

Cornelius, L. K.

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, "Transparent glass ceramics for 1300 nm amplifier applications," J. Appl. Phys. 78, 6367-6374 (1995).
[CrossRef]

Danger, T.

T. Danger, J. Koetke, E. Heumann, G. Huber, and B. H. T. Chai, "Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature," J. Appl. Phys. 76, 1413-1422 (1994).
[CrossRef]

de Sousa, D. F.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, "Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications," J. Appl. Phys. 85, 2502-2507 (1999).
[CrossRef]

Dejneka, M. J.

M. J. Dejneka, "Transparent oxyfluoride glass ceramics," MRS Bull. 23, 57-62 (1998).

M. J. Dejneka, "The luminescence and structure of novel transparent oxyfluoride glass-ceramics," J. Non-Cryst. Solids 239, 149-155 (1998).
[CrossRef]

Garashina, L. S.

O. V. Kudryavtseva, L. S. Garashina, K. K. Rivkina, and B. P. Sobolev, "Solubility of LnF3 in lanthanum fluoride," Sov. Phys. Crystallogr. 18, 531 (1974).

Gruber, J. B.

W. F. Krupke and J. B. Gruber, "Energy levels of Er3+ in LaF3 and coherent emission at 1.61 microns," J. Chem. Phys. 41, 1225-1232 (1964).
[CrossRef]

Hernandes, A. C.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, "Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications," J. Appl. Phys. 85, 2502-2507 (1999).
[CrossRef]

Heumann, E.

T. Danger, J. Koetke, E. Heumann, G. Huber, and B. H. T. Chai, "Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature," J. Appl. Phys. 76, 1413-1422 (1994).
[CrossRef]

Huber, G.

T. Danger, J. Koetke, E. Heumann, G. Huber, and B. H. T. Chai, "Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature," J. Appl. Phys. 76, 1413-1422 (1994).
[CrossRef]

Izumitani, T.

X. Zou and T. Izumitani, "Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses," J. Non-Cryst. Solids 162, 68-80 (1993).
[CrossRef]

Koetke, J.

T. Danger, J. Koetke, E. Heumann, G. Huber, and B. H. T. Chai, "Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature," J. Appl. Phys. 76, 1413-1422 (1994).
[CrossRef]

Krupke , W. F.

W. F. Krupke and J. B. Gruber, "Energy levels of Er3+ in LaF3 and coherent emission at 1.61 microns," J. Chem. Phys. 41, 1225-1232 (1964).
[CrossRef]

Kudryavtseva, O. V.

O. V. Kudryavtseva, L. S. Garashina, K. K. Rivkina, and B. P. Sobolev, "Solubility of LnF3 in lanthanum fluoride," Sov. Phys. Crystallogr. 18, 531 (1974).

Kushida, T.

T. Kushida, "Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability Calculation," J. Phys. Soc. Jpn. 34, 1318-1326 (1973).
[CrossRef]

Lebullenger, R.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, "Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications," J. Appl. Phys. 85, 2502-2507 (1999).
[CrossRef]

Lenth, W.

F. Tong, W. P. Risk, R. M. MacFarlane, and W. Lenth, "551 nm diode-laser-pumped upconversion laser," Electron. Lett. 25, 1389-1391 (1989).
[CrossRef]

MacFarlane, R. M.

F. Tong, W. P. Risk, R. M. MacFarlane, and W. Lenth, "551 nm diode-laser-pumped upconversion laser," Electron. Lett. 25, 1389-1391 (1989).
[CrossRef]

Newhouse, M. A.

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, "Transparent glass ceramics for 1300 nm amplifier applications," J. Appl. Phys. 78, 6367-6374 (1995).
[CrossRef]

Nunes, L. A. O.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, "Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications," J. Appl. Phys. 85, 2502-2507 (1999).
[CrossRef]

Ohwaki, J.

Y. Wang and J. Ohwaki, "New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion," Appl. Phys. Lett. 63, 3268-3270 (1993).
[CrossRef]

Rand, S. C.

Reaney, I. M.

P. A. Tick, N. F. Borrelli, and I. M. Reaney, "The relationship between structure and transparency in glass-ceramic materials," Opt. Mater. (Amsterdam, Neth.) 15, 81-91 (2000).
[CrossRef]

Risk, W. P.

F. Tong, W. P. Risk, R. M. MacFarlane, and W. Lenth, "551 nm diode-laser-pumped upconversion laser," Electron. Lett. 25, 1389-1391 (1989).
[CrossRef]

Rivkina, K. K.

O. V. Kudryavtseva, L. S. Garashina, K. K. Rivkina, and B. P. Sobolev, "Solubility of LnF3 in lanthanum fluoride," Sov. Phys. Crystallogr. 18, 531 (1974).

Scheps, R.

R. Scheps, "Er3+:YALO3 upconversion laser," IEEE J. Quantum Electron. 30, 2914-2924 (1994).
[CrossRef]

Sobolev, B. P.

O. V. Kudryavtseva, L. S. Garashina, K. K. Rivkina, and B. P. Sobolev, "Solubility of LnF3 in lanthanum fluoride," Sov. Phys. Crystallogr. 18, 531 (1974).

Tick, P. A.

P. A. Tick, N. F. Borrelli, and I. M. Reaney, "The relationship between structure and transparency in glass-ceramic materials," Opt. Mater. (Amsterdam, Neth.) 15, 81-91 (2000).
[CrossRef]

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, "Transparent glass ceramics for 1300 nm amplifier applications," J. Appl. Phys. 78, 6367-6374 (1995).
[CrossRef]

Tong, F.

F. Tong, W. P. Risk, R. M. MacFarlane, and W. Lenth, "551 nm diode-laser-pumped upconversion laser," Electron. Lett. 25, 1389-1391 (1989).
[CrossRef]

Wang , Y.

Y. Wang and J. Ohwaki, "New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion," Appl. Phys. Lett. 63, 3268-3270 (1993).
[CrossRef]

Weber, M. J.

M. J. Weber, "Selective excitation and decay of Er3+ fluorescence in LaF3," Phys. Rev. 156, 231-241 (1967).
[CrossRef]

Xie , P.

Zonetti, L. F. C.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, "Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications," J. Appl. Phys. 85, 2502-2507 (1999).
[CrossRef]

Zou , X.

X. Zou and T. Izumitani, "Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses," J. Non-Cryst. Solids 162, 68-80 (1993).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Wang and J. Ohwaki, "New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion," Appl. Phys. Lett. 63, 3268-3270 (1993).
[CrossRef]

Electron. Lett. (1)

F. Tong, W. P. Risk, R. M. MacFarlane, and W. Lenth, "551 nm diode-laser-pumped upconversion laser," Electron. Lett. 25, 1389-1391 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Scheps, "Er3+:YALO3 upconversion laser," IEEE J. Quantum Electron. 30, 2914-2924 (1994).
[CrossRef]

J. Appl. Phys. (3)

T. Danger, J. Koetke, E. Heumann, G. Huber, and B. H. T. Chai, "Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature," J. Appl. Phys. 76, 1413-1422 (1994).
[CrossRef]

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, "Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications," J. Appl. Phys. 85, 2502-2507 (1999).
[CrossRef]

P. A. Tick, N. F. Borrelli, L. K. Cornelius, and M. A. Newhouse, "Transparent glass ceramics for 1300 nm amplifier applications," J. Appl. Phys. 78, 6367-6374 (1995).
[CrossRef]

J. Chem. Phys. (1)

W. F. Krupke and J. B. Gruber, "Energy levels of Er3+ in LaF3 and coherent emission at 1.61 microns," J. Chem. Phys. 41, 1225-1232 (1964).
[CrossRef]

J. Non-Cryst. Solids (2)

M. J. Dejneka, "The luminescence and structure of novel transparent oxyfluoride glass-ceramics," J. Non-Cryst. Solids 239, 149-155 (1998).
[CrossRef]

X. Zou and T. Izumitani, "Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses," J. Non-Cryst. Solids 162, 68-80 (1993).
[CrossRef]

J. Phys. Soc. Jpn. (1)

T. Kushida, "Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability Calculation," J. Phys. Soc. Jpn. 34, 1318-1326 (1973).
[CrossRef]

MRS Bull. (1)

M. J. Dejneka, "Transparent oxyfluoride glass ceramics," MRS Bull. 23, 57-62 (1998).

Opt. Lett. (1)

Opt. Mater. (Amsterdam, Neth.) (1)

P. A. Tick, N. F. Borrelli, and I. M. Reaney, "The relationship between structure and transparency in glass-ceramic materials," Opt. Mater. (Amsterdam, Neth.) 15, 81-91 (2000).
[CrossRef]

Phys. Rev. (1)

M. J. Weber, "Selective excitation and decay of Er3+ fluorescence in LaF3," Phys. Rev. 156, 231-241 (1967).
[CrossRef]

Sov. Phys. Crystallogr. (1)

O. V. Kudryavtseva, L. S. Garashina, K. K. Rivkina, and B. P. Sobolev, "Solubility of LnF3 in lanthanum fluoride," Sov. Phys. Crystallogr. 18, 531 (1974).

Other (2)

W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, "Energy level structure and transition probabilities of the trivalent lanthanides in LaF3 , " Argonne National Laboratory Rep. ANL-78-95 (Argonne National Laboratory, Argonne, Ill., 1979).

F. Auzel, "Multiphonon processes, cross-relaxation and up-conversion in ion-activated solids, exemplified by minilaser materials," in Radiationless Processes , B. diBartolo, ed. (Plenum, New York, 1980), pp. 213-286.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Energy-level diagram of Er3+, showing sequential two-photon absorption and ETU. Sequential two-photon absorption upconversion is achieved by ground-state absorption (GSA) of a pump photon into the  4I11/2 state and then excited-state absorption (ESA) of another pump photon into the  4F7/2 state. ETU is shown originating in the  4I11/2 state.

Fig. 2
Fig. 2

TEM micrograph of an erbium-doped transparent glass ceramic.

Fig. 3
Fig. 3

X-ray diffraction results for the transparent glass ceramic.

Fig. 4
Fig. 4

10-K upconversion fluorescence spectra at indicated postexcitation delays for an erbium-doped transparent glass ceramic pumped at 974 nm. The 0-ms delay fluorescence spectrum was taken within 750 ns of the arrival of the pump pulse.

Fig. 5
Fig. 5

539-nm excitation spectra at 10 K.

Fig. 6
Fig. 6

555-nm excitation spectra at 10 K.

Fig. 7
Fig. 7

Short-lived component of the 539-nm fluorescence decays at 10 K. (a) The directly excited decay, pumped at 514 nm into the  2H11/2 level. An exponential fit gives the lifetime as 2.81±0.140 µs. (b) The upconversion excitation decay, pumped at 974.2 nm into the  4I11/2 level. The exponential fit gives the lifetime as 2.89±0.013 µs.

Fig. 8
Fig. 8

Long-lived component of the 539-nm fluorescence decays at 10 K. (a) The directly excited decay, pumped at 514 nm into the  2H11/2 level. An exponential fit gives the lifetime as 1.1±0.02 ms. (b) The upconversion excitation decay, pumped at 974.2 nm into the  4I11/2 level. The exponential fit from 1 to 8 ms gives the lifetime as 2.67±0.043 ms.

Fig. 9
Fig. 9

555-nm fluorescence decays at 10 K. (a) The directly excited decay, pumped at 514 nm into the  2H11/2 level. An exponential fit gives the lifetime as 2.25±0.024 µs. (b) The upconversion excitation decay, pumped at 974.2 nm into the  4I11/2 level. An exponential fit gives the lifetime as 2.57±0.007 µs.

Metrics