Abstract

By use of high-intensity (≈200 GW/cm2) femtosecond 264-nm laser light and a phase mask technique, Bragg grating inscription in a range of different photosensitive and standard telecom fibers (both H2-free and H2-loaded) was studied. The dependences of the induced refractive index modulation versus the incident fluence as well as the thermal decay curves were compared with similar dependences for gratings fabricated by other existing methods. It was shown that with high-intensity UV laser irradiation, two-quantum photoreactions occur in the irradiated fiber core, that result in a significant photosensitivity enhancement of the investigated fibers in comparison with conventional low-intensity 248-nm exposure (by 6–128 times, depending on fiber type and irradiation intensity).

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell and J. L. Archambault, "Fiber gratings," in Optical Fiber Sensors, Vol. 3, Components and Subsystems (Artech House, Boston, Mass., 1996), pp. 9-67.
  2. R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).
  3. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, Mass., 1999).
  4. K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, "Rapid long-period grating formation in hydrogen-loaded fibre with 157-nm F2-laser radiation," Electron. Lett. 36, 2000-2001 (2000).
    [CrossRef]
  5. K. P. Chen, P. R. Herman, J. Zhang, and R. Tam, "Fabrication of strong long-period gratings in hydrogen-free fibers with 157-nm F2-laser radiation," Opt. Lett. 26, 771-773 (2001).
    [CrossRef]
  6. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, "Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses," Opt. Lett. 24, 646-648 (1999).
    [CrossRef]
  7. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, "Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation," Opt. Lett. 28, 995-997 (2003).
    [CrossRef] [PubMed]
  8. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, "Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask," J. Lightwave Technol. 22, 94-100 (2004).
    [CrossRef]
  9. C. W. Smelser, D. Grobnic, and S. J. Mihailov, "Generation of pure two-beam interference grating structures in an op-tical fiber with a femtosecond infrared source and a phase mask," Opt. Lett. 29, 1730-1732 (2004).
    [CrossRef] [PubMed]
  10. D. Grobnic, C. W. Smelser, and S. J. Mihailov, "Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask," IEEE Photon. Technol. Lett. 16, 1864-1866 (2004).
    [CrossRef]
  11. D. N. Nikogosyan, "Two-quantum UV photochemistry of nucleic acids: comparison with conventional low-intensity UV photochemistry and radiation chemistry," Int. J. Radiat. Biol. 57, 233-299 (1990).
    [CrossRef] [PubMed]
  12. A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, "Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264 nm," Appl. Phys. Lett. 80, 1114-1116 (2002).
    [CrossRef]
  13. B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Enhanced photosensitivity in lightly doped standard telecommunication fibre exposed to high fluence ArF excimer laser light," Electron. Lett. 31, 879-880 (1995).
    [CrossRef]
  14. J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Comparison of one-photon and two-photon effects in the sensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses," Appl. Phys. Lett. 67, 3529-3531 (1995).
    [CrossRef]
  15. A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, "Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation," Opt. Lett. 28, 2171-2173 (2003).
    [CrossRef] [PubMed]
  16. A. Dragomir, D. N. Nikogosyan, and G. Brambilla, "Increased photosensitivity of Ge-doped and Ge, Sn-doped fibres under high-intensity 264 nm laser light," Electron. Lett. 39, 1437-1438 (2003).
    [CrossRef]
  17. Twinkle, highly integrated, pico/femtosecond, Nd:glass laser system with chirped-pulse amplifications; http://www.lightcon.com/lc/scientific/laser.htm.
  18. A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, "Femtosecond measurements of two-photon absorption coefficients at lambda=264nm in glasses, crystals, and liquids," Appl. Opt. 41, 4365-4376 (2002).
    [CrossRef]
  19. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials. A Handbook (Wiley, Chichester, UK, 1997), p. 177.
  20. M. J. Adams, An Introduction to Optical Waveguides (Wiley, Chichester, UK, 1981), Chap. 7.
  21. T. Taunay, P. Niay, P. Bernage, M. Douay, W. X. Xie, D. Pureur, P. Cordier, J. F. Bayon, H. Poignant, E. Delevaque, and B. Poumellec, "Bragg grating inscriptions within strain monomode NA germania-doped fibres: Part I. Experimentation," J. Phys. D 30, 40-52 (1997).
    [CrossRef]
  22. J. Nishii, N. Kitamura, H. Yamanaka, H. Hosono, and H. Kawazoe, "Ultraviolet-radiation-induced chemical reactions through one- and two-photon absorption processes in GeO2-SiO2 glasses," Opt. Lett. 20, 1184-1186 (1995).
    [CrossRef] [PubMed]
  23. E. K. Illy and H. J. Booth, "Comparison of fibre Bragg grating writing at multiple UV wavelengths," in Proceedings of 28th European Conference on Optical Communications (European Conference on Optical Communications, Copenhagen, Denmark, 2002), paper M602.
  24. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, and J. Unruh, "Fiber Bragg gratings (FBG) made with a phase mask and 800-nm, femtosecond radiation," in Optical Fiber Communications Conference , Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), postdeadline paper PD30.
  25. C. W. Smelser, S. J. Mihailov, D. Grobnic, R. B. Walker, P. Lu, and H. Ding, "Impact of hydrogen loading on the fabrication of fiber Bragg gratings with ultrafast 800-nm laser radiation," in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides Conference , Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper PD3.

2004 (3)

2003 (3)

2002 (2)

A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, "Femtosecond measurements of two-photon absorption coefficients at lambda=264nm in glasses, crystals, and liquids," Appl. Opt. 41, 4365-4376 (2002).
[CrossRef]

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, "Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264 nm," Appl. Phys. Lett. 80, 1114-1116 (2002).
[CrossRef]

2001 (1)

2000 (1)

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, "Rapid long-period grating formation in hydrogen-loaded fibre with 157-nm F2-laser radiation," Electron. Lett. 36, 2000-2001 (2000).
[CrossRef]

1999 (1)

1997 (1)

T. Taunay, P. Niay, P. Bernage, M. Douay, W. X. Xie, D. Pureur, P. Cordier, J. F. Bayon, H. Poignant, E. Delevaque, and B. Poumellec, "Bragg grating inscriptions within strain monomode NA germania-doped fibres: Part I. Experimentation," J. Phys. D 30, 40-52 (1997).
[CrossRef]

1995 (3)

J. Nishii, N. Kitamura, H. Yamanaka, H. Hosono, and H. Kawazoe, "Ultraviolet-radiation-induced chemical reactions through one- and two-photon absorption processes in GeO2-SiO2 glasses," Opt. Lett. 20, 1184-1186 (1995).
[CrossRef] [PubMed]

B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Enhanced photosensitivity in lightly doped standard telecommunication fibre exposed to high fluence ArF excimer laser light," Electron. Lett. 31, 879-880 (1995).
[CrossRef]

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Comparison of one-photon and two-photon effects in the sensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses," Appl. Phys. Lett. 67, 3529-3531 (1995).
[CrossRef]

1990 (1)

D. N. Nikogosyan, "Two-quantum UV photochemistry of nucleic acids: comparison with conventional low-intensity UV photochemistry and radiation chemistry," Int. J. Radiat. Biol. 57, 233-299 (1990).
[CrossRef] [PubMed]

Albert, J.

B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Enhanced photosensitivity in lightly doped standard telecommunication fibre exposed to high fluence ArF excimer laser light," Electron. Lett. 31, 879-880 (1995).
[CrossRef]

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Comparison of one-photon and two-photon effects in the sensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses," Appl. Phys. Lett. 67, 3529-3531 (1995).
[CrossRef]

Bayon, J. F.

T. Taunay, P. Niay, P. Bernage, M. Douay, W. X. Xie, D. Pureur, P. Cordier, J. F. Bayon, H. Poignant, E. Delevaque, and B. Poumellec, "Bragg grating inscriptions within strain monomode NA germania-doped fibres: Part I. Experimentation," J. Phys. D 30, 40-52 (1997).
[CrossRef]

Bernage, P.

T. Taunay, P. Niay, P. Bernage, M. Douay, W. X. Xie, D. Pureur, P. Cordier, J. F. Bayon, H. Poignant, E. Delevaque, and B. Poumellec, "Bragg grating inscriptions within strain monomode NA germania-doped fibres: Part I. Experimentation," J. Phys. D 30, 40-52 (1997).
[CrossRef]

Bilodeau, F.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Comparison of one-photon and two-photon effects in the sensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses," Appl. Phys. Lett. 67, 3529-3531 (1995).
[CrossRef]

B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Enhanced photosensitivity in lightly doped standard telecommunication fibre exposed to high fluence ArF excimer laser light," Electron. Lett. 31, 879-880 (1995).
[CrossRef]

Brambilla, G.

A. Dragomir, D. N. Nikogosyan, and G. Brambilla, "Increased photosensitivity of Ge-doped and Ge, Sn-doped fibres under high-intensity 264 nm laser light," Electron. Lett. 39, 1437-1438 (2003).
[CrossRef]

Chen, K. P.

K. P. Chen, P. R. Herman, J. Zhang, and R. Tam, "Fabrication of strong long-period gratings in hydrogen-free fibers with 157-nm F2-laser radiation," Opt. Lett. 26, 771-773 (2001).
[CrossRef]

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, "Rapid long-period grating formation in hydrogen-loaded fibre with 157-nm F2-laser radiation," Electron. Lett. 36, 2000-2001 (2000).
[CrossRef]

Cordier, P.

T. Taunay, P. Niay, P. Bernage, M. Douay, W. X. Xie, D. Pureur, P. Cordier, J. F. Bayon, H. Poignant, E. Delevaque, and B. Poumellec, "Bragg grating inscriptions within strain monomode NA germania-doped fibres: Part I. Experimentation," J. Phys. D 30, 40-52 (1997).
[CrossRef]

Delevaque, E.

T. Taunay, P. Niay, P. Bernage, M. Douay, W. X. Xie, D. Pureur, P. Cordier, J. F. Bayon, H. Poignant, E. Delevaque, and B. Poumellec, "Bragg grating inscriptions within strain monomode NA germania-doped fibres: Part I. Experimentation," J. Phys. D 30, 40-52 (1997).
[CrossRef]

Dianov, E. M.

Ding, H.

Douay, M.

T. Taunay, P. Niay, P. Bernage, M. Douay, W. X. Xie, D. Pureur, P. Cordier, J. F. Bayon, H. Poignant, E. Delevaque, and B. Poumellec, "Bragg grating inscriptions within strain monomode NA germania-doped fibres: Part I. Experimentation," J. Phys. D 30, 40-52 (1997).
[CrossRef]

Dragomir, A.

A. Dragomir, D. N. Nikogosyan, and G. Brambilla, "Increased photosensitivity of Ge-doped and Ge, Sn-doped fibres under high-intensity 264 nm laser light," Electron. Lett. 39, 1437-1438 (2003).
[CrossRef]

A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, "Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation," Opt. Lett. 28, 2171-2173 (2003).
[CrossRef] [PubMed]

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, "Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264 nm," Appl. Phys. Lett. 80, 1114-1116 (2002).
[CrossRef]

A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, "Femtosecond measurements of two-photon absorption coefficients at lambda=264nm in glasses, crystals, and liquids," Appl. Opt. 41, 4365-4376 (2002).
[CrossRef]

Grobnic, D.

Henderson, G.

Herman, P. R.

K. P. Chen, P. R. Herman, J. Zhang, and R. Tam, "Fabrication of strong long-period gratings in hydrogen-free fibers with 157-nm F2-laser radiation," Opt. Lett. 26, 771-773 (2001).
[CrossRef]

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, "Rapid long-period grating formation in hydrogen-loaded fibre with 157-nm F2-laser radiation," Electron. Lett. 36, 2000-2001 (2000).
[CrossRef]

Hill, K. O.

B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Enhanced photosensitivity in lightly doped standard telecommunication fibre exposed to high fluence ArF excimer laser light," Electron. Lett. 31, 879-880 (1995).
[CrossRef]

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Comparison of one-photon and two-photon effects in the sensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses," Appl. Phys. Lett. 67, 3529-3531 (1995).
[CrossRef]

Hirao, K.

Hosono, H.

Johnson, D. C.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Comparison of one-photon and two-photon effects in the sensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses," Appl. Phys. Lett. 67, 3529-3531 (1995).
[CrossRef]

B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Enhanced photosensitivity in lightly doped standard telecommunication fibre exposed to high fluence ArF excimer laser light," Electron. Lett. 31, 879-880 (1995).
[CrossRef]

Kawazoe, H.

Kazansky, P. G.

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, "Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264 nm," Appl. Phys. Lett. 80, 1114-1116 (2002).
[CrossRef]

Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, "Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses," Opt. Lett. 24, 646-648 (1999).
[CrossRef]

Kitamura, N.

Kondo, Y.

Kryukov, P. G.

Lu, P.

Malo, B.

B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Enhanced photosensitivity in lightly doped standard telecommunication fibre exposed to high fluence ArF excimer laser light," Electron. Lett. 31, 879-880 (1995).
[CrossRef]

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Comparison of one-photon and two-photon effects in the sensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses," Appl. Phys. Lett. 67, 3529-3531 (1995).
[CrossRef]

McInerney, J. G.

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, "Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264 nm," Appl. Phys. Lett. 80, 1114-1116 (2002).
[CrossRef]

A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, "Femtosecond measurements of two-photon absorption coefficients at lambda=264nm in glasses, crystals, and liquids," Appl. Opt. 41, 4365-4376 (2002).
[CrossRef]

Mihailov, S. J.

Mitsuyu, T.

Niay, P.

T. Taunay, P. Niay, P. Bernage, M. Douay, W. X. Xie, D. Pureur, P. Cordier, J. F. Bayon, H. Poignant, E. Delevaque, and B. Poumellec, "Bragg grating inscriptions within strain monomode NA germania-doped fibres: Part I. Experimentation," J. Phys. D 30, 40-52 (1997).
[CrossRef]

Nikogosyan, D. N.

A. Dragomir, D. N. Nikogosyan, and G. Brambilla, "Increased photosensitivity of Ge-doped and Ge, Sn-doped fibres under high-intensity 264 nm laser light," Electron. Lett. 39, 1437-1438 (2003).
[CrossRef]

A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, "Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation," Opt. Lett. 28, 2171-2173 (2003).
[CrossRef] [PubMed]

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, "Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264 nm," Appl. Phys. Lett. 80, 1114-1116 (2002).
[CrossRef]

A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, "Femtosecond measurements of two-photon absorption coefficients at lambda=264nm in glasses, crystals, and liquids," Appl. Opt. 41, 4365-4376 (2002).
[CrossRef]

D. N. Nikogosyan, "Two-quantum UV photochemistry of nucleic acids: comparison with conventional low-intensity UV photochemistry and radiation chemistry," Int. J. Radiat. Biol. 57, 233-299 (1990).
[CrossRef] [PubMed]

Nishii, J.

Nouchi, K.

Poignant, H.

T. Taunay, P. Niay, P. Bernage, M. Douay, W. X. Xie, D. Pureur, P. Cordier, J. F. Bayon, H. Poignant, E. Delevaque, and B. Poumellec, "Bragg grating inscriptions within strain monomode NA germania-doped fibres: Part I. Experimentation," J. Phys. D 30, 40-52 (1997).
[CrossRef]

Poumellec, B.

T. Taunay, P. Niay, P. Bernage, M. Douay, W. X. Xie, D. Pureur, P. Cordier, J. F. Bayon, H. Poignant, E. Delevaque, and B. Poumellec, "Bragg grating inscriptions within strain monomode NA germania-doped fibres: Part I. Experimentation," J. Phys. D 30, 40-52 (1997).
[CrossRef]

Pureur, D.

T. Taunay, P. Niay, P. Bernage, M. Douay, W. X. Xie, D. Pureur, P. Cordier, J. F. Bayon, H. Poignant, E. Delevaque, and B. Poumellec, "Bragg grating inscriptions within strain monomode NA germania-doped fibres: Part I. Experimentation," J. Phys. D 30, 40-52 (1997).
[CrossRef]

Smelser, C. W.

Tam, R.

K. P. Chen, P. R. Herman, J. Zhang, and R. Tam, "Fabrication of strong long-period gratings in hydrogen-free fibers with 157-nm F2-laser radiation," Opt. Lett. 26, 771-773 (2001).
[CrossRef]

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, "Rapid long-period grating formation in hydrogen-loaded fibre with 157-nm F2-laser radiation," Electron. Lett. 36, 2000-2001 (2000).
[CrossRef]

Taunay, T.

T. Taunay, P. Niay, P. Bernage, M. Douay, W. X. Xie, D. Pureur, P. Cordier, J. F. Bayon, H. Poignant, E. Delevaque, and B. Poumellec, "Bragg grating inscriptions within strain monomode NA germania-doped fibres: Part I. Experimentation," J. Phys. D 30, 40-52 (1997).
[CrossRef]

Theriault, S.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Comparison of one-photon and two-photon effects in the sensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses," Appl. Phys. Lett. 67, 3529-3531 (1995).
[CrossRef]

B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Enhanced photosensitivity in lightly doped standard telecommunication fibre exposed to high fluence ArF excimer laser light," Electron. Lett. 31, 879-880 (1995).
[CrossRef]

Unruh, J.

Walker, R. B.

Watanabe, M.

Xie, W. X.

T. Taunay, P. Niay, P. Bernage, M. Douay, W. X. Xie, D. Pureur, P. Cordier, J. F. Bayon, H. Poignant, E. Delevaque, and B. Poumellec, "Bragg grating inscriptions within strain monomode NA germania-doped fibres: Part I. Experimentation," J. Phys. D 30, 40-52 (1997).
[CrossRef]

Yamanaka, H.

Zagorulko, K. A.

Zhang, J.

K. P. Chen, P. R. Herman, J. Zhang, and R. Tam, "Fabrication of strong long-period gratings in hydrogen-free fibers with 157-nm F2-laser radiation," Opt. Lett. 26, 771-773 (2001).
[CrossRef]

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, "Rapid long-period grating formation in hydrogen-loaded fibre with 157-nm F2-laser radiation," Electron. Lett. 36, 2000-2001 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, "Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264 nm," Appl. Phys. Lett. 80, 1114-1116 (2002).
[CrossRef]

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Comparison of one-photon and two-photon effects in the sensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses," Appl. Phys. Lett. 67, 3529-3531 (1995).
[CrossRef]

Electron. Lett. (3)

A. Dragomir, D. N. Nikogosyan, and G. Brambilla, "Increased photosensitivity of Ge-doped and Ge, Sn-doped fibres under high-intensity 264 nm laser light," Electron. Lett. 39, 1437-1438 (2003).
[CrossRef]

B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, "Enhanced photosensitivity in lightly doped standard telecommunication fibre exposed to high fluence ArF excimer laser light," Electron. Lett. 31, 879-880 (1995).
[CrossRef]

K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, "Rapid long-period grating formation in hydrogen-loaded fibre with 157-nm F2-laser radiation," Electron. Lett. 36, 2000-2001 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Grobnic, C. W. Smelser, and S. J. Mihailov, "Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask," IEEE Photon. Technol. Lett. 16, 1864-1866 (2004).
[CrossRef]

Int. J. Radiat. Biol. (1)

D. N. Nikogosyan, "Two-quantum UV photochemistry of nucleic acids: comparison with conventional low-intensity UV photochemistry and radiation chemistry," Int. J. Radiat. Biol. 57, 233-299 (1990).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Phys. D (1)

T. Taunay, P. Niay, P. Bernage, M. Douay, W. X. Xie, D. Pureur, P. Cordier, J. F. Bayon, H. Poignant, E. Delevaque, and B. Poumellec, "Bragg grating inscriptions within strain monomode NA germania-doped fibres: Part I. Experimentation," J. Phys. D 30, 40-52 (1997).
[CrossRef]

Opt. Lett. (6)

Other (9)

Twinkle, highly integrated, pico/femtosecond, Nd:glass laser system with chirped-pulse amplifications; http://www.lightcon.com/lc/scientific/laser.htm.

P. St. J. Russell and J. L. Archambault, "Fiber gratings," in Optical Fiber Sensors, Vol. 3, Components and Subsystems (Artech House, Boston, Mass., 1996), pp. 9-67.

R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, Mass., 1999).

E. K. Illy and H. J. Booth, "Comparison of fibre Bragg grating writing at multiple UV wavelengths," in Proceedings of 28th European Conference on Optical Communications (European Conference on Optical Communications, Copenhagen, Denmark, 2002), paper M602.

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, and J. Unruh, "Fiber Bragg gratings (FBG) made with a phase mask and 800-nm, femtosecond radiation," in Optical Fiber Communications Conference , Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), postdeadline paper PD30.

C. W. Smelser, S. J. Mihailov, D. Grobnic, R. B. Walker, P. Lu, and H. Ding, "Impact of hydrogen loading on the fabrication of fiber Bragg gratings with ultrafast 800-nm laser radiation," in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides Conference , Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper PD3.

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials. A Handbook (Wiley, Chichester, UK, 1997), p. 177.

M. J. Adams, An Introduction to Optical Waveguides (Wiley, Chichester, UK, 1981), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Simplified scheme of photoexcitation and energy levels in germanosilicate glass.

Fig. 2
Fig. 2

Scheme of the experimental setup. EE-LED, edge-emitting LED; OSA, optical spectrum analyzer.

Fig. 3
Fig. 3

Growth of grating strength and shift of the transmission loss peak in a FBG recorded in H2-loaded Nufern GF1 fiber with different light fluences and incident intensity of 231 GW/cm2. The linewidth values of the recorded gratings at the 3 dB level are 0.14, 0.28, and 0.59 nm at fluences 14, 38, and 120 J/cm2, respectively.

Fig. 4
Fig. 4

Growth of grating strength and shift of the transmission loss peak in a FBG recorded in H2-loaded Corning SMF-28 fiber with different light fluences and incident intensity of 241 GW/cm2. The linewidth values of the recorded gratings at the 3 dB level are 0.25, 0.40, and 0.62 nm at fluences 81, 115, and 228 J/cm2, respectively.

Fig. 5
Fig. 5

Growth of grating strength and shift of the transmission loss peak in a FBG recorded in H2-free Fibercore PS1250/1500 fiber with different light fluences and incident intensity of 205 GW/cm2. The linewidth values of the recorded gratings at the 3 dB level are 0.13, 0.28, and 0.49 nm at fluences 298, 775, and 1728 J/cm2, respectively.

Fig. 6
Fig. 6

Refractive-index modulation versus fluence for H2-loaded Corning SMF-28 fiber irradiated at two different incident intensities.

Fig. 7
Fig. 7

Comparison of refractive index modulation curves for three photosensitive fiber samples: H2-free and H2-loaded Nufern GF1 and H2-free Fibercore PS1250/1500.

Fig. 8
Fig. 8

Comparison of refractive index modulation curves for H2-free Fibercore PS1250/1500 fiber after femtosecond (264 nm, 205 GW/cm2) and nanosecond (248 nm, 25 MW/cm2) irradiation.

Fig. 9
Fig. 9

Comparison of refractive index modulation curves for H2-free Nufern GF1 fiber after femtosecond (264 nm, 180 GW/cm2) and nanosecond (248 nm, 25 MW/cm2) irradiation.

Fig. 10
Fig. 10

Wavelength change of transmission loss peak versus light fluence for H2-loaded Corning SMF-28 and Nufern GF1 fibers.

Fig. 11
Fig. 11

Wavelength change of transmission loss peak versus light fluence for H2-free Fibercore PS1250/1500 and Nufern GF1 fibers.

Fig. 12
Fig. 12

Thermal stability of FBG recorded in a H2-free Fibercore PS1250/1500 fiber with 264-nm radiation at incident intensity of 138 GW/cm2 and incident fluence of 0.38 kJ/cm2; the initial grating strength was 12.7 dB.

Fig. 13
Fig. 13

Thermal stability of FBGs inscribed in H2-free and H2-loaded Nufern GF1 fibers with 264-nm radiation at incident intensities of 164 and 231 GW/cm2 and incident fluences of 7.18 and 0.26 kJ/cm2, respectively; the initial grating strengths were 8.4 and 31.7 dB, respectively.

Fig. 14
Fig. 14

Thermal stability of two FBGs recorded in H2-loaded Corning SMF-28 fiber at 248- and 264-nm irradiation. The incident intensities were 0.025 and 166 GW/cm2 and incident fluences were 16.5 and 0.24 kJ/cm2, respectively. The initial grating strengths were 10.4 and 11.6 dB, respectively.

Fig. 15
Fig. 15

The shift of the FBG wavelength versus temperature recorded in H2-free Nufern GF1 fiber with an incident intensity of 164 GW/cm2 and an incident fluence of 7.18 kJ/cm2; the initial grating strength was 8.4 dB.

Fig. 16
Fig. 16

Maximal grating strength achieved in H2-free Fibercore PS1250/1500 fiber irradiated at incident intensity of 205 GW/cm2 and incident fluence of 2.68 kJ/cm2.

Fig. 17
Fig. 17

Maximal grating strength achieved in H2-loaded Corning SMF-28 fiber irradiated at incident intensity of 241 GW/cm2 and incident fluence of 1.22 kJ/cm2.

Tables (1)

Tables Icon

Table 1 Comparison between High-Intensity 264-nm Approach of FBG Inscription and the Conventional One

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I=pπln 23/2 τw24 F-SF-lnF,
E=pNπw22 ln 2 F-SF-lnF,
Δnmod=λπηL tanh-1(1-T)1/2=λ2πηL ln1+(1-T)1/21-(1-T)1/2,
η=π2d2K2λ2+π2d2K2,
Pcore/Pclad=π2d2K2λ2.

Metrics