Abstract

We study the effect of coherency saturation in spatially or temporally periodical structures with randomization, applicable to a very broad class of systems. We derive a simple analytical formula in the case of uncorrelated deviations of periods with Gaussian probability distribution. Using Monte Carlo simulations, we also demonstrate that many other distributions show statistical properties that closely coincide with the Gaussian, although some of them are drastically different from it. We observed that the characteristic number of elements necessary for the saturation of the coherency (the “coherency range”) depends only on the normalized standard deviation of the size of the elements and not on their probability distribution function. A greatly simplified heuristic formula found by us also fits all of these results with very reasonable precision. In the specific case of x ray transition radiation of low-to-medium relativistic electron beams in multilayer solid-state nanostructures, we show that a structure of a few hundred layers can generate resonantly enhanced radiation in the hard x ray domain with almost unhampered coherency gain.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media

Lihong Wang and Steven L. Jacques
J. Opt. Soc. Am. A 10(8) 1746-1752 (1993)

Noise immunity of threshold decomposition optoelectronic order-statistic filtering

Joseph L. Tasto and William T. Rhodes
Opt. Lett. 18(16) 1349-1351 (1993)

Condensed Monte Carlo simulations for the description of light transport

R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, and J. G. Aarnoudse
Appl. Opt. 32(4) 426-434 (1993)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (47)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription