Abstract

Linear and nonlinear optical properties of Ge33As12Se55 pulsed-laser-deposited (PLD) films are presented. The effect of exposure on these films is investigated in some detail. The PLD films showed photobleaching as a result of exposure to 610-nm laser light. Degenerate four-wave mixing and Z-scan techniques were used to obtain the nonlinear refractive index and absorption coefficient of germanium arsenic selenide films. Ge33As12Se55 films are highly nonlinear, and their measured n2 value was 2.2×10-13 cm2/W. The suitability of Ge33As12Se55 PLD films for ultrafast all-optical switching is also discussed. We designed and simulated a nonlinear directional coupler switch that can be made in PLD films.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bornstein, J. Flahaut, M. Guittard, S. Jaulmes, A. M. Loireau-Lozach, G. Lucazeau, and R. Reisfeld, "Structure and optical properties of lanthanum-gallium-sulfide glasses," in The Rare Earths in Modern Science and Technology (Proceedings) , G. J. McCarthy and J. J. Rhyne, eds. (Plenum, New York, 1978), p. 599.
  2. T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, "Chalcogenide glass fibers for mid-infrared transmission," J. Lightwave Technol. 2, 607-613 (1984).
    [CrossRef]
  3. M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all optical switching," Opt. Fiber Technol. Mater. Devices Syst. 3, 142-148 (1997).
    [CrossRef]
  4. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, "Large Kerr effect in bulk Se-based chalcogenide glass," Opt. Lett. 25, 254-256 (2000).
    [CrossRef]
  5. C. W. Slinger, A. Zakery, P. J. S. Ewen, and A. E. Owen, "Photodoped chalcogenides as potential infrared holographic media," Appl. Opt. 31, 2490-2498 (1992).
    [CrossRef] [PubMed]
  6. J. F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," J. Lightwave Technol. 17, 1184-1188 (1999).
    [CrossRef]
  7. S. Ramachandran and S. G. Bishop, "Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses," Appl. Phys. Lett. 74, 13-15 (1999).
    [CrossRef]
  8. K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, "Pulsed laser deposited of Ga-La-S chalcogenide glass thin film optical waveguides," Appl. Phys. Lett. 63, 1601-1602 (1993).
    [CrossRef]
  9. A. Zakery, "Low loss waveguides in pulsed laser deposited arsenic sulfide chacogenide films," J. Phys. D 35, 2909-2913 (2002).
    [CrossRef]
  10. A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low-loss waveguide in ultrafast laser-deposited As2S3 chalcogenide films," J. Opt. Soc. Am. A 20, 1844-1852 (2003).
    [CrossRef]
  11. A. V. Rode, B. Luther-Davis, and E. G. Gamaly, "Ultrafast ablation with high-pulse-rate laser. Part II: experiments on laser deposition of amorphous carbon films," J. Appl. Phys. 85, 4222-4230 (1999).
    [CrossRef]
  12. R. Swanepoel, "Determining refractive index and thickness of thin films from wavelength measurements only," J. Opt. Soc. Am. A 2, 1339-1343 (1985).
    [CrossRef]
  13. K. Tanaka, "Reversible photoinduced change in intermolecular distance in amorphous As2S3 network," Appl. Phys. Lett. 26, 243-246 (1975).
    [CrossRef]
  14. F. P. Strohkendl, L. R. Dalton, R. W. Hellwarth, H. W. Sarkas, and Z. H. Kafafi, "Phase-mismatched degenerate four-wave mixing: complex third-order susceptibility tensor el-ements of C60 at 768 nm," J. Opt. Soc. Am. B 14, 92-98 (1997).
    [CrossRef]
  15. R. L. Sutherland, Handbook of Nonlinear Optics (Dekker, New York, 1996).
  16. M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  17. S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE-18, 1850-1853 (1982).
  18. A. Zakery and S. R. Elliott, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst. Solids 330, 1-12 (2003).
    [CrossRef]
  19. C. C. Yang, A. Villeneuve, and G. I. Stegeman, "Effect of three photon absorption on nonlinear directional coupler," Opt. Lett. 239, 710-712 (1992).
    [CrossRef]
  20. F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive index," J. Non-Cryst. Solids 239, 139-142 (1998).
    [CrossRef]
  21. M. J. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, "Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all optical switching," IEEE Photonics Technol. Lett. 14, 822-824 (2002).
    [CrossRef]
  22. K. Petkov and P. J. S. Ewen, "Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses," J. Non-Cryst. Solids 249, 150-159 (1999).
    [CrossRef]
  23. A. Zakery, P. J. S. Ewen, and A. E. Owen, "Photodarkening in As-S films and its application in grating fabrication," J. Non-Cryst. Solids 198-200, 769-773 (1996).
    [CrossRef]
  24. Y. Ohmachi and T. Igo, "Laser-induced refractive-index-change in As-S-Ge glasses," Appl. Phys. Lett. 20, 506-508 (1972).
    [CrossRef]

2003 (2)

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low-loss waveguide in ultrafast laser-deposited As2S3 chalcogenide films," J. Opt. Soc. Am. A 20, 1844-1852 (2003).
[CrossRef]

A. Zakery and S. R. Elliott, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst. Solids 330, 1-12 (2003).
[CrossRef]

2002 (2)

A. Zakery, "Low loss waveguides in pulsed laser deposited arsenic sulfide chacogenide films," J. Phys. D 35, 2909-2913 (2002).
[CrossRef]

M. J. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, "Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all optical switching," IEEE Photonics Technol. Lett. 14, 822-824 (2002).
[CrossRef]

2000 (1)

1999 (4)

A. V. Rode, B. Luther-Davis, and E. G. Gamaly, "Ultrafast ablation with high-pulse-rate laser. Part II: experiments on laser deposition of amorphous carbon films," J. Appl. Phys. 85, 4222-4230 (1999).
[CrossRef]

J. F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," J. Lightwave Technol. 17, 1184-1188 (1999).
[CrossRef]

S. Ramachandran and S. G. Bishop, "Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses," Appl. Phys. Lett. 74, 13-15 (1999).
[CrossRef]

K. Petkov and P. J. S. Ewen, "Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses," J. Non-Cryst. Solids 249, 150-159 (1999).
[CrossRef]

1998 (1)

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive index," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

1997 (2)

F. P. Strohkendl, L. R. Dalton, R. W. Hellwarth, H. W. Sarkas, and Z. H. Kafafi, "Phase-mismatched degenerate four-wave mixing: complex third-order susceptibility tensor el-ements of C60 at 768 nm," J. Opt. Soc. Am. B 14, 92-98 (1997).
[CrossRef]

M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all optical switching," Opt. Fiber Technol. Mater. Devices Syst. 3, 142-148 (1997).
[CrossRef]

1996 (1)

A. Zakery, P. J. S. Ewen, and A. E. Owen, "Photodarkening in As-S films and its application in grating fabrication," J. Non-Cryst. Solids 198-200, 769-773 (1996).
[CrossRef]

1993 (1)

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, "Pulsed laser deposited of Ga-La-S chalcogenide glass thin film optical waveguides," Appl. Phys. Lett. 63, 1601-1602 (1993).
[CrossRef]

1992 (2)

C. C. Yang, A. Villeneuve, and G. I. Stegeman, "Effect of three photon absorption on nonlinear directional coupler," Opt. Lett. 239, 710-712 (1992).
[CrossRef]

C. W. Slinger, A. Zakery, P. J. S. Ewen, and A. E. Owen, "Photodoped chalcogenides as potential infrared holographic media," Appl. Opt. 31, 2490-2498 (1992).
[CrossRef] [PubMed]

1990 (1)

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

1985 (1)

1984 (1)

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, "Chalcogenide glass fibers for mid-infrared transmission," J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

1982 (1)

S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE-18, 1850-1853 (1982).

1975 (1)

K. Tanaka, "Reversible photoinduced change in intermolecular distance in amorphous As2S3 network," Appl. Phys. Lett. 26, 243-246 (1975).
[CrossRef]

1972 (1)

Y. Ohmachi and T. Igo, "Laser-induced refractive-index-change in As-S-Ge glasses," Appl. Phys. Lett. 20, 506-508 (1972).
[CrossRef]

Aggarwal, I. D.

Aitken, B. G.

M. J. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, "Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all optical switching," IEEE Photonics Technol. Lett. 14, 822-824 (2002).
[CrossRef]

Asobe, M.

M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all optical switching," Opt. Fiber Technol. Mater. Devices Syst. 3, 142-148 (1997).
[CrossRef]

Barthelemy, A.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive index," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Bishop, S. G.

S. Ramachandran and S. G. Bishop, "Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses," Appl. Phys. Lett. 74, 13-15 (1999).
[CrossRef]

Cardinal, T.

Cheong, S. W.

Dalton, L. R.

De Angelis, C.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive index," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Deol, R. S.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, "Pulsed laser deposited of Ga-La-S chalcogenide glass thin film optical waveguides," Appl. Phys. Lett. 63, 1601-1602 (1993).
[CrossRef]

Duguay, M. A.

Eason, R. W.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, "Pulsed laser deposited of Ga-La-S chalcogenide glass thin film optical waveguides," Appl. Phys. Lett. 63, 1601-1602 (1993).
[CrossRef]

Elliott, S. R.

A. Zakery and S. R. Elliott, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst. Solids 330, 1-12 (2003).
[CrossRef]

Ewen, P. J. S.

K. Petkov and P. J. S. Ewen, "Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses," J. Non-Cryst. Solids 249, 150-159 (1999).
[CrossRef]

A. Zakery, P. J. S. Ewen, and A. E. Owen, "Photodarkening in As-S films and its application in grating fabrication," J. Non-Cryst. Solids 198-200, 769-773 (1996).
[CrossRef]

C. W. Slinger, A. Zakery, P. J. S. Ewen, and A. E. Owen, "Photodoped chalcogenides as potential infrared holographic media," Appl. Opt. 31, 2490-2498 (1992).
[CrossRef] [PubMed]

Galstian, T. V.

Gamaly, E. G.

A. V. Rode, B. Luther-Davis, and E. G. Gamaly, "Ultrafast ablation with high-pulse-rate laser. Part II: experiments on laser deposition of amorphous carbon films," J. Appl. Phys. 85, 4222-4230 (1999).
[CrossRef]

Grevatt, T.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, "Pulsed laser deposited of Ga-La-S chalcogenide glass thin film optical waveguides," Appl. Phys. Lett. 63, 1601-1602 (1993).
[CrossRef]

Hagan, D. J.

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Harbold, M. J.

M. J. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, "Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all optical switching," IEEE Photonics Technol. Lett. 14, 822-824 (2002).
[CrossRef]

Hellwarth, R. W.

Hwang, H. Y.

Igo, T.

Y. Ohmachi and T. Igo, "Laser-induced refractive-index-change in As-S-Ge glasses," Appl. Phys. Lett. 20, 506-508 (1972).
[CrossRef]

Ilday, F. O.

M. J. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, "Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all optical switching," IEEE Photonics Technol. Lett. 14, 822-824 (2002).
[CrossRef]

Jensen, S. M.

S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE-18, 1850-1853 (1982).

Kafafi, Z. H.

Kanamori, T.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, "Chalcogenide glass fibers for mid-infrared transmission," J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

Katsufuji, T.

Knystautas, E. J.

Leneindre, L.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive index," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Lenz, G.

Lines, M. E.

Lucas, J.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive index," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Luther-Davies, B.

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low-loss waveguide in ultrafast laser-deposited As2S3 chalcogenide films," J. Opt. Soc. Am. A 20, 1844-1852 (2003).
[CrossRef]

Luther-Davis, B.

A. V. Rode, B. Luther-Davis, and E. G. Gamaly, "Ultrafast ablation with high-pulse-rate laser. Part II: experiments on laser deposition of amorphous carbon films," J. Appl. Phys. 85, 4222-4230 (1999).
[CrossRef]

Meneghini, C.

Miyashita, T.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, "Chalcogenide glass fibers for mid-infrared transmission," J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

Ohmachi , Y.

Y. Ohmachi and T. Igo, "Laser-induced refractive-index-change in As-S-Ge glasses," Appl. Phys. Lett. 20, 506-508 (1972).
[CrossRef]

Owen, A. E.

A. Zakery, P. J. S. Ewen, and A. E. Owen, "Photodarkening in As-S films and its application in grating fabrication," J. Non-Cryst. Solids 198-200, 769-773 (1996).
[CrossRef]

C. W. Slinger, A. Zakery, P. J. S. Ewen, and A. E. Owen, "Photodoped chalcogenides as potential infrared holographic media," Appl. Opt. 31, 2490-2498 (1992).
[CrossRef] [PubMed]

Petkov , K.

K. Petkov and P. J. S. Ewen, "Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses," J. Non-Cryst. Solids 249, 150-159 (1999).
[CrossRef]

Quemard, C.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive index," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Ramachandran , S.

S. Ramachandran and S. G. Bishop, "Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses," Appl. Phys. Lett. 74, 13-15 (1999).
[CrossRef]

Richardson, K. A.

Rode, A. V.

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low-loss waveguide in ultrafast laser-deposited As2S3 chalcogenide films," J. Opt. Soc. Am. A 20, 1844-1852 (2003).
[CrossRef]

A. V. Rode, B. Luther-Davis, and E. G. Gamaly, "Ultrafast ablation with high-pulse-rate laser. Part II: experiments on laser deposition of amorphous carbon films," J. Appl. Phys. 85, 4222-4230 (1999).
[CrossRef]

Ruan, Y.

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low-loss waveguide in ultrafast laser-deposited As2S3 chalcogenide films," J. Opt. Soc. Am. A 20, 1844-1852 (2003).
[CrossRef]

Rutt, H. N.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, "Pulsed laser deposited of Ga-La-S chalcogenide glass thin film optical waveguides," Appl. Phys. Lett. 63, 1601-1602 (1993).
[CrossRef]

Said, A. A.

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Samoc, M.

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low-loss waveguide in ultrafast laser-deposited As2S3 chalcogenide films," J. Opt. Soc. Am. A 20, 1844-1852 (2003).
[CrossRef]

Sanghera, J. S.

Sarkas, H. W.

Sheikh-Bahae, M.

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Slinger, C. W.

Slusher, R. E.

Smektala, F.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive index," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Spalter, S.

Stegeman, G. I.

C. C. Yang, A. Villeneuve, and G. I. Stegeman, "Effect of three photon absorption on nonlinear directional coupler," Opt. Lett. 239, 710-712 (1992).
[CrossRef]

Strohkendl, F. P.

Swanepoel, R.

Takahashi, S.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, "Chalcogenide glass fibers for mid-infrared transmission," J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

Tanaka, K.

K. Tanaka, "Reversible photoinduced change in intermolecular distance in amorphous As2S3 network," Appl. Phys. Lett. 26, 243-246 (1975).
[CrossRef]

Terunuma, Y.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, "Chalcogenide glass fibers for mid-infrared transmission," J. Lightwave Technol. 2, 607-613 (1984).
[CrossRef]

Van Stryland, E. W.

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Viens, J. F.

Villeneuve, A.

Wei, T.

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Wise, F. W.

M. J. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, "Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all optical switching," IEEE Photonics Technol. Lett. 14, 822-824 (2002).
[CrossRef]

Wylangowski, G.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, "Pulsed laser deposited of Ga-La-S chalcogenide glass thin film optical waveguides," Appl. Phys. Lett. 63, 1601-1602 (1993).
[CrossRef]

Yang, C. C.

C. C. Yang, A. Villeneuve, and G. I. Stegeman, "Effect of three photon absorption on nonlinear directional coupler," Opt. Lett. 239, 710-712 (1992).
[CrossRef]

Youden, K. E.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, "Pulsed laser deposited of Ga-La-S chalcogenide glass thin film optical waveguides," Appl. Phys. Lett. 63, 1601-1602 (1993).
[CrossRef]

Zakery , A.

A. Zakery and S. R. Elliott, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst. Solids 330, 1-12 (2003).
[CrossRef]

Zakery, A.

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low-loss waveguide in ultrafast laser-deposited As2S3 chalcogenide films," J. Opt. Soc. Am. A 20, 1844-1852 (2003).
[CrossRef]

A. Zakery, "Low loss waveguides in pulsed laser deposited arsenic sulfide chacogenide films," J. Phys. D 35, 2909-2913 (2002).
[CrossRef]

A. Zakery, P. J. S. Ewen, and A. E. Owen, "Photodarkening in As-S films and its application in grating fabrication," J. Non-Cryst. Solids 198-200, 769-773 (1996).
[CrossRef]

C. W. Slinger, A. Zakery, P. J. S. Ewen, and A. E. Owen, "Photodoped chalcogenides as potential infrared holographic media," Appl. Opt. 31, 2490-2498 (1992).
[CrossRef] [PubMed]

Zimmermann, J.

Appl. Opt. (1)

Appl. Phys. Lett. (4)

S. Ramachandran and S. G. Bishop, "Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses," Appl. Phys. Lett. 74, 13-15 (1999).
[CrossRef]

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, "Pulsed laser deposited of Ga-La-S chalcogenide glass thin film optical waveguides," Appl. Phys. Lett. 63, 1601-1602 (1993).
[CrossRef]

K. Tanaka, "Reversible photoinduced change in intermolecular distance in amorphous As2S3 network," Appl. Phys. Lett. 26, 243-246 (1975).
[CrossRef]

Y. Ohmachi and T. Igo, "Laser-induced refractive-index-change in As-S-Ge glasses," Appl. Phys. Lett. 20, 506-508 (1972).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE-18, 1850-1853 (1982).

IEEE Photonics Technol. Lett. (1)

M. J. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, "Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all optical switching," IEEE Photonics Technol. Lett. 14, 822-824 (2002).
[CrossRef]

J. Appl. Phys. (1)

A. V. Rode, B. Luther-Davis, and E. G. Gamaly, "Ultrafast ablation with high-pulse-rate laser. Part II: experiments on laser deposition of amorphous carbon films," J. Appl. Phys. 85, 4222-4230 (1999).
[CrossRef]

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (4)

A. Zakery and S. R. Elliott, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst. Solids 330, 1-12 (2003).
[CrossRef]

K. Petkov and P. J. S. Ewen, "Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses," J. Non-Cryst. Solids 249, 150-159 (1999).
[CrossRef]

A. Zakery, P. J. S. Ewen, and A. E. Owen, "Photodarkening in As-S films and its application in grating fabrication," J. Non-Cryst. Solids 198-200, 769-773 (1996).
[CrossRef]

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive index," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

J. Opt. Soc. Am. A (2)

R. Swanepoel, "Determining refractive index and thickness of thin films from wavelength measurements only," J. Opt. Soc. Am. A 2, 1339-1343 (1985).
[CrossRef]

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low-loss waveguide in ultrafast laser-deposited As2S3 chalcogenide films," J. Opt. Soc. Am. A 20, 1844-1852 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

A. Zakery, "Low loss waveguides in pulsed laser deposited arsenic sulfide chacogenide films," J. Phys. D 35, 2909-2913 (2002).
[CrossRef]

Opt. Fiber Technol. Mater. Devices Syst. (1)

M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all optical switching," Opt. Fiber Technol. Mater. Devices Syst. 3, 142-148 (1997).
[CrossRef]

Opt. Lett. (2)

Other (2)

R. L. Sutherland, Handbook of Nonlinear Optics (Dekker, New York, 1996).

A. Bornstein, J. Flahaut, M. Guittard, S. Jaulmes, A. M. Loireau-Lozach, G. Lucazeau, and R. Reisfeld, "Structure and optical properties of lanthanum-gallium-sulfide glasses," in The Rare Earths in Modern Science and Technology (Proceedings) , G. J. McCarthy and J. J. Rhyne, eds. (Plenum, New York, 1978), p. 599.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Refractive index versus wavelength for a 2-µm-thick Ge33As12Se55 film. A drop of about ∼0.02 in the refractive index over the measured spectral range was obtained as a result of the laser exposure.

Fig. 2
Fig. 2

DFWM signal from a 2-µm-thick film of Ge33As12Se55 at a total intensity of ∼50 GW/cm2. The experimental points (circles) are compared with a theoretical curve for a DFWM signal consisting of a fast response and a delayed response with a relaxation time of 100 ps. The laser pulse duration is 105 fs. The nonlinearity determined from the DFWM result by calibration against the signal from silica is n2=2×10-13 cm2/W.

Fig. 3
Fig. 3

Squares, open- and, filled circles, closed-aperture Z-scan results obtained on a 2-µm Ge33As12Se55 film on a 1-mm silica substrate. The curves are the results of numerical fitting. ω0=32 µm, Re(Δϕ)=0.36 rad, Tt=12. The results show that the nonlinear response of GeAsSe is dominated by an induced absorption effect. By calibrating the Z-scans against silica, one can calculate the real and the imaginary parts of the nonlinearity. The real part of the nonlinearity is approximately Re(n2)=2.2×10-13 cm2/W, and the imaginary part is characterized by the nonlinear absorption coefficient β2=5.6×10-8 cm/W.

Fig. 4
Fig. 4

Normalized output power from the bar state (y axis) versus normalized distance for various normalized input powers. For low input powers and at a half beat length (ζ=1) all of the power is in the cross state, and for high input powers the output power goes only into the bar state.

Fig. 5
Fig. 5

Normalized output power (with respect to normalized input power) in the bar state and throughput (sum of normalized output powers from the bar and cross states) versus normalized input power at a half beat length for the actual (lower curves) and ideal (upper curves) cases.

Fig. 6
Fig. 6

Output power (y axis) in the bar state and throughput (sum of output powers from the bar and cross states) versus normalized cw input power (x axis) at a half beat length for the ideal case. For low input power the output power in the bar state is nearly proportional to the input power.

Fig. 7
Fig. 7

Output power (y axis) in the cross state and throughput (sum of output powers from the bar and cross states) versus normalized cw input power (x axis) at half-beat-length for the actual case. For low input powers the output power from the cross state is proportional to the input power. For high input powers, in contrast to the ideal case, the output power remains constant.

Fig. 8
Fig. 8

Normalized output (with respect to input power) pulse in the cross state with an A sech(τ/τ0) (τ0 is the width of the pulse) input pulse at a half beat length versus normalized time τ/τ0 in the actual case (T=0.2, V=0.1). For small A (low input pulse energies) the pulse shape does not change, but for high A (high input pulse energies) we have a pulse in the cross state that causes the cross talk.

Fig. 9
Fig. 9

Normalized output (with respect to input power) pulse in the bar state with an A sech(τ/τ0) (τ0 is the width of the pulse) input pulse at a half beat length versus normalized time τ/τ0 in the actual case (T=0.2, V=0.1). For small A (low input pulse energies) there is no energy in the bar state, but for high A (high input pulse energies), as expected, we have a pulse at the output but the pulse shape is changed. For higher input energies the output pulse from the bar state has a square shape.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ns=1Ts+1Ts2-11/2.
n=[M+(M2-ns2)1/2]1/2,
M=2ns/Tm-(ns2+1)/2.
n=[N+(N2-ns2)]1/2,
N=2ns/(TM-Tm)/TMTm+(ns2+1)/2.
n=[1+Aλ2-λc2)]1/2.
IDFWM=const|n2|2L2I3,
|n2|=CrefCabsn2silicaLsilicaLchalcoIDFWMchalcoIDFWMsilica1/2,
Δϕ=2πn2ILeff/λ,
iA1,2z+2πa2n2λ1+iT8π|A1,2|2A1,2
+iβ3a32|A1,2|4A1,2+KA2,1=0.
iq1,2ς+1+iT8π|q1,2|2q1,2+iV8π|q1,2|4q1,2+π2q2,1
=0.

Metrics