Abstract

The second-harmonic signal generated within poled silica disks is monitored in real time as the sample is etched with hydrofluoric acid. An oscillating signal is observed when the cathodic side of the sample is etched. This result is in good agreement with the condition of zero potential difference between the two surfaces of the disk. As a result, a negative nonlinear coefficient is induced outside the alkali ion depleted layer.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991).
    [Crossref] [PubMed]
  2. P. G. Kazansky, A. R. Smith, P. St. Russel, G. M. Yang, and G. M. Sessler, "Thermally poled silica glass: laser induced pressure pulse probe of charge distribution," Appl. Phys. Lett. 68, 269-271 (1996).
    [Crossref]
  3. T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, "Secondary ion mass spectroscopy study of space-charge formation in thermally poled fused silica," J. Appl. Phys. 86, 6634-6640 (1999).
    [Crossref]
  4. Y. Quiquempois, N. Godbout, and S. Lacroix, "Model of charge migration during poling in silica glasses: evidence of a voltage threshold for the onset of a second-order nonlinearity," Phys. Rev. A 65, 043816 (2002).
    [Crossref]
  5. A. Kudlinski, G. Martinelli, Y. Quiquempois, and H. Zeghlache, "Microscopic model for the second-order nonlin- earity creation in thermally poled bulk silica glasses," in Proceedings of Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides: Applications and Fundamentals , Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 213-215.
  6. D. Faccio, V. Pruneri, and P. G. Kazansky, "Dynamics of the second order nonlinearity in thermally poled silica glass," Appl. Phys. Lett. 79, 2687-2689 (2001).
    [Crossref]
  7. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonliear spatial distribution induced in poled silica glass with a sub-micron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
    [Crossref]
  8. W. Margulis and F. Laurell, "Interferometric study of poled glass under etching," Opt. Lett. 21, 1786-1788 (1996).
    [Crossref] [PubMed]
  9. A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000).
    [Crossref]
  10. B. Lesche, F. C. Garcia, E. N. Hering, W. Margulis, I. C. S. Carvahlo, and F. Laurell, "Etching of silica glass under electric fields," Phys. Rev. Lett. 78, 2172-2175 (1997).
    [Crossref]
  11. Y. Quiquempois, A. Kudlinski, G. Martinelli, W. Margolis, and I. C. S. Carvalho, "Near surface modification of the third order nonlinear susceptibility in thermally poled silica glasses," Appl. Phys. Lett., submitted for publication.

2003 (1)

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonliear spatial distribution induced in poled silica glass with a sub-micron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[Crossref]

2002 (1)

Y. Quiquempois, N. Godbout, and S. Lacroix, "Model of charge migration during poling in silica glasses: evidence of a voltage threshold for the onset of a second-order nonlinearity," Phys. Rev. A 65, 043816 (2002).
[Crossref]

2001 (1)

D. Faccio, V. Pruneri, and P. G. Kazansky, "Dynamics of the second order nonlinearity in thermally poled silica glass," Appl. Phys. Lett. 79, 2687-2689 (2001).
[Crossref]

2000 (1)

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000).
[Crossref]

1999 (1)

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, "Secondary ion mass spectroscopy study of space-charge formation in thermally poled fused silica," J. Appl. Phys. 86, 6634-6640 (1999).
[Crossref]

1997 (1)

B. Lesche, F. C. Garcia, E. N. Hering, W. Margulis, I. C. S. Carvahlo, and F. Laurell, "Etching of silica glass under electric fields," Phys. Rev. Lett. 78, 2172-2175 (1997).
[Crossref]

1996 (2)

P. G. Kazansky, A. R. Smith, P. St. Russel, G. M. Yang, and G. M. Sessler, "Thermally poled silica glass: laser induced pressure pulse probe of charge distribution," Appl. Phys. Lett. 68, 269-271 (1996).
[Crossref]

W. Margulis and F. Laurell, "Interferometric study of poled glass under etching," Opt. Lett. 21, 1786-1788 (1996).
[Crossref] [PubMed]

1991 (1)

Alley, T. G.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, "Secondary ion mass spectroscopy study of space-charge formation in thermally poled fused silica," J. Appl. Phys. 86, 6634-6640 (1999).
[Crossref]

Balestrieri, V.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000).
[Crossref]

Brueck, S. R. J.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, "Secondary ion mass spectroscopy study of space-charge formation in thermally poled fused silica," J. Appl. Phys. 86, 6634-6640 (1999).
[Crossref]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991).
[Crossref] [PubMed]

Carvahlo, I. C. S.

B. Lesche, F. C. Garcia, E. N. Hering, W. Margulis, I. C. S. Carvahlo, and F. Laurell, "Etching of silica glass under electric fields," Phys. Rev. Lett. 78, 2172-2175 (1997).
[Crossref]

Carvalho, I. C. S.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000).
[Crossref]

Cordeiro, C. M. B.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000).
[Crossref]

Faccio, D.

D. Faccio, V. Pruneri, and P. G. Kazansky, "Dynamics of the second order nonlinearity in thermally poled silica glass," Appl. Phys. Lett. 79, 2687-2689 (2001).
[Crossref]

Garcia, F. C.

B. Lesche, F. C. Garcia, E. N. Hering, W. Margulis, I. C. S. Carvahlo, and F. Laurell, "Etching of silica glass under electric fields," Phys. Rev. Lett. 78, 2172-2175 (1997).
[Crossref]

Godbout, N.

Y. Quiquempois, N. Godbout, and S. Lacroix, "Model of charge migration during poling in silica glasses: evidence of a voltage threshold for the onset of a second-order nonlinearity," Phys. Rev. A 65, 043816 (2002).
[Crossref]

Hering, E. N.

B. Lesche, F. C. Garcia, E. N. Hering, W. Margulis, I. C. S. Carvahlo, and F. Laurell, "Etching of silica glass under electric fields," Phys. Rev. Lett. 78, 2172-2175 (1997).
[Crossref]

Kazansky, P. G.

D. Faccio, V. Pruneri, and P. G. Kazansky, "Dynamics of the second order nonlinearity in thermally poled silica glass," Appl. Phys. Lett. 79, 2687-2689 (2001).
[Crossref]

P. G. Kazansky, A. R. Smith, P. St. Russel, G. M. Yang, and G. M. Sessler, "Thermally poled silica glass: laser induced pressure pulse probe of charge distribution," Appl. Phys. Lett. 68, 269-271 (1996).
[Crossref]

Kudlinski, A.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonliear spatial distribution induced in poled silica glass with a sub-micron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[Crossref]

Lacroix, S.

Y. Quiquempois, N. Godbout, and S. Lacroix, "Model of charge migration during poling in silica glasses: evidence of a voltage threshold for the onset of a second-order nonlinearity," Phys. Rev. A 65, 043816 (2002).
[Crossref]

Laurell, F.

B. Lesche, F. C. Garcia, E. N. Hering, W. Margulis, I. C. S. Carvahlo, and F. Laurell, "Etching of silica glass under electric fields," Phys. Rev. Lett. 78, 2172-2175 (1997).
[Crossref]

W. Margulis and F. Laurell, "Interferometric study of poled glass under etching," Opt. Lett. 21, 1786-1788 (1996).
[Crossref] [PubMed]

Lelek, M.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonliear spatial distribution induced in poled silica glass with a sub-micron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[Crossref]

Lesche, B.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000).
[Crossref]

Lesche, B.

B. Lesche, F. C. Garcia, E. N. Hering, W. Margulis, I. C. S. Carvahlo, and F. Laurell, "Etching of silica glass under electric fields," Phys. Rev. Lett. 78, 2172-2175 (1997).
[Crossref]

Margulis, W.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000).
[Crossref]

B. Lesche, F. C. Garcia, E. N. Hering, W. Margulis, I. C. S. Carvahlo, and F. Laurell, "Etching of silica glass under electric fields," Phys. Rev. Lett. 78, 2172-2175 (1997).
[Crossref]

Margulis , W.

Martinelli, G.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonliear spatial distribution induced in poled silica glass with a sub-micron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[Crossref]

Mukherjee, N.

Myers, R. A.

Pruneri, V.

D. Faccio, V. Pruneri, and P. G. Kazansky, "Dynamics of the second order nonlinearity in thermally poled silica glass," Appl. Phys. Lett. 79, 2687-2689 (2001).
[Crossref]

Quiquempois, Y.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonliear spatial distribution induced in poled silica glass with a sub-micron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[Crossref]

Y. Quiquempois, N. Godbout, and S. Lacroix, "Model of charge migration during poling in silica glasses: evidence of a voltage threshold for the onset of a second-order nonlinearity," Phys. Rev. A 65, 043816 (2002).
[Crossref]

Russel, P. St.

P. G. Kazansky, A. R. Smith, P. St. Russel, G. M. Yang, and G. M. Sessler, "Thermally poled silica glass: laser induced pressure pulse probe of charge distribution," Appl. Phys. Lett. 68, 269-271 (1996).
[Crossref]

Sessler, G. M.

P. G. Kazansky, A. R. Smith, P. St. Russel, G. M. Yang, and G. M. Sessler, "Thermally poled silica glass: laser induced pressure pulse probe of charge distribution," Appl. Phys. Lett. 68, 269-271 (1996).
[Crossref]

Smith, A. R.

P. G. Kazansky, A. R. Smith, P. St. Russel, G. M. Yang, and G. M. Sessler, "Thermally poled silica glass: laser induced pressure pulse probe of charge distribution," Appl. Phys. Lett. 68, 269-271 (1996).
[Crossref]

Triques, A. L. C.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000).
[Crossref]

Wiedenbeck, M.

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, "Secondary ion mass spectroscopy study of space-charge formation in thermally poled fused silica," J. Appl. Phys. 86, 6634-6640 (1999).
[Crossref]

Yang, G. M.

P. G. Kazansky, A. R. Smith, P. St. Russel, G. M. Yang, and G. M. Sessler, "Thermally poled silica glass: laser induced pressure pulse probe of charge distribution," Appl. Phys. Lett. 68, 269-271 (1996).
[Crossref]

Zeghlache, H.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonliear spatial distribution induced in poled silica glass with a sub-micron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[Crossref]

Appl. Phys. Lett. (4)

P. G. Kazansky, A. R. Smith, P. St. Russel, G. M. Yang, and G. M. Sessler, "Thermally poled silica glass: laser induced pressure pulse probe of charge distribution," Appl. Phys. Lett. 68, 269-271 (1996).
[Crossref]

D. Faccio, V. Pruneri, and P. G. Kazansky, "Dynamics of the second order nonlinearity in thermally poled silica glass," Appl. Phys. Lett. 79, 2687-2689 (2001).
[Crossref]

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonliear spatial distribution induced in poled silica glass with a sub-micron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[Crossref]

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, and I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000).
[Crossref]

J. Appl. Phys. (1)

T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, "Secondary ion mass spectroscopy study of space-charge formation in thermally poled fused silica," J. Appl. Phys. 86, 6634-6640 (1999).
[Crossref]

Opt. Lett. (2)

Phys. Rev. A (1)

Y. Quiquempois, N. Godbout, and S. Lacroix, "Model of charge migration during poling in silica glasses: evidence of a voltage threshold for the onset of a second-order nonlinearity," Phys. Rev. A 65, 043816 (2002).
[Crossref]

Phys. Rev. Lett. (1)

B. Lesche, F. C. Garcia, E. N. Hering, W. Margulis, I. C. S. Carvahlo, and F. Laurell, "Etching of silica glass under electric fields," Phys. Rev. Lett. 78, 2172-2175 (1997).
[Crossref]

Other (2)

Y. Quiquempois, A. Kudlinski, G. Martinelli, W. Margolis, and I. C. S. Carvalho, "Near surface modification of the third order nonlinear susceptibility in thermally poled silica glasses," Appl. Phys. Lett., submitted for publication.

A. Kudlinski, G. Martinelli, Y. Quiquempois, and H. Zeghlache, "Microscopic model for the second-order nonlin- earity creation in thermally poled bulk silica glasses," in Proceedings of Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides: Applications and Fundamentals , Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 213-215.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Scheme of the electric-field distribution during poling. The negative charges are located at the edge of the NL layer of thickness w. (b) Electric-field distribution EDC after poling. Ions from the atmosphere accumulate on both sides of the sample to minimize the voltage drop. Equation (2) implies that area (1) is equal to area (2). E0 corresponds to the minimal electric field, which is usually neglected when the sample is considered to be thick.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Evolution of the SH signal as a function of the position under anode (HF in contact with the anodic surface) is displayed in the left part of the figure: samples of (a) batch A, (c) batch B, and (e) batch C. The insert in (a) corresponds to a zoom of the SH signal at the end of the etching. The evolution of the SH signal versus the position under the cathode (HF in contact with the cathodic surface) is shown in the right part of the figure: samples of (b) batch A, (d) batch B, and (f) batch C.

Fig. 4
Fig. 4

Evolution of the NL coefficient as a function of the depth under anode. The profiles have been obtained via the method proposed in Ref. 7; curves (a), (b), and (c) correspond to the samples of thickness 100, 500, and 1000 µm, respectively.

Fig. 5
Fig. 5

Magnitude of the electric field as a function of the position across the sample. Sample thickness: (a) 100 µm, (b) 500 µm, and (c) 1000 µm.

Fig. 6
Fig. 6

Experimental SH signal versus the depth under the cathodic surface of the 100-µm-thick sample. Also shown are the theoretical signals obtained by assuming that (i) both dA and dC are constant during etching but Eq. (8) is verified just after poling (solid curve), (ii) dA and dC follow Eq. (8) during etching (dashed-dotted curve), and (iii) dA is constant and dC follows Eq. (8) during etching (dotted curve).

Fig. 7
Fig. 7

Evolution of the experimental SH signal as a function of the removed silica thickness during a cathodic etching. The initial thickness of the sample was 270 µm. Also shown are the theoretical SH signal obtained when a 500-µm-thick poled sample at the cathode side (dotted curve) was etched and the theoretical SH signal obtained in a 270 µm-thick sample (solid curve).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

χ(2)=3χ(3)EDC,
0lEDC(x)dx=0,
ρ(EDC)=2xexp(x)exp(x)-exp(-x),
A(2ω)(l)K(θ)0ld(x)expiπLC cos θxdx,
K=8πλ20cn2n12P2w02 tan(θ)2T(θ).
A(2ω)/K=dC0l-wexpiπLC cos θxdx
+dAl-wlexpiπLC cos θxdx,
P=A(2ω)A(2ω)*.
dCdA=-wl-w.

Metrics