Abstract

We demonstrate the generation of 5.5-fs pulses by dispersive compression of a supercontinuum generated with 15-fs pulses from a Ti:sapphire laser in a 5-mm-long microstructure fiber. The generated continuum is characterized with a setup for cross-correlation spectral-phase interferometry for direct electric-field reconstruction (SPIDER). The reconstructed spectral phase is used as on input for an iterative algorithm optimizing the compressor phase profile. We also discuss the limitations of this technique concerning the achievable pulse duration, including aspects like limited spectral coherence of the supercontinuum, limited compressor resolution, and a limitation of the SPIDER technique. The coherence is limited by power fluctuations and the instability of the seed laser.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  2. T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, "Nonlinear femtosecond pulse compression at high average power levels using a large mode area holey fiber," Opt. Lett. 28, 1951-1953 (2003).
    [CrossRef]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  4. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  5. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
    [CrossRef] [PubMed]
  6. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russel, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
    [CrossRef] [PubMed]
  7. G. McConnell and E. Riis, "Ultra-short pulse compression using photonic crystal fibre," Appl. Phys. B: Photophys. Laser Chem. 78, 557-563 (2004).
    [CrossRef]
  8. S. Lako, J. Seres, P. Apai, J. Balazs, R. S. Windeler, and R. Szipöcs, "Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation," Appl. Phys. B: Photophys. Laser Chem. 76, 267-275 (2003).
    [CrossRef]
  9. M. Adachi, K. Yamane, R. Morita, and M. Yamashita, "Microstructure fiber feedback pulse compression," in Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C. 2004), poster ME47.
  10. J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002).
    [CrossRef]
  11. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, "Techniques for the characterization of sub-10-fs optical pulses: a comparison," Appl. Phys. B: Photophys. Laser Chem. 70, S67-S75 (2000).
    [CrossRef]
  12. M. Nisoli, S. De Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2795 (1996).
    [CrossRef]
  13. W. Kornelis, J. Biegert, J. W. G. Tisch, M. Nisoli, G. Sansone, C. Vozzi, S. De Silvestri, and U. Keller, "Single-shot kilohertz characterization of ultrashort pulses by spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 28, 281-283 (2003).
    [CrossRef] [PubMed]
  14. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, "Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum," Opt. Lett. 28, 1987-1989 (2003).
    [CrossRef] [PubMed]
  15. K. Yamane, Z. Zhang, K. Oka, R. Morita, and M. Yamashita, "Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation," Opt. Lett. 28, 2258-2261 (2004).
    [CrossRef]
  16. K. Yamane, T. Kito, R. Morita, and M. Yamashita, "2.8-fs transform-limited optical-pulse generation and characterization," in Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 2004), poster ThD16.
  17. N. Matuschek, F. X. Kärtner, and U. Keller, "Theory of double-chirped mirrors," IEEE J. Sel. Top. Quantum Electron. 4, 197-207 (1998).
    [CrossRef]
  18. R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pairs of prisms," Opt. Lett. 9, 150-152 (1984).
    [CrossRef] [PubMed]
  19. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  20. C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998).
    [CrossRef]
  21. M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, "Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors," Opt. Lett. 26, 1155-1157 (2001).
    [CrossRef]
  22. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, "Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 24, 1314-1316 (1999).
    [CrossRef]
  23. A. L. Gaeta, "Nonlinear propagation and continuum generation in microstructured optical fibers," Opt. Lett. 27, 924-926 (2002).
    [CrossRef]
  24. A. V. Husakou and J. Hermann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  25. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, R. Trebino, S. Coen, and R. S. Windeler, "Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments," Opt. Express 10, 1215-1221 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  26. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, "Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum," Opt. Lett. 27, 1174-1176 (2002).
    [CrossRef]
  27. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef] [PubMed]
  28. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys. Lett. 77, 269-277 (2003).
  29. G. Chang, T. B. Norris, and H. Winful, "Optimization of supercontinuum generation in photonic crystal fibers for pulse compression," Opt. Lett. 28, 546-548 (2003).
    [CrossRef] [PubMed]
  30. J. M. Dudley and S. Coen, "Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber," Opt. Express 12, 2423-2428 (2004), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  31. J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, "UV generation in a pure silica holey fiber," Appl. Phys. B: Photophys. Laser Chem. 77, 291-295 (2003).
    [CrossRef]

2004 (3)

2003 (9)

W. Kornelis, J. Biegert, J. W. G. Tisch, M. Nisoli, G. Sansone, C. Vozzi, S. De Silvestri, and U. Keller, "Single-shot kilohertz characterization of ultrashort pulses by spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 28, 281-283 (2003).
[CrossRef] [PubMed]

G. Chang, T. B. Norris, and H. Winful, "Optimization of supercontinuum generation in photonic crystal fibers for pulse compression," Opt. Lett. 28, 546-548 (2003).
[CrossRef] [PubMed]

T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, "Nonlinear femtosecond pulse compression at high average power levels using a large mode area holey fiber," Opt. Lett. 28, 1951-1953 (2003).
[CrossRef]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, "Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum," Opt. Lett. 28, 1987-1989 (2003).
[CrossRef] [PubMed]

S. Lako, J. Seres, P. Apai, J. Balazs, R. S. Windeler, and R. Szipöcs, "Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation," Appl. Phys. B: Photophys. Laser Chem. 76, 267-275 (2003).
[CrossRef]

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys. Lett. 77, 269-277 (2003).

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, "UV generation in a pure silica holey fiber," Appl. Phys. B: Photophys. Laser Chem. 77, 291-295 (2003).
[CrossRef]

2002 (4)

2001 (3)

2000 (5)

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russel, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, "Techniques for the characterization of sub-10-fs optical pulses: a comparison," Appl. Phys. B: Photophys. Laser Chem. 70, S67-S75 (2000).
[CrossRef]

1999 (1)

1998 (2)

N. Matuschek, F. X. Kärtner, and U. Keller, "Theory of double-chirped mirrors," IEEE J. Sel. Top. Quantum Electron. 4, 197-207 (1998).
[CrossRef]

C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998).
[CrossRef]

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

1984 (1)

Angelow, G.

Apai, P.

S. Lako, J. Seres, P. Apai, J. Balazs, R. S. Windeler, and R. Szipöcs, "Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation," Appl. Phys. B: Photophys. Laser Chem. 76, 267-275 (2003).
[CrossRef]

Baggett, J. C.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, "UV generation in a pure silica holey fiber," Appl. Phys. B: Photophys. Laser Chem. 77, 291-295 (2003).
[CrossRef]

T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, "Nonlinear femtosecond pulse compression at high average power levels using a large mode area holey fiber," Opt. Lett. 28, 1951-1953 (2003).
[CrossRef]

Balazs, J.

S. Lako, J. Seres, P. Apai, J. Balazs, R. S. Windeler, and R. Szipöcs, "Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation," Appl. Phys. B: Photophys. Laser Chem. 76, 267-275 (2003).
[CrossRef]

Baumberg, J. J.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, "UV generation in a pure silica holey fiber," Appl. Phys. B: Photophys. Laser Chem. 77, 291-295 (2003).
[CrossRef]

Belardi, W.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, "UV generation in a pure silica holey fiber," Appl. Phys. B: Photophys. Laser Chem. 77, 291-295 (2003).
[CrossRef]

Biegert, J.

Brunner, F.

Cerullo, G.

Chang, G.

Chudoba, C.

Coen, S.

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys. Lett. 77, 269-277 (2003).

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Coyle, S.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, "UV generation in a pure silica holey fiber," Appl. Phys. B: Photophys. Laser Chem. 77, 291-295 (2003).
[CrossRef]

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

De Silvestri, S.

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys. Lett. 77, 269-277 (2003).

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Dudley , J. M.

Dudley, J. M.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys. Lett. 77, 269-277 (2003).

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Dudley , J. M.

Dudley, J. M.

Fork, R. L.

Fujimoto, J. G.

Furusawa, K.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, "UV generation in a pure silica holey fiber," Appl. Phys. B: Photophys. Laser Chem. 77, 291-295 (2003).
[CrossRef]

T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, "Nonlinear femtosecond pulse compression at high average power levels using a large mode area holey fiber," Opt. Lett. 28, 1951-1953 (2003).
[CrossRef]

Gaeta, A. L.

Gallmann, L.

Ghanta, R. K.

Gordon, J. P.

Gu, X.

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russel, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Hartl, I.

Hermann, J.

A. V. Husakou and J. Hermann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Holzwarth, R.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russel, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Husakou , A. V.

A. V. Husakou and J. Hermann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Iaconis, C.

Iaconis , C.

Innerhofer, E.

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Kärtner, F. X.

N. Matuschek, F. X. Kärtner, and U. Keller, "Theory of double-chirped mirrors," IEEE J. Sel. Top. Quantum Electron. 4, 197-207 (1998).
[CrossRef]

Keller, U.

W. Kornelis, J. Biegert, J. W. G. Tisch, M. Nisoli, G. Sansone, C. Vozzi, S. De Silvestri, and U. Keller, "Single-shot kilohertz characterization of ultrashort pulses by spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 28, 281-283 (2003).
[CrossRef] [PubMed]

T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, "Nonlinear femtosecond pulse compression at high average power levels using a large mode area holey fiber," Opt. Lett. 28, 1951-1953 (2003).
[CrossRef]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, "Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum," Opt. Lett. 28, 1987-1989 (2003).
[CrossRef] [PubMed]

M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, "Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors," Opt. Lett. 26, 1155-1157 (2001).
[CrossRef]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, "Techniques for the characterization of sub-10-fs optical pulses: a comparison," Appl. Phys. B: Photophys. Laser Chem. 70, S67-S75 (2000).
[CrossRef]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, "Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 24, 1314-1316 (1999).
[CrossRef]

N. Matuschek, F. X. Kärtner, and U. Keller, "Theory of double-chirped mirrors," IEEE J. Sel. Top. Quantum Electron. 4, 197-207 (1998).
[CrossRef]

Kimmel, M.

Knight, J. C.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russel, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Ko, T. H.

Kornelis, W.

Lako, S.

S. Lako, J. Seres, P. Apai, J. Balazs, R. S. Windeler, and R. Szipöcs, "Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation," Appl. Phys. B: Photophys. Laser Chem. 76, 267-275 (2003).
[CrossRef]

Li, X. D.

Martinez, O. E.

Matuschek, N.

McConnell , G.

G. McConnell and E. Riis, "Ultra-short pulse compression using photonic crystal fibre," Appl. Phys. B: Photophys. Laser Chem. 78, 557-563 (2004).
[CrossRef]

Monro, T. M.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, "UV generation in a pure silica holey fiber," Appl. Phys. B: Photophys. Laser Chem. 77, 291-295 (2003).
[CrossRef]

T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, "Nonlinear femtosecond pulse compression at high average power levels using a large mode area holey fiber," Opt. Lett. 28, 1951-1953 (2003).
[CrossRef]

Morita, R.

Netti, C.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, "UV generation in a pure silica holey fiber," Appl. Phys. B: Photophys. Laser Chem. 77, 291-295 (2003).
[CrossRef]

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys. Lett. 77, 269-277 (2003).

Nisoli, M.

Norris, T. B.

Oka, K.

O'Shea, P.

Paschotta, R.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, "UV generation in a pure silica holey fiber," Appl. Phys. B: Photophys. Laser Chem. 77, 291-295 (2003).
[CrossRef]

T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, "Nonlinear femtosecond pulse compression at high average power levels using a large mode area holey fiber," Opt. Lett. 28, 1951-1953 (2003).
[CrossRef]

Price, J. H. V.

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, "UV generation in a pure silica holey fiber," Appl. Phys. B: Photophys. Laser Chem. 77, 291-295 (2003).
[CrossRef]

Ranka, J. K.

Richardson, D. J.

T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, "Nonlinear femtosecond pulse compression at high average power levels using a large mode area holey fiber," Opt. Lett. 28, 1951-1953 (2003).
[CrossRef]

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, "UV generation in a pure silica holey fiber," Appl. Phys. B: Photophys. Laser Chem. 77, 291-295 (2003).
[CrossRef]

Riis, E.

G. McConnell and E. Riis, "Ultra-short pulse compression using photonic crystal fibre," Appl. Phys. B: Photophys. Laser Chem. 78, 557-563 (2004).
[CrossRef]

Russel, P. St. J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russel, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Russell, P.

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Sansone, G.

Schenkel, B.

Scheuer, V.

Seres, J.

S. Lako, J. Seres, P. Apai, J. Balazs, R. S. Windeler, and R. Szipöcs, "Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation," Appl. Phys. B: Photophys. Laser Chem. 76, 267-275 (2003).
[CrossRef]

Shreenath, A. P.

Stagira, S.

Steinmeyer, G.

Stentz, A. J.

Südmeyer, T.

Sutter, D. H.

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, "Techniques for the characterization of sub-10-fs optical pulses: a comparison," Appl. Phys. B: Photophys. Laser Chem. 70, S67-S75 (2000).
[CrossRef]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, "Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 24, 1314-1316 (1999).
[CrossRef]

Svelto, O.

Szipöcs, R.

S. Lako, J. Seres, P. Apai, J. Balazs, R. S. Windeler, and R. Szipöcs, "Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation," Appl. Phys. B: Photophys. Laser Chem. 76, 267-275 (2003).
[CrossRef]

Tisch, J. W. G.

Trebino, R.

Tschudi, T.

Udem, Th.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russel, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Vozzi, C.

Wadsworth, W. J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russel, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Walmsley, I. A.

Washburn, B. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys. Lett. 77, 269-277 (2003).

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys. Lett. 77, 269-277 (2003).

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Weiner, A. M.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys. Lett. 77, 269-277 (2003).

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

S. Lako, J. Seres, P. Apai, J. Balazs, R. S. Windeler, and R. Szipöcs, "Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation," Appl. Phys. B: Photophys. Laser Chem. 76, 267-275 (2003).
[CrossRef]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, "Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum," Opt. Lett. 27, 1174-1176 (2002).
[CrossRef]

J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, R. Trebino, S. Coen, and R. S. Windeler, "Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments," Opt. Express 10, 1215-1221 (2002), http://www.opticsexpress.org.
[CrossRef] [PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Winful, H.

Xu, L.

Yamane, K.

Yamashita, M.

Ye, J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Zavelani-Rossi, M.

Zeek, E.

Zhang, Z.

Appl. Phys. B: Photophys. Laser Chem. (4)

G. McConnell and E. Riis, "Ultra-short pulse compression using photonic crystal fibre," Appl. Phys. B: Photophys. Laser Chem. 78, 557-563 (2004).
[CrossRef]

S. Lako, J. Seres, P. Apai, J. Balazs, R. S. Windeler, and R. Szipöcs, "Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation," Appl. Phys. B: Photophys. Laser Chem. 76, 267-275 (2003).
[CrossRef]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, "Techniques for the characterization of sub-10-fs optical pulses: a comparison," Appl. Phys. B: Photophys. Laser Chem. 70, S67-S75 (2000).
[CrossRef]

J. H. V. Price, T. M. Monro, K. Furusawa, W. Belardi, J. C. Baggett, S. Coyle, C. Netti, J. J. Baumberg, R. Paschotta, and D. J. Richardson, "UV generation in a pure silica holey fiber," Appl. Phys. B: Photophys. Laser Chem. 77, 291-295 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

M. Nisoli, S. De Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys. Lett. 77, 269-277 (2003).

IEEE J. Sel. Top. Quantum Electron. (1)

N. Matuschek, F. X. Kärtner, and U. Keller, "Theory of double-chirped mirrors," IEEE J. Sel. Top. Quantum Electron. 4, 197-207 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (14)

W. Kornelis, J. Biegert, J. W. G. Tisch, M. Nisoli, G. Sansone, C. Vozzi, S. De Silvestri, and U. Keller, "Single-shot kilohertz characterization of ultrashort pulses by spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 28, 281-283 (2003).
[CrossRef] [PubMed]

G. Chang, T. B. Norris, and H. Winful, "Optimization of supercontinuum generation in photonic crystal fibers for pulse compression," Opt. Lett. 28, 546-548 (2003).
[CrossRef] [PubMed]

T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, "Nonlinear femtosecond pulse compression at high average power levels using a large mode area holey fiber," Opt. Lett. 28, 1951-1953 (2003).
[CrossRef]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, "Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum," Opt. Lett. 28, 1987-1989 (2003).
[CrossRef] [PubMed]

K. Yamane, Z. Zhang, K. Oka, R. Morita, and M. Yamashita, "Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation," Opt. Lett. 28, 2258-2261 (2004).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pairs of prisms," Opt. Lett. 9, 150-152 (1984).
[CrossRef] [PubMed]

C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998).
[CrossRef]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, "Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 24, 1314-1316 (1999).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, "Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors," Opt. Lett. 26, 1155-1157 (2001).
[CrossRef]

A. L. Gaeta, "Nonlinear propagation and continuum generation in microstructured optical fibers," Opt. Lett. 27, 924-926 (2002).
[CrossRef]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, "Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum," Opt. Lett. 27, 1174-1176 (2002).
[CrossRef]

J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002).
[CrossRef]

Phys. Rev. Lett. (4)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russel, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

A. V. Husakou and J. Hermann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Science (1)

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other (2)

K. Yamane, T. Kito, R. Morita, and M. Yamashita, "2.8-fs transform-limited optical-pulse generation and characterization," in Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 2004), poster ThD16.

M. Adachi, K. Yamane, R. Morita, and M. Yamashita, "Microstructure fiber feedback pulse compression," in Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C. 2004), poster ME47.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup. Ti:Sa, Ti:sapphire oscillator; OC, output coupler; DCMs, double-chirped mirrors; AS, aspheric lens; MF, microstructure fiber; SM, spherical mirror; G, grating, and SLM, spatial light modulator.

Fig. 2
Fig. 2

Solid curve, experimentally measured output spectrum of the 2.6-µm-core-diameter fiber; dotted curve, the dispersion profile of this fiber.

Fig. 3
Fig. 3

Solid curve, experimentally measured output spectrum of the 2.6-µm-core-diameter fiber; dashed curve, the reconstructed spectral phase of the generated pulses without compression, divided by 200; dotted curve, the spectral phase with compression (without rescaling).

Fig. 4
Fig. 4

Reconstructed temporal pulse profile showing a FWHM pulse duration of 5.5 fs; the inset shows the calculated transform-limited pulse shape.

Fig. 5
Fig. 5

Experimentally measured supercontinuum from the 1.7-µm-core-diameter fiber exhibiting strong modulations and interferences in the spectral region of the input laser pulse (700–900 nm).

Fig. 6
Fig. 6

Simulations for the 2.6-µm-core-diameter fiber. Gray curves, 100 individual spectra; black solid curve, averaged spectrum.

Fig. 7
Fig. 7

Calculated degree of coherence for the 2.6-µm-core-diameter fiber for an ensemble of 100 pulses.

Fig. 8
Fig. 8

Calculation of compressed pulses (2.6-µm fiber). Gray curves, 100 individual pulses compressed with the averaged spectral phase; black curve, average of the 100 compressed pulses.

Fig. 9
Fig. 9

Simulations for the 1.7-µm-core-diameter fiber. Gray curves, 100 individual spectra; black solid curve, averaged spectrum.

Fig. 10
Fig. 10

Calculated degree of coherence for the 1.7-µm-core-diameter fiber for an ensemble of 100 pulses.

Fig. 11
Fig. 11

Calculation of compressed pulses (1.7-µm fiber). Gray curves, 100 individual pulses compressed with the averaged spectral phase; black curve, average of the 100 compressed pulses.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

|g12(1)(λ)|=E1*(λ)E2(λ)[|E1(λ)|2|E2(λ)|2]1/2,

Metrics