Abstract

Diffusion-controlled triplet–triplet annihilation is analyzed in terms of non-Fickian diffusion. The description is based on the second Fick’s law with a time-dependent diffusion coefficient. We introduce the time-dependent diffusion coefficient because of the interaction of two associated relaxation phenomena: first-order decay and diffusion-controlled annihilation. The equation for the time-dependent rate parameter k2A(t) obtained from the model proposed is compared with the standard Smoluchowski expression. The new equation is applied for the evaluation of the kinetic data of the diffusion-controlled triplet–triplet annihilation of anthracene. The limits of the applicability of the proposed model are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription