Abstract

This paper presents a method for the separation of excited-state absorption transitions from different initial levels by phase-sensitive detection by use of the double-modulation technique. This technique is also applicable for the distinction of spectrally overlapping transitions, and in connection with Judd–Ofelt calculations it allows the excited-state absorption cross sections to be determined. With this method, the  5I7(5S2, 5F4),  5I6(5G6, 5F1),  5I65F2, and  5I65F3 transitions in the spectral range between 720 and 860 nm in Ho3+-doped YLiF4 were measured and their cross sections determined. The method can be used for any similar system.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kück, "Laser-related spectroscopy of ion-doped crystals for tunable solid state-lasers," Appl. Phys. B 72, 515-562 (2001).
    [CrossRef]
  2. J. Koetke and G. Huber, "Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals," Appl. Phys. B 61, 151-158 (1995).
    [CrossRef]
  3. M. F. Joubert, S. Guy, and B. Jacquier, "Model of the photon-avalanche effect," Phys. Rev. B 48, 10031-10037 (1993).
    [CrossRef]
  4. M. F. Joubert, S. Guy, B. Jacquier, and C. Linares, "The photon-avalanche effect: review, model and application," Opt. Mater. (Amsterdam, Neth.) 4, 43-46 (1994).
    [CrossRef]
  5. R. Scheps, "Upconversion laser processes," Prog. Quantum Electron. 20, 271-358 (1996).
    [CrossRef]
  6. E. Osiac, I. Sokólska, and S. Kück, "Evaluation of the upconversion mechanisms in Ho3+ doped crystals: experiment and theoretical modeling," Phys. Rev. B 65, 235119-1-235119-13 (2002).
    [CrossRef]
  7. F. Auzel, "Photon avalanche luminescence of Er3+ ions in LiYF4 crystal," J. Lumin. 65, 45-56 (1995).
    [CrossRef]
  8. S. Zemon, G. Lambert, W. J. Miniscalco, R. W. Davies, B. T. Hall, R. C. Folweiler, T. Wei, L. J. Andrews, and M. P. Singh, "Excited state cross sections for Er-doped glasses," in Fiber Laser Sources and Amplifiers II, M. J. F. Digonnet, ed., Proc. SPIE 1373, 21-32 (1991).
    [CrossRef]
  9. D. F. de Sousa, V. Peters, G. Huber, A. Toncelli, A. Parisi, and M. Tonelli, "Pump modulation frequency resolved ex-cited state absorption spectra in Tm3+ doped YLF," Appl. Phys. B 77, 817-822 (2003).
    [CrossRef]
  10. I. Sokólska, "Infrared to visible conversion of radiation in some Ho3+-doped oxide and fluoride crystals," J. Alloys Compd. 341, 288-293 (2002).
    [CrossRef]
  11. E. Osiac, "Green upconverted emission by infrared pump in Ho3+-doped YAlO3," J. Alloys Compd. 341, 263-266 (2002).
    [CrossRef]
  12. S. Kück and I. Sokólska, "The up-conversion of near infrared excitation radiation in Ho3+-doped LiYF4," Chem. Phys. Lett. 325, 257-263 (2000).
    [CrossRef]
  13. E. Osiac, I. Sokólska, and S. Kück, "Avalanche-like mechanism and up-conversion processes under infrared pumping in Ho3+,Yb3+:YAlO3," J. Lumin. 94-95, 289-292 (2001).
    [CrossRef]
  14. M. O. Henry, J. P. Larkin, and G. F. Imbusch, "Nature of the broadband luminescence center in MgO:Cr3+," Phys. Rev. B 13, 1893-1902 (1976).
    [CrossRef]
  15. A. M. Tkachuk, A. V. Khilko, and M. V. Petrov, "Probabilities of intracenter spontaneous radiative and nonradiative intermultiplet transitions in the Ho3+ ion in an LiYF4 crystal," Opt. Spektrosk. 58, 55-59 (1985).
  16. B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
    [CrossRef]
  17. G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
    [CrossRef]
  18. C. Görller-Walrand and K. Binnemans, "Spectral intensities of f-f transitions," in Handbook on the Physics and Chemistry of Rare Earths , K. A. Gschneider, Jr., and L. Eyring, eds. (North-Holland, Amsterdam, 1998), Vol. 25, pp. 101-264.
  19. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, "Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4," J. Appl. Phys. 83, 2772-2787 (1998).
    [CrossRef]
  20. C. W. Nielson and G. F. Koster: Spectroscopic Coefficients for thepn ,dn ,fnConfigurations (MIT Press, Cambridge, Mass., 1963).

2003 (1)

D. F. de Sousa, V. Peters, G. Huber, A. Toncelli, A. Parisi, and M. Tonelli, "Pump modulation frequency resolved ex-cited state absorption spectra in Tm3+ doped YLF," Appl. Phys. B 77, 817-822 (2003).
[CrossRef]

2002 (3)

I. Sokólska, "Infrared to visible conversion of radiation in some Ho3+-doped oxide and fluoride crystals," J. Alloys Compd. 341, 288-293 (2002).
[CrossRef]

E. Osiac, "Green upconverted emission by infrared pump in Ho3+-doped YAlO3," J. Alloys Compd. 341, 263-266 (2002).
[CrossRef]

E. Osiac, I. Sokólska, and S. Kück, "Evaluation of the upconversion mechanisms in Ho3+ doped crystals: experiment and theoretical modeling," Phys. Rev. B 65, 235119-1-235119-13 (2002).
[CrossRef]

2001 (2)

E. Osiac, I. Sokólska, and S. Kück, "Avalanche-like mechanism and up-conversion processes under infrared pumping in Ho3+,Yb3+:YAlO3," J. Lumin. 94-95, 289-292 (2001).
[CrossRef]

S. Kück, "Laser-related spectroscopy of ion-doped crystals for tunable solid state-lasers," Appl. Phys. B 72, 515-562 (2001).
[CrossRef]

2000 (1)

S. Kück and I. Sokólska, "The up-conversion of near infrared excitation radiation in Ho3+-doped LiYF4," Chem. Phys. Lett. 325, 257-263 (2000).
[CrossRef]

1998 (1)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, "Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4," J. Appl. Phys. 83, 2772-2787 (1998).
[CrossRef]

1996 (1)

R. Scheps, "Upconversion laser processes," Prog. Quantum Electron. 20, 271-358 (1996).
[CrossRef]

1995 (2)

J. Koetke and G. Huber, "Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals," Appl. Phys. B 61, 151-158 (1995).
[CrossRef]

F. Auzel, "Photon avalanche luminescence of Er3+ ions in LiYF4 crystal," J. Lumin. 65, 45-56 (1995).
[CrossRef]

1994 (1)

M. F. Joubert, S. Guy, B. Jacquier, and C. Linares, "The photon-avalanche effect: review, model and application," Opt. Mater. (Amsterdam, Neth.) 4, 43-46 (1994).
[CrossRef]

1993 (1)

M. F. Joubert, S. Guy, and B. Jacquier, "Model of the photon-avalanche effect," Phys. Rev. B 48, 10031-10037 (1993).
[CrossRef]

1991 (1)

S. Zemon, G. Lambert, W. J. Miniscalco, R. W. Davies, B. T. Hall, R. C. Folweiler, T. Wei, L. J. Andrews, and M. P. Singh, "Excited state cross sections for Er-doped glasses," in Fiber Laser Sources and Amplifiers II, M. J. F. Digonnet, ed., Proc. SPIE 1373, 21-32 (1991).
[CrossRef]

1985 (1)

A. M. Tkachuk, A. V. Khilko, and M. V. Petrov, "Probabilities of intracenter spontaneous radiative and nonradiative intermultiplet transitions in the Ho3+ ion in an LiYF4 crystal," Opt. Spektrosk. 58, 55-59 (1985).

1976 (1)

M. O. Henry, J. P. Larkin, and G. F. Imbusch, "Nature of the broadband luminescence center in MgO:Cr3+," Phys. Rev. B 13, 1893-1902 (1976).
[CrossRef]

1962 (2)

B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
[CrossRef]

G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

Andrews, L. J.

S. Zemon, G. Lambert, W. J. Miniscalco, R. W. Davies, B. T. Hall, R. C. Folweiler, T. Wei, L. J. Andrews, and M. P. Singh, "Excited state cross sections for Er-doped glasses," in Fiber Laser Sources and Amplifiers II, M. J. F. Digonnet, ed., Proc. SPIE 1373, 21-32 (1991).
[CrossRef]

Auzel, F.

F. Auzel, "Photon avalanche luminescence of Er3+ ions in LiYF4 crystal," J. Lumin. 65, 45-56 (1995).
[CrossRef]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, "Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4," J. Appl. Phys. 83, 2772-2787 (1998).
[CrossRef]

Davies, R. W.

S. Zemon, G. Lambert, W. J. Miniscalco, R. W. Davies, B. T. Hall, R. C. Folweiler, T. Wei, L. J. Andrews, and M. P. Singh, "Excited state cross sections for Er-doped glasses," in Fiber Laser Sources and Amplifiers II, M. J. F. Digonnet, ed., Proc. SPIE 1373, 21-32 (1991).
[CrossRef]

de Sousa, D. F.

D. F. de Sousa, V. Peters, G. Huber, A. Toncelli, A. Parisi, and M. Tonelli, "Pump modulation frequency resolved ex-cited state absorption spectra in Tm3+ doped YLF," Appl. Phys. B 77, 817-822 (2003).
[CrossRef]

Di Bartolo, B.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, "Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4," J. Appl. Phys. 83, 2772-2787 (1998).
[CrossRef]

Folweiler, R. C.

S. Zemon, G. Lambert, W. J. Miniscalco, R. W. Davies, B. T. Hall, R. C. Folweiler, T. Wei, L. J. Andrews, and M. P. Singh, "Excited state cross sections for Er-doped glasses," in Fiber Laser Sources and Amplifiers II, M. J. F. Digonnet, ed., Proc. SPIE 1373, 21-32 (1991).
[CrossRef]

Guy, S.

M. F. Joubert, S. Guy, B. Jacquier, and C. Linares, "The photon-avalanche effect: review, model and application," Opt. Mater. (Amsterdam, Neth.) 4, 43-46 (1994).
[CrossRef]

M. F. Joubert, S. Guy, and B. Jacquier, "Model of the photon-avalanche effect," Phys. Rev. B 48, 10031-10037 (1993).
[CrossRef]

Hall, B. T.

S. Zemon, G. Lambert, W. J. Miniscalco, R. W. Davies, B. T. Hall, R. C. Folweiler, T. Wei, L. J. Andrews, and M. P. Singh, "Excited state cross sections for Er-doped glasses," in Fiber Laser Sources and Amplifiers II, M. J. F. Digonnet, ed., Proc. SPIE 1373, 21-32 (1991).
[CrossRef]

Henry, M. O.

M. O. Henry, J. P. Larkin, and G. F. Imbusch, "Nature of the broadband luminescence center in MgO:Cr3+," Phys. Rev. B 13, 1893-1902 (1976).
[CrossRef]

Huber, G.

D. F. de Sousa, V. Peters, G. Huber, A. Toncelli, A. Parisi, and M. Tonelli, "Pump modulation frequency resolved ex-cited state absorption spectra in Tm3+ doped YLF," Appl. Phys. B 77, 817-822 (2003).
[CrossRef]

J. Koetke and G. Huber, "Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals," Appl. Phys. B 61, 151-158 (1995).
[CrossRef]

Imbusch, G. F.

M. O. Henry, J. P. Larkin, and G. F. Imbusch, "Nature of the broadband luminescence center in MgO:Cr3+," Phys. Rev. B 13, 1893-1902 (1976).
[CrossRef]

Jacquier, B.

M. F. Joubert, S. Guy, B. Jacquier, and C. Linares, "The photon-avalanche effect: review, model and application," Opt. Mater. (Amsterdam, Neth.) 4, 43-46 (1994).
[CrossRef]

M. F. Joubert, S. Guy, and B. Jacquier, "Model of the photon-avalanche effect," Phys. Rev. B 48, 10031-10037 (1993).
[CrossRef]

Joubert, M. F.

M. F. Joubert, S. Guy, B. Jacquier, and C. Linares, "The photon-avalanche effect: review, model and application," Opt. Mater. (Amsterdam, Neth.) 4, 43-46 (1994).
[CrossRef]

M. F. Joubert, S. Guy, and B. Jacquier, "Model of the photon-avalanche effect," Phys. Rev. B 48, 10031-10037 (1993).
[CrossRef]

Judd, B. R.

B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
[CrossRef]

Khilko, A. V.

A. M. Tkachuk, A. V. Khilko, and M. V. Petrov, "Probabilities of intracenter spontaneous radiative and nonradiative intermultiplet transitions in the Ho3+ ion in an LiYF4 crystal," Opt. Spektrosk. 58, 55-59 (1985).

Koetke , J.

J. Koetke and G. Huber, "Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals," Appl. Phys. B 61, 151-158 (1995).
[CrossRef]

Kück, S.

E. Osiac, I. Sokólska, and S. Kück, "Evaluation of the upconversion mechanisms in Ho3+ doped crystals: experiment and theoretical modeling," Phys. Rev. B 65, 235119-1-235119-13 (2002).
[CrossRef]

S. Kück, "Laser-related spectroscopy of ion-doped crystals for tunable solid state-lasers," Appl. Phys. B 72, 515-562 (2001).
[CrossRef]

E. Osiac, I. Sokólska, and S. Kück, "Avalanche-like mechanism and up-conversion processes under infrared pumping in Ho3+,Yb3+:YAlO3," J. Lumin. 94-95, 289-292 (2001).
[CrossRef]

Kück , S.

S. Kück and I. Sokólska, "The up-conversion of near infrared excitation radiation in Ho3+-doped LiYF4," Chem. Phys. Lett. 325, 257-263 (2000).
[CrossRef]

Lambert, G.

S. Zemon, G. Lambert, W. J. Miniscalco, R. W. Davies, B. T. Hall, R. C. Folweiler, T. Wei, L. J. Andrews, and M. P. Singh, "Excited state cross sections for Er-doped glasses," in Fiber Laser Sources and Amplifiers II, M. J. F. Digonnet, ed., Proc. SPIE 1373, 21-32 (1991).
[CrossRef]

Larkin, J. P.

M. O. Henry, J. P. Larkin, and G. F. Imbusch, "Nature of the broadband luminescence center in MgO:Cr3+," Phys. Rev. B 13, 1893-1902 (1976).
[CrossRef]

Linares, C.

M. F. Joubert, S. Guy, B. Jacquier, and C. Linares, "The photon-avalanche effect: review, model and application," Opt. Mater. (Amsterdam, Neth.) 4, 43-46 (1994).
[CrossRef]

Miniscalco, W. J.

S. Zemon, G. Lambert, W. J. Miniscalco, R. W. Davies, B. T. Hall, R. C. Folweiler, T. Wei, L. J. Andrews, and M. P. Singh, "Excited state cross sections for Er-doped glasses," in Fiber Laser Sources and Amplifiers II, M. J. F. Digonnet, ed., Proc. SPIE 1373, 21-32 (1991).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

Osiac, E.

E. Osiac, "Green upconverted emission by infrared pump in Ho3+-doped YAlO3," J. Alloys Compd. 341, 263-266 (2002).
[CrossRef]

E. Osiac, I. Sokólska, and S. Kück, "Evaluation of the upconversion mechanisms in Ho3+ doped crystals: experiment and theoretical modeling," Phys. Rev. B 65, 235119-1-235119-13 (2002).
[CrossRef]

E. Osiac, I. Sokólska, and S. Kück, "Avalanche-like mechanism and up-conversion processes under infrared pumping in Ho3+,Yb3+:YAlO3," J. Lumin. 94-95, 289-292 (2001).
[CrossRef]

Parisi, A.

D. F. de Sousa, V. Peters, G. Huber, A. Toncelli, A. Parisi, and M. Tonelli, "Pump modulation frequency resolved ex-cited state absorption spectra in Tm3+ doped YLF," Appl. Phys. B 77, 817-822 (2003).
[CrossRef]

Peters, V.

D. F. de Sousa, V. Peters, G. Huber, A. Toncelli, A. Parisi, and M. Tonelli, "Pump modulation frequency resolved ex-cited state absorption spectra in Tm3+ doped YLF," Appl. Phys. B 77, 817-822 (2003).
[CrossRef]

Petrov, M. V.

A. M. Tkachuk, A. V. Khilko, and M. V. Petrov, "Probabilities of intracenter spontaneous radiative and nonradiative intermultiplet transitions in the Ho3+ ion in an LiYF4 crystal," Opt. Spektrosk. 58, 55-59 (1985).

Scheps, R.

R. Scheps, "Upconversion laser processes," Prog. Quantum Electron. 20, 271-358 (1996).
[CrossRef]

Singh, M. P.

S. Zemon, G. Lambert, W. J. Miniscalco, R. W. Davies, B. T. Hall, R. C. Folweiler, T. Wei, L. J. Andrews, and M. P. Singh, "Excited state cross sections for Er-doped glasses," in Fiber Laser Sources and Amplifiers II, M. J. F. Digonnet, ed., Proc. SPIE 1373, 21-32 (1991).
[CrossRef]

Sokólska, I.

I. Sokólska, "Infrared to visible conversion of radiation in some Ho3+-doped oxide and fluoride crystals," J. Alloys Compd. 341, 288-293 (2002).
[CrossRef]

E. Osiac, I. Sokólska, and S. Kück, "Evaluation of the upconversion mechanisms in Ho3+ doped crystals: experiment and theoretical modeling," Phys. Rev. B 65, 235119-1-235119-13 (2002).
[CrossRef]

E. Osiac, I. Sokólska, and S. Kück, "Avalanche-like mechanism and up-conversion processes under infrared pumping in Ho3+,Yb3+:YAlO3," J. Lumin. 94-95, 289-292 (2001).
[CrossRef]

S. Kück and I. Sokólska, "The up-conversion of near infrared excitation radiation in Ho3+-doped LiYF4," Chem. Phys. Lett. 325, 257-263 (2000).
[CrossRef]

Tkachuk, A. M.

A. M. Tkachuk, A. V. Khilko, and M. V. Petrov, "Probabilities of intracenter spontaneous radiative and nonradiative intermultiplet transitions in the Ho3+ ion in an LiYF4 crystal," Opt. Spektrosk. 58, 55-59 (1985).

Toncelli, A.

D. F. de Sousa, V. Peters, G. Huber, A. Toncelli, A. Parisi, and M. Tonelli, "Pump modulation frequency resolved ex-cited state absorption spectra in Tm3+ doped YLF," Appl. Phys. B 77, 817-822 (2003).
[CrossRef]

Tonelli, M.

D. F. de Sousa, V. Peters, G. Huber, A. Toncelli, A. Parisi, and M. Tonelli, "Pump modulation frequency resolved ex-cited state absorption spectra in Tm3+ doped YLF," Appl. Phys. B 77, 817-822 (2003).
[CrossRef]

Walsh, B. M.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, "Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4," J. Appl. Phys. 83, 2772-2787 (1998).
[CrossRef]

Wei, T.

S. Zemon, G. Lambert, W. J. Miniscalco, R. W. Davies, B. T. Hall, R. C. Folweiler, T. Wei, L. J. Andrews, and M. P. Singh, "Excited state cross sections for Er-doped glasses," in Fiber Laser Sources and Amplifiers II, M. J. F. Digonnet, ed., Proc. SPIE 1373, 21-32 (1991).
[CrossRef]

Zemon, S.

S. Zemon, G. Lambert, W. J. Miniscalco, R. W. Davies, B. T. Hall, R. C. Folweiler, T. Wei, L. J. Andrews, and M. P. Singh, "Excited state cross sections for Er-doped glasses," in Fiber Laser Sources and Amplifiers II, M. J. F. Digonnet, ed., Proc. SPIE 1373, 21-32 (1991).
[CrossRef]

Appl. Phys. B (3)

S. Kück, "Laser-related spectroscopy of ion-doped crystals for tunable solid state-lasers," Appl. Phys. B 72, 515-562 (2001).
[CrossRef]

J. Koetke and G. Huber, "Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals," Appl. Phys. B 61, 151-158 (1995).
[CrossRef]

D. F. de Sousa, V. Peters, G. Huber, A. Toncelli, A. Parisi, and M. Tonelli, "Pump modulation frequency resolved ex-cited state absorption spectra in Tm3+ doped YLF," Appl. Phys. B 77, 817-822 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

S. Kück and I. Sokólska, "The up-conversion of near infrared excitation radiation in Ho3+-doped LiYF4," Chem. Phys. Lett. 325, 257-263 (2000).
[CrossRef]

J. Alloys Compd. (2)

I. Sokólska, "Infrared to visible conversion of radiation in some Ho3+-doped oxide and fluoride crystals," J. Alloys Compd. 341, 288-293 (2002).
[CrossRef]

E. Osiac, "Green upconverted emission by infrared pump in Ho3+-doped YAlO3," J. Alloys Compd. 341, 263-266 (2002).
[CrossRef]

J. Appl. Phys. (1)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, "Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4," J. Appl. Phys. 83, 2772-2787 (1998).
[CrossRef]

J. Chem. Phys. (1)

G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

J. Lumin. (2)

E. Osiac, I. Sokólska, and S. Kück, "Avalanche-like mechanism and up-conversion processes under infrared pumping in Ho3+,Yb3+:YAlO3," J. Lumin. 94-95, 289-292 (2001).
[CrossRef]

F. Auzel, "Photon avalanche luminescence of Er3+ ions in LiYF4 crystal," J. Lumin. 65, 45-56 (1995).
[CrossRef]

Opt. Mater. (Amsterdam, Neth.) (1)

M. F. Joubert, S. Guy, B. Jacquier, and C. Linares, "The photon-avalanche effect: review, model and application," Opt. Mater. (Amsterdam, Neth.) 4, 43-46 (1994).
[CrossRef]

Opt. Spektrosk. (1)

A. M. Tkachuk, A. V. Khilko, and M. V. Petrov, "Probabilities of intracenter spontaneous radiative and nonradiative intermultiplet transitions in the Ho3+ ion in an LiYF4 crystal," Opt. Spektrosk. 58, 55-59 (1985).

Phys. Rev. (1)

B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
[CrossRef]

Phys. Rev. B (3)

M. O. Henry, J. P. Larkin, and G. F. Imbusch, "Nature of the broadband luminescence center in MgO:Cr3+," Phys. Rev. B 13, 1893-1902 (1976).
[CrossRef]

M. F. Joubert, S. Guy, and B. Jacquier, "Model of the photon-avalanche effect," Phys. Rev. B 48, 10031-10037 (1993).
[CrossRef]

E. Osiac, I. Sokólska, and S. Kück, "Evaluation of the upconversion mechanisms in Ho3+ doped crystals: experiment and theoretical modeling," Phys. Rev. B 65, 235119-1-235119-13 (2002).
[CrossRef]

Proc. SPIE (1)

S. Zemon, G. Lambert, W. J. Miniscalco, R. W. Davies, B. T. Hall, R. C. Folweiler, T. Wei, L. J. Andrews, and M. P. Singh, "Excited state cross sections for Er-doped glasses," in Fiber Laser Sources and Amplifiers II, M. J. F. Digonnet, ed., Proc. SPIE 1373, 21-32 (1991).
[CrossRef]

Prog. Quantum Electron. (1)

R. Scheps, "Upconversion laser processes," Prog. Quantum Electron. 20, 271-358 (1996).
[CrossRef]

Other (2)

C. Görller-Walrand and K. Binnemans, "Spectral intensities of f-f transitions," in Handbook on the Physics and Chemistry of Rare Earths , K. A. Gschneider, Jr., and L. Eyring, eds. (North-Holland, Amsterdam, 1998), Vol. 25, pp. 101-264.

C. W. Nielson and G. F. Koster: Spectroscopic Coefficients for thepn ,dn ,fnConfigurations (MIT Press, Cambridge, Mass., 1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy level scheme of Ho3+ and excited-state absorption transitions in the 720–860-nm spectral range originating from the  5I7 and  5I6 levels.

Fig. 2
Fig. 2

Experimental setup for the phase-sensitive excited-state absorption measurements. M, mirror; CH 1, chopper 1 (700–1000 Hz); Ch 2, chopper 2 (10–15 Hz); P, polarizer; C, crystal; PH, pinhole (0.5 mm); MC, monochromator; D, detector (Si-diode or S1 photomultiplier); F, filter; L1, lens (f=370 mm); L2, L3, lens (f=120 mm).

Fig. 3
Fig. 3

ΔI/I signal in the 720–860-nm spectral range for Ho3+, Yb3+:YLiF4. (a) π polarization, phase adjusted to maximize signal at 758 nm; (b) π polarization, phase turned by 90°; (c) σ polarization, phase adjusted to maximize signal at 758 nm; (d) σ polarization, phase turned by 90°. Solid line, ΔI/I from  5I6; dashed line, ΔI/I from  5I7. Horizontal lines are ΔI baselines.

Fig. 4
Fig. 4

ESA signal normalized in cross-section units in the 720–860-nm spectral range for Ho3+, Yb3+:YLiF4. (a) π polarization, initial level,  5I7; (b) π polarization, initial level,  5I6; (c) σ polarization, initial level,  5I7; (d) σ polarization, initial level;  5I6. The negative signal around 750 nm is tentatively assigned to ground-state absorption (5I85I4).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ΔI(λ)/I(λ)=AσGSA(λ)+i(ni/ne)[σem,i(λ)-σESA,i(λ)],
S=e2t=2,4,6Ωtfn[αSL]JUtfn[αSL]J2+SMD,
fnαSLJUtfnαSLJ
=(-1)P[(2J+1)(2J+1)]1/2LtLJSJ×fnαSLUtfnαSL,
σ(λ)dλ=2π230hc 12J+1 λ¯χLS,
σ(λ)800dλ=σ(λ)750dλσ(λ)800,JOdλσ(λ)750,JOdλ,
σ(λ)830dλ=σ(λ)750dλσ(λ)830,JOdλσ(λ)750,JOdλ,
σ(λ)=ΔI(λ)I(λ) σ(λ)dλ ΔI(λ)I(λ) dλ.

Metrics