Abstract

Stimulated Raman amplification in compressed methane is studied under transient excitation conditions. Experimental studies with nearly transform-limited 1-ps pump pulses at 395 nm are accompanied by theoretical modeling, taking into account the depletion of the pump as well as the dispersion of the gas. Energy-conversion efficiencies as high as 47% to the amplified first Stokes component are achieved. For obtaining maximum efficiency, it is necessary to adjust the time delay between the pump and the seed pulses. Optimum time delay and its sign depend on the pump energy. It is shown theoretically that amplification is favorably affected by a pronounced group-velocity mismatch between the pump and the amplified Stokes pulses due to high dispersion.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Kaiser and M. Maier, "Stimulated Rayleigh, Brillouin and Raman spectroscopy," in Laser Handbook , F. T. Arecchi and E. O. Schulz-DuBois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1077-1150.
  2. Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).
  3. V. Krylov, O. Ollikainen, U. P. Wild, A. Rebane, V. G. Bespalov, and D. I. Staselko, "Femtosecond stimulated Raman scattering in pressurized gases in the ultraviolet and visible spectral ranges," J. Opt. Soc. Am. B 15, 2910-2916 (1998).
    [CrossRef]
  4. I. Fisher and T. Schultz, "Generation of tunable visible and near-IR light from 2.5 ps, high-power Ti:sapphire pulses by Raman shifting in hydrogen," Appl. Phys. B 64, 15-20 (1997).
    [CrossRef]
  5. L. Zhu, J. Kim, and R. A. Mathies, "Picosecond time-resolved Raman system for studying photochemical reaction dynamics: application to the primary events in vision," J. Raman Spectrosc. 30, 777-783 (1999).
    [CrossRef]
  6. V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, "Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during super-regenerative amplification," Opt. Spectrosc. 63, 742-747 (1987).
  7. J. J. Ottusch and D. A. Rockwell, "Measurement of Raman gain coefficients of hydrogen, deuterium, and methane," IEEE J. Quantum Electron. 24, 2076-2080 (1988).
    [CrossRef]
  8. J. G. Wessel, K. S. Repasky, and J. L. Carlsten, "Competition between spontaneous scattering and stimulated scattering in an injection-seeded Raman amplifier," Phys. Rev. A 53, 1854-1861 (1995).
    [CrossRef]
  9. M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes, "Transient stimulated Raman amplification in hydrogen," J. Opt. Soc. Am. B 5, 37-52 (1988).
    [CrossRef]
  10. V. Krylov, A. Rebane, D. Erni, O. Ollikainen, U. Wild, V. Bespalov, and D. Staselko, "Stimulated Raman amplification of femtosecond pulses in hydrogen gas," Opt. Lett. 21, 2005-2007 (1996).
    [CrossRef] [PubMed]
  11. V. G. Bespalov, D. I. Staselko, Yu. N. Efimov, V. N. Krylov, A. Rebane, D. Erni, O. Ollikainen, and U. Wild, "Super-regenerative SRS amplification of femtosecond pulses in compressed hydrogen," Opt. Spektrosk. 85, 338-346 (1998) (in Russian).
  12. I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, "High-energy conversion efficiency of transient stimulated Raman scattering in methane pumped by the fundamental of a Ti:sapphire laser," Opt. Lett. 24, 1308-1310 (1999).
    [CrossRef]
  13. A. I. Vodchits, W. Werncke, S. Hogiu, and V. A. Orlovich, "Stimulated Raman scattering in compressed gases by short laser pulses," in Laser Optics 2000: Ultrafast Optics and Superstrong Laser Fields, A. A. Andreev and V. E. Yashin, eds., Proc. SPIE 4352, 52-58 (2001).
    [CrossRef]
  14. Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, "Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy," J. Raman Spectrosc. 31, 339-348 (2000).
    [CrossRef]
  15. J. C. Englund and C. M. Bowden, "Spontaneous generation of phase waves and solitons in stimulated Raman scattering: quantum-mechanical models of stimulated Raman scattering," Phys. Rev. A 42, 2870-2889 (1990).
    [CrossRef] [PubMed]
  16. R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, "Theory of Stokes pulse shapes in transient stimulated Raman scattering," Phys. Rev. A 2, 60-72 (1970).
    [CrossRef]
  17. G. Hilfer and C. R. Menyuk, "Stimulated Raman scattering in the transient limit," J. Opt. Soc. Am. B 7, 739-749 (1990).
    [CrossRef]
  18. A. Owyoung, C. W. Patterson, and R. S. McDowell, "CW stimulated Raman gain spectroscopy of the nu1 fundamental of methane," Chem. Phys. Lett. 59, 156-162 (1978).
    [CrossRef]
  19. D. G. Fouche and R. K. Chang, "Relative Raman cross section for O3,CH4,C3H8, NO, N2O, and H2," Appl. Phys. Lett. 20, 256-257 (1972).
    [CrossRef]
  20. W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, "Raman cross section of some simple gases," J. Opt. Soc. Am. 63, 73-77 (1973).
    [CrossRef]
  21. W. K. Bishel and G. Black, "Wavelength dependence of Raman scattering cross sections from 200-600 nm," in Excimer Lasers - 1983 , C. K. Rhodes, H. Egger, and H. Pummer, eds., Volume 100 of AIP Conference Proceedings, Number 3 of Subseries on Optical Science and Engineering (American Institute of Physics, New York, 1983), pp. 181-194.
  22. N. J. Everall, J. P. Partanen, J. R. M. Barr, and M. J. Shaw, "Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses," Opt. Commun. 64, 393-397 (1987).
    [CrossRef]
  23. D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. 22, 332-336 (1986).
    [CrossRef]
  24. A. Kazzaz, S. Ruschin, I. Shoshan, and G. Ravnitsky, "Stimulated Raman scattering in methane - experimental optimization and numerical model," IEEE J. Quantum Electron. 30, 3017-3024 (1994).
    [CrossRef]
  25. I. V. Tomov, P. Chen, and P. M. Rentzepis, "Efficient Raman conversion of high repetition rate, 193 nm picosecond laser pulses," J. Appl. Phys. 76, 1409-1412 (1994).
    [CrossRef]
  26. V. Krylov, I. Fisher, V. Bespalov, D. Staselko, and A. Rebane, "Transient stimulated Raman scattering in gas mixtures," Opt. Lett. 24, 1623-1625 (1999).
    [CrossRef]
  27. Q. Lou, T. Yagi, and H. Saito, "KrF/H2 Raman conversion at high repetition rate using a hydrogen gas circulating system," J. Appl. Phys. 67, 6591-6593 (1990).
    [CrossRef]
  28. R. J. Balla and G. C. Herring, "Raman shifting a tunable ArF laser to wavelengths of 190-240 nm," Rev. Sci. Instrum. 71, 2246-2247 (2000).
    [CrossRef]

2001 (1)

A. I. Vodchits, W. Werncke, S. Hogiu, and V. A. Orlovich, "Stimulated Raman scattering in compressed gases by short laser pulses," in Laser Optics 2000: Ultrafast Optics and Superstrong Laser Fields, A. A. Andreev and V. E. Yashin, eds., Proc. SPIE 4352, 52-58 (2001).
[CrossRef]

2000 (2)

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, "Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy," J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

R. J. Balla and G. C. Herring, "Raman shifting a tunable ArF laser to wavelengths of 190-240 nm," Rev. Sci. Instrum. 71, 2246-2247 (2000).
[CrossRef]

1999 (3)

1998 (2)

V. Krylov, O. Ollikainen, U. P. Wild, A. Rebane, V. G. Bespalov, and D. I. Staselko, "Femtosecond stimulated Raman scattering in pressurized gases in the ultraviolet and visible spectral ranges," J. Opt. Soc. Am. B 15, 2910-2916 (1998).
[CrossRef]

V. G. Bespalov, D. I. Staselko, Yu. N. Efimov, V. N. Krylov, A. Rebane, D. Erni, O. Ollikainen, and U. Wild, "Super-regenerative SRS amplification of femtosecond pulses in compressed hydrogen," Opt. Spektrosk. 85, 338-346 (1998) (in Russian).

1997 (1)

I. Fisher and T. Schultz, "Generation of tunable visible and near-IR light from 2.5 ps, high-power Ti:sapphire pulses by Raman shifting in hydrogen," Appl. Phys. B 64, 15-20 (1997).
[CrossRef]

1996 (1)

1995 (1)

J. G. Wessel, K. S. Repasky, and J. L. Carlsten, "Competition between spontaneous scattering and stimulated scattering in an injection-seeded Raman amplifier," Phys. Rev. A 53, 1854-1861 (1995).
[CrossRef]

1994 (2)

A. Kazzaz, S. Ruschin, I. Shoshan, and G. Ravnitsky, "Stimulated Raman scattering in methane - experimental optimization and numerical model," IEEE J. Quantum Electron. 30, 3017-3024 (1994).
[CrossRef]

I. V. Tomov, P. Chen, and P. M. Rentzepis, "Efficient Raman conversion of high repetition rate, 193 nm picosecond laser pulses," J. Appl. Phys. 76, 1409-1412 (1994).
[CrossRef]

1990 (3)

Q. Lou, T. Yagi, and H. Saito, "KrF/H2 Raman conversion at high repetition rate using a hydrogen gas circulating system," J. Appl. Phys. 67, 6591-6593 (1990).
[CrossRef]

G. Hilfer and C. R. Menyuk, "Stimulated Raman scattering in the transient limit," J. Opt. Soc. Am. B 7, 739-749 (1990).
[CrossRef]

J. C. Englund and C. M. Bowden, "Spontaneous generation of phase waves and solitons in stimulated Raman scattering: quantum-mechanical models of stimulated Raman scattering," Phys. Rev. A 42, 2870-2889 (1990).
[CrossRef] [PubMed]

1988 (2)

M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes, "Transient stimulated Raman amplification in hydrogen," J. Opt. Soc. Am. B 5, 37-52 (1988).
[CrossRef]

J. J. Ottusch and D. A. Rockwell, "Measurement of Raman gain coefficients of hydrogen, deuterium, and methane," IEEE J. Quantum Electron. 24, 2076-2080 (1988).
[CrossRef]

1987 (2)

V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, "Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during super-regenerative amplification," Opt. Spectrosc. 63, 742-747 (1987).

N. J. Everall, J. P. Partanen, J. R. M. Barr, and M. J. Shaw, "Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses," Opt. Commun. 64, 393-397 (1987).
[CrossRef]

1986 (1)

D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. 22, 332-336 (1986).
[CrossRef]

1978 (1)

A. Owyoung, C. W. Patterson, and R. S. McDowell, "CW stimulated Raman gain spectroscopy of the nu1 fundamental of methane," Chem. Phys. Lett. 59, 156-162 (1978).
[CrossRef]

1973 (1)

1972 (1)

D. G. Fouche and R. K. Chang, "Relative Raman cross section for O3,CH4,C3H8, NO, N2O, and H2," Appl. Phys. Lett. 20, 256-257 (1972).
[CrossRef]

1970 (1)

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, "Theory of Stokes pulse shapes in transient stimulated Raman scattering," Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

Balla , R. J.

R. J. Balla and G. C. Herring, "Raman shifting a tunable ArF laser to wavelengths of 190-240 nm," Rev. Sci. Instrum. 71, 2246-2247 (2000).
[CrossRef]

Barr, J. R. M.

N. J. Everall, J. P. Partanen, J. R. M. Barr, and M. J. Shaw, "Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses," Opt. Commun. 64, 393-397 (1987).
[CrossRef]

Bespalov, V.

Bespalov, V. G.

V. G. Bespalov, D. I. Staselko, Yu. N. Efimov, V. N. Krylov, A. Rebane, D. Erni, O. Ollikainen, and U. Wild, "Super-regenerative SRS amplification of femtosecond pulses in compressed hydrogen," Opt. Spektrosk. 85, 338-346 (1998) (in Russian).

V. Krylov, O. Ollikainen, U. P. Wild, A. Rebane, V. G. Bespalov, and D. I. Staselko, "Femtosecond stimulated Raman scattering in pressurized gases in the ultraviolet and visible spectral ranges," J. Opt. Soc. Am. B 15, 2910-2916 (1998).
[CrossRef]

V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, "Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during super-regenerative amplification," Opt. Spectrosc. 63, 742-747 (1987).

Bloembergen, N.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, "Theory of Stokes pulse shapes in transient stimulated Raman scattering," Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

Bowden, C. M.

J. C. Englund and C. M. Bowden, "Spontaneous generation of phase waves and solitons in stimulated Raman scattering: quantum-mechanical models of stimulated Raman scattering," Phys. Rev. A 42, 2870-2889 (1990).
[CrossRef] [PubMed]

Carlsten, J. L.

J. G. Wessel, K. S. Repasky, and J. L. Carlsten, "Competition between spontaneous scattering and stimulated scattering in an injection-seeded Raman amplifier," Phys. Rev. A 53, 1854-1861 (1995).
[CrossRef]

Carman, R. L.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, "Theory of Stokes pulse shapes in transient stimulated Raman scattering," Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

Chang, R. K.

D. G. Fouche and R. K. Chang, "Relative Raman cross section for O3,CH4,C3H8, NO, N2O, and H2," Appl. Phys. Lett. 20, 256-257 (1972).
[CrossRef]

Chen, P.

I. V. Tomov, P. Chen, and P. M. Rentzepis, "Efficient Raman conversion of high repetition rate, 193 nm picosecond laser pulses," J. Appl. Phys. 76, 1409-1412 (1994).
[CrossRef]

Duncan, M. D.

Efimov, Yu. N.

V. G. Bespalov, D. I. Staselko, Yu. N. Efimov, V. N. Krylov, A. Rebane, D. Erni, O. Ollikainen, and U. Wild, "Super-regenerative SRS amplification of femtosecond pulses in compressed hydrogen," Opt. Spektrosk. 85, 338-346 (1998) (in Russian).

Englund , J. C.

J. C. Englund and C. M. Bowden, "Spontaneous generation of phase waves and solitons in stimulated Raman scattering: quantum-mechanical models of stimulated Raman scattering," Phys. Rev. A 42, 2870-2889 (1990).
[CrossRef] [PubMed]

Erni, D.

V. G. Bespalov, D. I. Staselko, Yu. N. Efimov, V. N. Krylov, A. Rebane, D. Erni, O. Ollikainen, and U. Wild, "Super-regenerative SRS amplification of femtosecond pulses in compressed hydrogen," Opt. Spektrosk. 85, 338-346 (1998) (in Russian).

V. Krylov, A. Rebane, D. Erni, O. Ollikainen, U. Wild, V. Bespalov, and D. Staselko, "Stimulated Raman amplification of femtosecond pulses in hydrogen gas," Opt. Lett. 21, 2005-2007 (1996).
[CrossRef] [PubMed]

Everall, N. J.

N. J. Everall, J. P. Partanen, J. R. M. Barr, and M. J. Shaw, "Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses," Opt. Commun. 64, 393-397 (1987).
[CrossRef]

Fenner, W. R.

Fisher, I.

Fisher , I.

I. Fisher and T. Schultz, "Generation of tunable visible and near-IR light from 2.5 ps, high-power Ti:sapphire pulses by Raman shifting in hydrogen," Appl. Phys. B 64, 15-20 (1997).
[CrossRef]

Fouche , D. G.

D. G. Fouche and R. K. Chang, "Relative Raman cross section for O3,CH4,C3H8, NO, N2O, and H2," Appl. Phys. Lett. 20, 256-257 (1972).
[CrossRef]

Hanna, D. C.

D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. 22, 332-336 (1986).
[CrossRef]

Herring, G. C.

R. J. Balla and G. C. Herring, "Raman shifting a tunable ArF laser to wavelengths of 190-240 nm," Rev. Sci. Instrum. 71, 2246-2247 (2000).
[CrossRef]

Hilfer , G.

Hogiu, S.

A. I. Vodchits, W. Werncke, S. Hogiu, and V. A. Orlovich, "Stimulated Raman scattering in compressed gases by short laser pulses," in Laser Optics 2000: Ultrafast Optics and Superstrong Laser Fields, A. A. Andreev and V. E. Yashin, eds., Proc. SPIE 4352, 52-58 (2001).
[CrossRef]

Hyatt, H. A.

Kazzaz, A.

A. Kazzaz, S. Ruschin, I. Shoshan, and G. Ravnitsky, "Stimulated Raman scattering in methane - experimental optimization and numerical model," IEEE J. Quantum Electron. 30, 3017-3024 (1994).
[CrossRef]

Kellam, J. M.

Kim, J.

L. Zhu, J. Kim, and R. A. Mathies, "Picosecond time-resolved Raman system for studying photochemical reaction dynamics: application to the primary events in vision," J. Raman Spectrosc. 30, 777-783 (1999).
[CrossRef]

Kitagawa, T.

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, "Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy," J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Koprinkov, I. G.

Kruglik, S. G.

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, "Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy," J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Krylov, V.

Krylov, V. N.

V. G. Bespalov, D. I. Staselko, Yu. N. Efimov, V. N. Krylov, A. Rebane, D. Erni, O. Ollikainen, and U. Wild, "Super-regenerative SRS amplification of femtosecond pulses in compressed hydrogen," Opt. Spektrosk. 85, 338-346 (1998) (in Russian).

V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, "Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during super-regenerative amplification," Opt. Spectrosc. 63, 742-747 (1987).

Lou, Q.

Q. Lou, T. Yagi, and H. Saito, "KrF/H2 Raman conversion at high repetition rate using a hydrogen gas circulating system," J. Appl. Phys. 67, 6591-6593 (1990).
[CrossRef]

Mahon, R.

Mathies, R. A.

L. Zhu, J. Kim, and R. A. Mathies, "Picosecond time-resolved Raman system for studying photochemical reaction dynamics: application to the primary events in vision," J. Raman Spectrosc. 30, 777-783 (1999).
[CrossRef]

McDowell, R. S.

A. Owyoung, C. W. Patterson, and R. S. McDowell, "CW stimulated Raman gain spectroscopy of the nu1 fundamental of methane," Chem. Phys. Lett. 59, 156-162 (1978).
[CrossRef]

Menyuk, C. R.

Midorikawa, K.

Mizutani, Y.

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, "Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy," J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Ollikainen, O.

Orlovich, V. A.

A. I. Vodchits, W. Werncke, S. Hogiu, and V. A. Orlovich, "Stimulated Raman scattering in compressed gases by short laser pulses," in Laser Optics 2000: Ultrafast Optics and Superstrong Laser Fields, A. A. Andreev and V. E. Yashin, eds., Proc. SPIE 4352, 52-58 (2001).
[CrossRef]

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, "Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy," J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Ottusch , J. J.

J. J. Ottusch and D. A. Rockwell, "Measurement of Raman gain coefficients of hydrogen, deuterium, and methane," IEEE J. Quantum Electron. 24, 2076-2080 (1988).
[CrossRef]

Owyoung, A.

A. Owyoung, C. W. Patterson, and R. S. McDowell, "CW stimulated Raman gain spectroscopy of the nu1 fundamental of methane," Chem. Phys. Lett. 59, 156-162 (1978).
[CrossRef]

Parfenov, V. A.

V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, "Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during super-regenerative amplification," Opt. Spectrosc. 63, 742-747 (1987).

Partanen, J. P.

N. J. Everall, J. P. Partanen, J. R. M. Barr, and M. J. Shaw, "Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses," Opt. Commun. 64, 393-397 (1987).
[CrossRef]

Patterson, C. W.

A. Owyoung, C. W. Patterson, and R. S. McDowell, "CW stimulated Raman gain spectroscopy of the nu1 fundamental of methane," Chem. Phys. Lett. 59, 156-162 (1978).
[CrossRef]

Pointer, D. J.

D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. 22, 332-336 (1986).
[CrossRef]

Porto, S. P. S.

Pratt, D. J.

D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. 22, 332-336 (1986).
[CrossRef]

Ravnitsky, G.

A. Kazzaz, S. Ruschin, I. Shoshan, and G. Ravnitsky, "Stimulated Raman scattering in methane - experimental optimization and numerical model," IEEE J. Quantum Electron. 30, 3017-3024 (1994).
[CrossRef]

Rebane, A.

Reintjes, J.

Rentzepis, P. M.

I. V. Tomov, P. Chen, and P. M. Rentzepis, "Efficient Raman conversion of high repetition rate, 193 nm picosecond laser pulses," J. Appl. Phys. 76, 1409-1412 (1994).
[CrossRef]

Repasky, K. S.

J. G. Wessel, K. S. Repasky, and J. L. Carlsten, "Competition between spontaneous scattering and stimulated scattering in an injection-seeded Raman amplifier," Phys. Rev. A 53, 1854-1861 (1995).
[CrossRef]

Rockwell, D. A.

J. J. Ottusch and D. A. Rockwell, "Measurement of Raman gain coefficients of hydrogen, deuterium, and methane," IEEE J. Quantum Electron. 24, 2076-2080 (1988).
[CrossRef]

Ruschin, S.

A. Kazzaz, S. Ruschin, I. Shoshan, and G. Ravnitsky, "Stimulated Raman scattering in methane - experimental optimization and numerical model," IEEE J. Quantum Electron. 30, 3017-3024 (1994).
[CrossRef]

Saito, H.

Q. Lou, T. Yagi, and H. Saito, "KrF/H2 Raman conversion at high repetition rate using a hydrogen gas circulating system," J. Appl. Phys. 67, 6591-6593 (1990).
[CrossRef]

Schultz, T.

I. Fisher and T. Schultz, "Generation of tunable visible and near-IR light from 2.5 ps, high-power Ti:sapphire pulses by Raman shifting in hydrogen," Appl. Phys. B 64, 15-20 (1997).
[CrossRef]

Shaw, M. J.

N. J. Everall, J. P. Partanen, J. R. M. Barr, and M. J. Shaw, "Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses," Opt. Commun. 64, 393-397 (1987).
[CrossRef]

Shimizu, F.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, "Theory of Stokes pulse shapes in transient stimulated Raman scattering," Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

Shoshan, I.

A. Kazzaz, S. Ruschin, I. Shoshan, and G. Ravnitsky, "Stimulated Raman scattering in methane - experimental optimization and numerical model," IEEE J. Quantum Electron. 30, 3017-3024 (1994).
[CrossRef]

Shvedko, A. G.

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, "Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy," J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Sizov, V. N.

V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, "Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during super-regenerative amplification," Opt. Spectrosc. 63, 742-747 (1987).

Staselko, D.

Staselko, D. I.

V. G. Bespalov, D. I. Staselko, Yu. N. Efimov, V. N. Krylov, A. Rebane, D. Erni, O. Ollikainen, and U. Wild, "Super-regenerative SRS amplification of femtosecond pulses in compressed hydrogen," Opt. Spektrosk. 85, 338-346 (1998) (in Russian).

V. Krylov, O. Ollikainen, U. P. Wild, A. Rebane, V. G. Bespalov, and D. I. Staselko, "Femtosecond stimulated Raman scattering in pressurized gases in the ultraviolet and visible spectral ranges," J. Opt. Soc. Am. B 15, 2910-2916 (1998).
[CrossRef]

V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, "Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during super-regenerative amplification," Opt. Spectrosc. 63, 742-747 (1987).

Suda, A.

Tankersley, L. L.

Tomov, I. V.

I. V. Tomov, P. Chen, and P. M. Rentzepis, "Efficient Raman conversion of high repetition rate, 193 nm picosecond laser pulses," J. Appl. Phys. 76, 1409-1412 (1994).
[CrossRef]

Uesugi, Y.

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, "Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy," J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Vodchits, A. I.

A. I. Vodchits, W. Werncke, S. Hogiu, and V. A. Orlovich, "Stimulated Raman scattering in compressed gases by short laser pulses," in Laser Optics 2000: Ultrafast Optics and Superstrong Laser Fields, A. A. Andreev and V. E. Yashin, eds., Proc. SPIE 4352, 52-58 (2001).
[CrossRef]

Wang, C. S.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, "Theory of Stokes pulse shapes in transient stimulated Raman scattering," Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

Wang, P.

Werncke, W.

A. I. Vodchits, W. Werncke, S. Hogiu, and V. A. Orlovich, "Stimulated Raman scattering in compressed gases by short laser pulses," in Laser Optics 2000: Ultrafast Optics and Superstrong Laser Fields, A. A. Andreev and V. E. Yashin, eds., Proc. SPIE 4352, 52-58 (2001).
[CrossRef]

Wessel, J. G.

J. G. Wessel, K. S. Repasky, and J. L. Carlsten, "Competition between spontaneous scattering and stimulated scattering in an injection-seeded Raman amplifier," Phys. Rev. A 53, 1854-1861 (1995).
[CrossRef]

Wild, U.

V. G. Bespalov, D. I. Staselko, Yu. N. Efimov, V. N. Krylov, A. Rebane, D. Erni, O. Ollikainen, and U. Wild, "Super-regenerative SRS amplification of femtosecond pulses in compressed hydrogen," Opt. Spektrosk. 85, 338-346 (1998) (in Russian).

V. Krylov, A. Rebane, D. Erni, O. Ollikainen, U. Wild, V. Bespalov, and D. Staselko, "Stimulated Raman amplification of femtosecond pulses in hydrogen gas," Opt. Lett. 21, 2005-2007 (1996).
[CrossRef] [PubMed]

Wild, U. P.

Yagi, T.

Q. Lou, T. Yagi, and H. Saito, "KrF/H2 Raman conversion at high repetition rate using a hydrogen gas circulating system," J. Appl. Phys. 67, 6591-6593 (1990).
[CrossRef]

Yutanova, E. Yu.

V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, "Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during super-regenerative amplification," Opt. Spectrosc. 63, 742-747 (1987).

Zhu, L.

L. Zhu, J. Kim, and R. A. Mathies, "Picosecond time-resolved Raman system for studying photochemical reaction dynamics: application to the primary events in vision," J. Raman Spectrosc. 30, 777-783 (1999).
[CrossRef]

Appl. Phys. B (1)

I. Fisher and T. Schultz, "Generation of tunable visible and near-IR light from 2.5 ps, high-power Ti:sapphire pulses by Raman shifting in hydrogen," Appl. Phys. B 64, 15-20 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

D. G. Fouche and R. K. Chang, "Relative Raman cross section for O3,CH4,C3H8, NO, N2O, and H2," Appl. Phys. Lett. 20, 256-257 (1972).
[CrossRef]

Chem. Phys. Lett. (1)

A. Owyoung, C. W. Patterson, and R. S. McDowell, "CW stimulated Raman gain spectroscopy of the nu1 fundamental of methane," Chem. Phys. Lett. 59, 156-162 (1978).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. 22, 332-336 (1986).
[CrossRef]

A. Kazzaz, S. Ruschin, I. Shoshan, and G. Ravnitsky, "Stimulated Raman scattering in methane - experimental optimization and numerical model," IEEE J. Quantum Electron. 30, 3017-3024 (1994).
[CrossRef]

J. J. Ottusch and D. A. Rockwell, "Measurement of Raman gain coefficients of hydrogen, deuterium, and methane," IEEE J. Quantum Electron. 24, 2076-2080 (1988).
[CrossRef]

J. Appl. Phys. (2)

I. V. Tomov, P. Chen, and P. M. Rentzepis, "Efficient Raman conversion of high repetition rate, 193 nm picosecond laser pulses," J. Appl. Phys. 76, 1409-1412 (1994).
[CrossRef]

Q. Lou, T. Yagi, and H. Saito, "KrF/H2 Raman conversion at high repetition rate using a hydrogen gas circulating system," J. Appl. Phys. 67, 6591-6593 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

J. Raman Spectrosc. (2)

L. Zhu, J. Kim, and R. A. Mathies, "Picosecond time-resolved Raman system for studying photochemical reaction dynamics: application to the primary events in vision," J. Raman Spectrosc. 30, 777-783 (1999).
[CrossRef]

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, "Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy," J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Opt. Commun. (1)

N. J. Everall, J. P. Partanen, J. R. M. Barr, and M. J. Shaw, "Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses," Opt. Commun. 64, 393-397 (1987).
[CrossRef]

Opt. Lett. (3)

Opt. Spectrosc. (1)

V. G. Bespalov, V. N. Krylov, D. I. Staselko, V. N. Sizov, V. A. Parfenov, and E. Yu. Yutanova, "Coherence and space-time structure of the Stokes radiation of stimulated Raman scattering during super-regenerative amplification," Opt. Spectrosc. 63, 742-747 (1987).

Opt. Spektrosk. (1)

V. G. Bespalov, D. I. Staselko, Yu. N. Efimov, V. N. Krylov, A. Rebane, D. Erni, O. Ollikainen, and U. Wild, "Super-regenerative SRS amplification of femtosecond pulses in compressed hydrogen," Opt. Spektrosk. 85, 338-346 (1998) (in Russian).

Phys. Rev. A (3)

J. G. Wessel, K. S. Repasky, and J. L. Carlsten, "Competition between spontaneous scattering and stimulated scattering in an injection-seeded Raman amplifier," Phys. Rev. A 53, 1854-1861 (1995).
[CrossRef]

J. C. Englund and C. M. Bowden, "Spontaneous generation of phase waves and solitons in stimulated Raman scattering: quantum-mechanical models of stimulated Raman scattering," Phys. Rev. A 42, 2870-2889 (1990).
[CrossRef] [PubMed]

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, "Theory of Stokes pulse shapes in transient stimulated Raman scattering," Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

Proc. SPIE (1)

A. I. Vodchits, W. Werncke, S. Hogiu, and V. A. Orlovich, "Stimulated Raman scattering in compressed gases by short laser pulses," in Laser Optics 2000: Ultrafast Optics and Superstrong Laser Fields, A. A. Andreev and V. E. Yashin, eds., Proc. SPIE 4352, 52-58 (2001).
[CrossRef]

Rev. Sci. Instrum. (1)

R. J. Balla and G. C. Herring, "Raman shifting a tunable ArF laser to wavelengths of 190-240 nm," Rev. Sci. Instrum. 71, 2246-2247 (2000).
[CrossRef]

Other (3)

W. K. Bishel and G. Black, "Wavelength dependence of Raman scattering cross sections from 200-600 nm," in Excimer Lasers - 1983 , C. K. Rhodes, H. Egger, and H. Pummer, eds., Volume 100 of AIP Conference Proceedings, Number 3 of Subseries on Optical Science and Engineering (American Institute of Physics, New York, 1983), pp. 181-194.

W. Kaiser and M. Maier, "Stimulated Rayleigh, Brillouin and Raman spectroscopy," in Laser Handbook , F. T. Arecchi and E. O. Schulz-DuBois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1077-1150.

Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for transient SRA. Ti:Sa-oscillator-RGA, Ti:sapphire amplifier system; DM, dichroic mirror; BS, beam splitter; D, photodiode; F, filter.

Fig. 2
Fig. 2

Normalized cross-correlation functions of the Stokes seed pulse (open circles) and the undepleted pump pulse (solid squares) with a reference pulse at 790 nm measured at the exit of the Raman amplifier cell. Taking into account the linear dispersion in the cell, we determined a time delay of -0.3 ps between the seed and the pump pulses at the entrance of the gaseous medium of the amplifier. Insert: spectrum of the amplified Stokes pulses (peak position—446.4 nm).

Fig. 3
Fig. 3

Dependence of the SRA conversion efficiency on the energy of the Stokes seed pulses measured for a pump energy of 157 µJ (open squares) and SRA conversion efficiencies calculated for a pump energy of 157 µJ and different seed energies (solid circles). Equal diameters of pump and seed pulses of 3.55 mm and a dispersion of 14.5 fs/cm between pump and seed pulses were assumed. Solid curves between the calculated points are given as guide lines for the eye.

Fig. 4
Fig. 4

Dependence of the SRA conversion efficiency on the energy of the pump pulses measured for an energy of the Stokes seed pulses of 0.57 µJ (open squares) and SRA conversion efficiencies calculated for different pump energies and a seed energy of 0.57 µJ (solid circles). Equal diameters of pump and seed pulses of 3.55 mm and a dispersion of 14.5 fs/cm between pump and seed pulses were assumed. Solid curves between the calculated points are given as guide lines for the eye.

Fig. 5
Fig. 5

Calculated dependencies of the SRA conversion efficiency on the pump energies and the delay times between seed and pump pulses. Optimum time delays resulting in maximum conversion efficiency for some different pump pulse energies are indicated.

Fig. 6
Fig. 6

Dependencies of the SRA conversion efficiency on the delay time between the seed and the pump pulses calculated for different dispersions np-ns. Solid curves between the points are given as guide lines for the eye.

Fig. 7
Fig. 7

Temporal shapes of the pulse intensities calculated at the exit of the amplifier cell. Energies of 0.57 and 157 µJ have been taken for the seed and pump pulses, respectively. Delay time between pump and seed pulses Δ=-0.2 ps. (a) Dispersionless case. Calculated SRA conversion efficiency is equal to 32%. (b) np-ns=4.4×10-4. Calculated SRA conversion efficiency is equal to 48.5%. Dotted curve, undepleted pump pulse; dashed curve, depleted pump pulse; solid curve, amplified Stokes pulse. The peak of the undepleted pump pulse at the exit has been arbitrarily set at 0 ps.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Epz+1up Ept=i πωpNcnp αQ0QE1s,
E1sz+1u1s E1st=i πω1sNcn1s αQ0Q*Ep,
Qt=-1T2Q+i4mω0 αQ0EpE1s*.

Metrics