Abstract

We have developed a compact Ti:sapphire laser system operating at variable repetition rates up to 40 kHz. Pulses of 13.2 fs from a cavity-dumped oscillator were amplified further by a seven-pass confocal amplifier, and after compression 23.8-fs pulses with a maximum pulse energy of 1.25 µJ at 10 kHz and more than 100 nJ at 25 kHz were generated. A new prismless cavity-dumping oscillator configuration was designed with the use of negatively chirped mirrors for dispersion compensation. Application of the developed laser system for nonlinear optical spectroscopy in condensed phase was demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Abeln, J. Radtke, and F. Dausinger, "High precision drilling with solid-state lasers," Lambda Physik Highlights 57, 5-8 (2000).
  2. T. B. Norris, "Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation," Opt. Lett. 19, 1009-1111 (1992).
    [CrossRef]
  3. R. Huber, F. Adler, A. Leitenstorfer, M. Beutter, P. Baum, and E. Riedle, "12-fs pulses from a continuous-wave-pumped 200-nJ Ti:sapphire amplifier at a repetition rate as high as 4 MHz," Opt. Lett. 28, 2118-2120 (2003).
    [CrossRef] [PubMed]
  4. N. Zhavoronkov and G. Korn, "Regenerative amplification of femtosecond laser pulses in Ti:sapphire at multi-kHz repetition rates," Opt. Lett. 29, 198-200 (2004).
    [CrossRef] [PubMed]
  5. M. Ramaswamy, M. Uiman, J. Paye, and J. G. Fujimoto, "Cavity-dumped femtosecond Kerr-lens mode-locked Ti:Al2O3 laser," Opt. Lett. 18, 1822-1824 (1993).
    [CrossRef] [PubMed]
  6. M. S. Pshenichnikov, W. P. de Boeij, and D. Wiersma, "Generation of 13-fs, 5-MW pulses from a cavity-dumped Ti:sapphire laser," Opt. Lett. 19, 572-574 (1994).
    [CrossRef] [PubMed]
  7. E. Slobodchikov, J. Ma, V. Kamalov, K. Tominaga, and K. Yoshihara, "Cavity-dumped femtosecond Kerr-lens mode-locking in a chromium-doped forsterite laser," Opt. Lett. 21, 354-356 (1996).
    [CrossRef] [PubMed]
  8. V. Magni, G. Ceullo, and S. De Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through Kerr media," Opt. Commun. 96, 348-355 (1993).
    [CrossRef]
  9. F. Salin and J. Squier, "Gain guiding in solid-state lasers," Opt. Lett. 17, 1352-1354 (1992).
    [CrossRef] [PubMed]
  10. U. Keller, "Ultrafast all-solid-state laser technology," Appl. Phys. B 58, 347-363 (1994).
    [CrossRef]
  11. T. Miura, K. Kobayashi, Z. Zhang, K. Tirizuka, and F. Kannari, "Stable mode-locking operation in a Cr:forsterite laser with five-mirror cavity," Opt. Lett. 24, 554-556 (1999).
    [CrossRef]
  12. G. Cerullo, S. De Silvestri, V. Magni, and L. Pallaro, "Resonators for mode-locking femtosecond lasers," Opt. Lett. 19, 807-809 (1994).
    [CrossRef] [PubMed]
  13. F. Salin, J. Squier, and M. Piche, "Mode-locking of Ti:Al2O3 lasers and self-focusing: a Gaussian approximation," Opt. Lett. 16, 1674-1676 (1991).
    [CrossRef] [PubMed]
  14. C. P. Hauri, M. Bruck, W. Kornelis, J. Biegert, and U. Keller, "Generation of 14.8 fs pulses in a spatially dispersed amplifier," Opt. Lett. 29, 201-203 (2004).
    [CrossRef] [PubMed]
  15. T. Joo, Y. Lia, J.-Y. Yu, M. J. Lang, and G. R. Fleming, "Third-order nonlinear time domaine probes of solvation dynamics," J. Chem. Phys. 104, 6089-6108 (1996).
    [CrossRef]

2004 (2)

2003 (1)

2000 (1)

T. Abeln, J. Radtke, and F. Dausinger, "High precision drilling with solid-state lasers," Lambda Physik Highlights 57, 5-8 (2000).

1999 (1)

1996 (2)

E. Slobodchikov, J. Ma, V. Kamalov, K. Tominaga, and K. Yoshihara, "Cavity-dumped femtosecond Kerr-lens mode-locking in a chromium-doped forsterite laser," Opt. Lett. 21, 354-356 (1996).
[CrossRef] [PubMed]

T. Joo, Y. Lia, J.-Y. Yu, M. J. Lang, and G. R. Fleming, "Third-order nonlinear time domaine probes of solvation dynamics," J. Chem. Phys. 104, 6089-6108 (1996).
[CrossRef]

1994 (3)

1993 (2)

V. Magni, G. Ceullo, and S. De Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through Kerr media," Opt. Commun. 96, 348-355 (1993).
[CrossRef]

M. Ramaswamy, M. Uiman, J. Paye, and J. G. Fujimoto, "Cavity-dumped femtosecond Kerr-lens mode-locked Ti:Al2O3 laser," Opt. Lett. 18, 1822-1824 (1993).
[CrossRef] [PubMed]

1992 (2)

T. B. Norris, "Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation," Opt. Lett. 19, 1009-1111 (1992).
[CrossRef]

F. Salin and J. Squier, "Gain guiding in solid-state lasers," Opt. Lett. 17, 1352-1354 (1992).
[CrossRef] [PubMed]

1991 (1)

Abeln, T.

T. Abeln, J. Radtke, and F. Dausinger, "High precision drilling with solid-state lasers," Lambda Physik Highlights 57, 5-8 (2000).

Adler, F.

Baum, P.

Beutter, M.

Biegert, J.

Bruck, M.

Cerullo, G.

Ceullo, G.

V. Magni, G. Ceullo, and S. De Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through Kerr media," Opt. Commun. 96, 348-355 (1993).
[CrossRef]

Dausinger, F.

T. Abeln, J. Radtke, and F. Dausinger, "High precision drilling with solid-state lasers," Lambda Physik Highlights 57, 5-8 (2000).

de Boeij, W. P.

De Silvestri, S.

G. Cerullo, S. De Silvestri, V. Magni, and L. Pallaro, "Resonators for mode-locking femtosecond lasers," Opt. Lett. 19, 807-809 (1994).
[CrossRef] [PubMed]

V. Magni, G. Ceullo, and S. De Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through Kerr media," Opt. Commun. 96, 348-355 (1993).
[CrossRef]

Fleming, G. R.

T. Joo, Y. Lia, J.-Y. Yu, M. J. Lang, and G. R. Fleming, "Third-order nonlinear time domaine probes of solvation dynamics," J. Chem. Phys. 104, 6089-6108 (1996).
[CrossRef]

Fujimoto, J. G.

Hauri, C. P.

Huber, R.

Joo, T.

T. Joo, Y. Lia, J.-Y. Yu, M. J. Lang, and G. R. Fleming, "Third-order nonlinear time domaine probes of solvation dynamics," J. Chem. Phys. 104, 6089-6108 (1996).
[CrossRef]

Kamalov, V.

Kannari, F.

Keller, U.

Kobayashi, K.

Korn, G.

Kornelis, W.

Lang, M. J.

T. Joo, Y. Lia, J.-Y. Yu, M. J. Lang, and G. R. Fleming, "Third-order nonlinear time domaine probes of solvation dynamics," J. Chem. Phys. 104, 6089-6108 (1996).
[CrossRef]

Leitenstorfer, A.

Lia, Y.

T. Joo, Y. Lia, J.-Y. Yu, M. J. Lang, and G. R. Fleming, "Third-order nonlinear time domaine probes of solvation dynamics," J. Chem. Phys. 104, 6089-6108 (1996).
[CrossRef]

Ma, J.

Magni, V.

G. Cerullo, S. De Silvestri, V. Magni, and L. Pallaro, "Resonators for mode-locking femtosecond lasers," Opt. Lett. 19, 807-809 (1994).
[CrossRef] [PubMed]

V. Magni, G. Ceullo, and S. De Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through Kerr media," Opt. Commun. 96, 348-355 (1993).
[CrossRef]

Miura, T.

Norris, T. B.

T. B. Norris, "Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation," Opt. Lett. 19, 1009-1111 (1992).
[CrossRef]

Pallaro, L.

Paye, J.

Piche, M.

Pshenichnikov, M. S.

Radtke, J.

T. Abeln, J. Radtke, and F. Dausinger, "High precision drilling with solid-state lasers," Lambda Physik Highlights 57, 5-8 (2000).

Ramaswamy, M.

Riedle, E.

Salin , F.

Salin, F.

Slobodchikov, E.

Squier, J.

Tirizuka, K.

Tominaga, K.

Uiman, M.

Wiersma, D.

Yoshihara, K.

Yu, J.-Y.

T. Joo, Y. Lia, J.-Y. Yu, M. J. Lang, and G. R. Fleming, "Third-order nonlinear time domaine probes of solvation dynamics," J. Chem. Phys. 104, 6089-6108 (1996).
[CrossRef]

Zhang, Z.

Zhavoronkov , N.

Appl. Phys. B (1)

U. Keller, "Ultrafast all-solid-state laser technology," Appl. Phys. B 58, 347-363 (1994).
[CrossRef]

J. Chem. Phys. (1)

T. Joo, Y. Lia, J.-Y. Yu, M. J. Lang, and G. R. Fleming, "Third-order nonlinear time domaine probes of solvation dynamics," J. Chem. Phys. 104, 6089-6108 (1996).
[CrossRef]

Lambda Physik Highlights (1)

T. Abeln, J. Radtke, and F. Dausinger, "High precision drilling with solid-state lasers," Lambda Physik Highlights 57, 5-8 (2000).

Opt. Commun. (1)

V. Magni, G. Ceullo, and S. De Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through Kerr media," Opt. Commun. 96, 348-355 (1993).
[CrossRef]

Opt. Lett. (11)

T. B. Norris, "Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation," Opt. Lett. 19, 1009-1111 (1992).
[CrossRef]

M. Ramaswamy, M. Uiman, J. Paye, and J. G. Fujimoto, "Cavity-dumped femtosecond Kerr-lens mode-locked Ti:Al2O3 laser," Opt. Lett. 18, 1822-1824 (1993).
[CrossRef] [PubMed]

M. S. Pshenichnikov, W. P. de Boeij, and D. Wiersma, "Generation of 13-fs, 5-MW pulses from a cavity-dumped Ti:sapphire laser," Opt. Lett. 19, 572-574 (1994).
[CrossRef] [PubMed]

G. Cerullo, S. De Silvestri, V. Magni, and L. Pallaro, "Resonators for mode-locking femtosecond lasers," Opt. Lett. 19, 807-809 (1994).
[CrossRef] [PubMed]

T. Miura, K. Kobayashi, Z. Zhang, K. Tirizuka, and F. Kannari, "Stable mode-locking operation in a Cr:forsterite laser with five-mirror cavity," Opt. Lett. 24, 554-556 (1999).
[CrossRef]

E. Slobodchikov, J. Ma, V. Kamalov, K. Tominaga, and K. Yoshihara, "Cavity-dumped femtosecond Kerr-lens mode-locking in a chromium-doped forsterite laser," Opt. Lett. 21, 354-356 (1996).
[CrossRef] [PubMed]

F. Salin, J. Squier, and M. Piche, "Mode-locking of Ti:Al2O3 lasers and self-focusing: a Gaussian approximation," Opt. Lett. 16, 1674-1676 (1991).
[CrossRef] [PubMed]

F. Salin and J. Squier, "Gain guiding in solid-state lasers," Opt. Lett. 17, 1352-1354 (1992).
[CrossRef] [PubMed]

R. Huber, F. Adler, A. Leitenstorfer, M. Beutter, P. Baum, and E. Riedle, "12-fs pulses from a continuous-wave-pumped 200-nJ Ti:sapphire amplifier at a repetition rate as high as 4 MHz," Opt. Lett. 28, 2118-2120 (2003).
[CrossRef] [PubMed]

N. Zhavoronkov and G. Korn, "Regenerative amplification of femtosecond laser pulses in Ti:sapphire at multi-kHz repetition rates," Opt. Lett. 29, 198-200 (2004).
[CrossRef] [PubMed]

C. P. Hauri, M. Bruck, W. Kornelis, J. Biegert, and U. Keller, "Generation of 14.8 fs pulses in a spatially dispersed amplifier," Opt. Lett. 29, 201-203 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Layouts for the cavity-dumping oscillators. Top, a traditional six-mirror cavity, where HR is a plane high reflector; M1, M2, M3, and M4 are the curved mirrors with R=100 mm; BC is a Bragg cell; P1 and P2 are the fused-silica prisms; OC is an output coupler with T=3%. Bottom, a new five-mirror cavity, where M1 and M2 are the curved mirrors with R1=50 mm and R2=75 mm, and CM1 and CM2 are the chirped mirrors.

Fig. 2
Fig. 2

Differential gain Δg calculated for a traditional six-mirror cavity configuration. The areas for the differential gain Δg<0, Δg>0, and Δg>1 are marked.

Fig. 3
Fig. 3

Differential gain Δg calculated for a new five-mirror cavity configuration. The areas for the differential gain Δg<0, Δg>0, Δg>0.5, and Δg>1 are marked.

Fig. 4
Fig. 4

Differential gain Δg calculated for different values of the M1M2 separation as a function of displacement from the stability limit to the longer M3M4 separation for six- (dashed) and five- (solid) mirror cavities.

Fig. 5
Fig. 5

Auto-correlation trace of the cavity-dumped seed pulses and the compressed amplified pulses.

Fig. 6
Fig. 6

Spectra of the pulses dumped by Bragg cell (solid) and transmitted by output coupler of the oscillator (dotted), and the amplified pulses (dashed).

Fig. 7
Fig. 7

Layout for the seven-pass amplifier, where AM1 and AM2 are the curved mirrors with R1=150 mm and R2=100 mm; PA1 and PA2 are the fused silica prism assemblies; M1, M2 and PM are the plane mirrors; and RM is the curved mirror for focusing of the residual pump radiation to the Ti:sapphire rod.

Fig. 8
Fig. 8

Transient grating signal.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δg+/-l+/-=0laAl,cw+/-(z)-Al,pul+/-(z)[Al,cw+/-(z)+Ap(z)][Al,pul+/-(z)+Ap(z)] dz×0ladzAl,cw+/-(z)+Ap(z)-1,

Metrics