Abstract

Polymeric molds of the layer-by-layer photonic crystal can be economically synthesized with a microtransfer molding technique. The refractive indices of these molds are low, preventing formation of a photonic bandgap. We find that such molds can be conformally coated with higher-index material. Photonic band calculations find structures in which conformally coated layer-by-layer molds have complete bandgaps for both titania and silicon coatings. Large stop bands exist in the 001 stacking direction. Feasibility of experimental conformal coating of the molds has been demonstrated with a titania-coated polyurethane mold, which shows optical features in agreement with simulations of reflection and transmission.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.R.Davis, ed., Handbook of Materials for Medical Devices (ASM International, 2003).
  2. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three-dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
    [CrossRef]
  3. R. Biswas, M. M. Sigalas, C. M. Soukoulis, and K. M. Ho, "Photonic band structure," in Topics in Computational Materials Science, C.Y.Fong, ed. (World Scientific, 1998), Chap. 4, pp. 143-168.
    [CrossRef]
  4. E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50, 1945-1948 (1994).
    [CrossRef]
  5. S. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K.-M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
    [CrossRef]
  6. S. Lin and J. G. Fleming, "Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 µm," Opt. Lett. 24, 49-51 (1999).
    [CrossRef]
  7. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
    [CrossRef] [PubMed]
  8. X. M. Zhao, Y. Xia, and G. M. Whitesides, "Fabrication of three-dimensional micro-structures: microtransfer molding," Adv. Mater. 8, 837-840 (1996).
    [CrossRef]
  9. W. Leung, H. Kang, K. Constant, D. Cann, C.-H. Kim, R. Biswas, M. M. Sigalas, and K.-M. Ho, "Fabrication of photonic band gap crystal using microtransfer molded templates," J. Appl. Phys. 93, 5866-5868 (2003).
    [CrossRef]
  10. J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, W. Leung, and C. H. Oh, "Diffracted moiré fringes as analysis and alignment tools for multilayer fabrication in soft lithography," Appl. Phys. Lett. 86, 204101 (2005).
    [CrossRef]
  11. R. Biswas, E. Ozbay, and K.-M. Ho, "Photonic band gaps with layer-by-layer double-etched structures," J. Appl. Phys. 80, 6749-6753 (1996).
    [CrossRef]
  12. E. D. Palik, Handbook of Optical Constant of Solids II (Academic, 1991).
  13. Z. Y. Li and L. L. Lan, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E 67, 046607 (2003).
    [CrossRef]
  14. Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1287 (2003).
    [CrossRef]
  15. M. Deubel, G. Von Freymann, M. Wegener, S. Perreira, K. Busch, and C. M. Soukoulis, "Direct laser writing of 3D photonic crystal templates for photonic bandgaps at 1.5 µm," Nat. Mater. 3, 444-447 (2004).
    [CrossRef] [PubMed]

2005

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, W. Leung, and C. H. Oh, "Diffracted moiré fringes as analysis and alignment tools for multilayer fabrication in soft lithography," Appl. Phys. Lett. 86, 204101 (2005).
[CrossRef]

2004

M. Deubel, G. Von Freymann, M. Wegener, S. Perreira, K. Busch, and C. M. Soukoulis, "Direct laser writing of 3D photonic crystal templates for photonic bandgaps at 1.5 µm," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

2003

Z. Y. Li and L. L. Lan, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1287 (2003).
[CrossRef]

W. Leung, H. Kang, K. Constant, D. Cann, C.-H. Kim, R. Biswas, M. M. Sigalas, and K.-M. Ho, "Fabrication of photonic band gap crystal using microtransfer molded templates," J. Appl. Phys. 93, 5866-5868 (2003).
[CrossRef]

2000

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

1999

1998

S. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K.-M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

1996

X. M. Zhao, Y. Xia, and G. M. Whitesides, "Fabrication of three-dimensional micro-structures: microtransfer molding," Adv. Mater. 8, 837-840 (1996).
[CrossRef]

R. Biswas, E. Ozbay, and K.-M. Ho, "Photonic band gaps with layer-by-layer double-etched structures," J. Appl. Phys. 80, 6749-6753 (1996).
[CrossRef]

1994

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three-dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50, 1945-1948 (1994).
[CrossRef]

Abeyta, A.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50, 1945-1948 (1994).
[CrossRef]

Biswas, R.

W. Leung, H. Kang, K. Constant, D. Cann, C.-H. Kim, R. Biswas, M. M. Sigalas, and K.-M. Ho, "Fabrication of photonic band gap crystal using microtransfer molded templates," J. Appl. Phys. 93, 5866-5868 (2003).
[CrossRef]

S. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K.-M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

R. Biswas, E. Ozbay, and K.-M. Ho, "Photonic band gaps with layer-by-layer double-etched structures," J. Appl. Phys. 80, 6749-6753 (1996).
[CrossRef]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50, 1945-1948 (1994).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three-dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

R. Biswas, M. M. Sigalas, C. M. Soukoulis, and K. M. Ho, "Photonic band structure," in Topics in Computational Materials Science, C.Y.Fong, ed. (World Scientific, 1998), Chap. 4, pp. 143-168.
[CrossRef]

Blanco, A.

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1287 (2003).
[CrossRef]

Bur, J.

S. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K.-M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Busch, K.

M. Deubel, G. Von Freymann, M. Wegener, S. Perreira, K. Busch, and C. M. Soukoulis, "Direct laser writing of 3D photonic crystal templates for photonic bandgaps at 1.5 µm," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1287 (2003).
[CrossRef]

Cann, D.

W. Leung, H. Kang, K. Constant, D. Cann, C.-H. Kim, R. Biswas, M. M. Sigalas, and K.-M. Ho, "Fabrication of photonic band gap crystal using microtransfer molded templates," J. Appl. Phys. 93, 5866-5868 (2003).
[CrossRef]

Chan, C. T.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50, 1945-1948 (1994).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three-dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Constant, K.

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, W. Leung, and C. H. Oh, "Diffracted moiré fringes as analysis and alignment tools for multilayer fabrication in soft lithography," Appl. Phys. Lett. 86, 204101 (2005).
[CrossRef]

W. Leung, H. Kang, K. Constant, D. Cann, C.-H. Kim, R. Biswas, M. M. Sigalas, and K.-M. Ho, "Fabrication of photonic band gap crystal using microtransfer molded templates," J. Appl. Phys. 93, 5866-5868 (2003).
[CrossRef]

Deubel, M.

M. Deubel, G. Von Freymann, M. Wegener, S. Perreira, K. Busch, and C. M. Soukoulis, "Direct laser writing of 3D photonic crystal templates for photonic bandgaps at 1.5 µm," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1287 (2003).
[CrossRef]

Enkrich, C.

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1287 (2003).
[CrossRef]

Fleming, J. G.

S. Lin and J. G. Fleming, "Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 µm," Opt. Lett. 24, 49-51 (1999).
[CrossRef]

S. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K.-M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Hetherington, D. L.

S. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K.-M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Ho, K. M.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50, 1945-1948 (1994).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three-dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

R. Biswas, M. M. Sigalas, C. M. Soukoulis, and K. M. Ho, "Photonic band structure," in Topics in Computational Materials Science, C.Y.Fong, ed. (World Scientific, 1998), Chap. 4, pp. 143-168.
[CrossRef]

Ho, K.-M.

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, W. Leung, and C. H. Oh, "Diffracted moiré fringes as analysis and alignment tools for multilayer fabrication in soft lithography," Appl. Phys. Lett. 86, 204101 (2005).
[CrossRef]

W. Leung, H. Kang, K. Constant, D. Cann, C.-H. Kim, R. Biswas, M. M. Sigalas, and K.-M. Ho, "Fabrication of photonic band gap crystal using microtransfer molded templates," J. Appl. Phys. 93, 5866-5868 (2003).
[CrossRef]

S. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K.-M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

R. Biswas, E. Ozbay, and K.-M. Ho, "Photonic band gaps with layer-by-layer double-etched structures," J. Appl. Phys. 80, 6749-6753 (1996).
[CrossRef]

Kang, H.

W. Leung, H. Kang, K. Constant, D. Cann, C.-H. Kim, R. Biswas, M. M. Sigalas, and K.-M. Ho, "Fabrication of photonic band gap crystal using microtransfer molded templates," J. Appl. Phys. 93, 5866-5868 (2003).
[CrossRef]

Kim, C.-H.

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, W. Leung, and C. H. Oh, "Diffracted moiré fringes as analysis and alignment tools for multilayer fabrication in soft lithography," Appl. Phys. Lett. 86, 204101 (2005).
[CrossRef]

W. Leung, H. Kang, K. Constant, D. Cann, C.-H. Kim, R. Biswas, M. M. Sigalas, and K.-M. Ho, "Fabrication of photonic band gap crystal using microtransfer molded templates," J. Appl. Phys. 93, 5866-5868 (2003).
[CrossRef]

Kim, Y.-S.

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, W. Leung, and C. H. Oh, "Diffracted moiré fringes as analysis and alignment tools for multilayer fabrication in soft lithography," Appl. Phys. Lett. 86, 204101 (2005).
[CrossRef]

Koch, W.

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1287 (2003).
[CrossRef]

Kurtz, S. R.

S. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K.-M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Lan, L. L.

Z. Y. Li and L. L. Lan, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Lee, J.-H.

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, W. Leung, and C. H. Oh, "Diffracted moiré fringes as analysis and alignment tools for multilayer fabrication in soft lithography," Appl. Phys. Lett. 86, 204101 (2005).
[CrossRef]

Leung, W.

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, W. Leung, and C. H. Oh, "Diffracted moiré fringes as analysis and alignment tools for multilayer fabrication in soft lithography," Appl. Phys. Lett. 86, 204101 (2005).
[CrossRef]

W. Leung, H. Kang, K. Constant, D. Cann, C.-H. Kim, R. Biswas, M. M. Sigalas, and K.-M. Ho, "Fabrication of photonic band gap crystal using microtransfer molded templates," J. Appl. Phys. 93, 5866-5868 (2003).
[CrossRef]

Li, Z. Y.

Z. Y. Li and L. L. Lan, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Lin, S.

S. Lin and J. G. Fleming, "Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 µm," Opt. Lett. 24, 49-51 (1999).
[CrossRef]

S. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K.-M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Meisel, D. C.

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1287 (2003).
[CrossRef]

Miklyaev, Y.

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1287 (2003).
[CrossRef]

Noda, S.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Oh, C. H.

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, W. Leung, and C. H. Oh, "Diffracted moiré fringes as analysis and alignment tools for multilayer fabrication in soft lithography," Appl. Phys. Lett. 86, 204101 (2005).
[CrossRef]

Ozbay, E.

R. Biswas, E. Ozbay, and K.-M. Ho, "Photonic band gaps with layer-by-layer double-etched structures," J. Appl. Phys. 80, 6749-6753 (1996).
[CrossRef]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50, 1945-1948 (1994).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constant of Solids II (Academic, 1991).

Perreira, S.

M. Deubel, G. Von Freymann, M. Wegener, S. Perreira, K. Busch, and C. M. Soukoulis, "Direct laser writing of 3D photonic crystal templates for photonic bandgaps at 1.5 µm," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Sigalas, M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three-dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Sigalas, M. M.

W. Leung, H. Kang, K. Constant, D. Cann, C.-H. Kim, R. Biswas, M. M. Sigalas, and K.-M. Ho, "Fabrication of photonic band gap crystal using microtransfer molded templates," J. Appl. Phys. 93, 5866-5868 (2003).
[CrossRef]

S. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K.-M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

R. Biswas, M. M. Sigalas, C. M. Soukoulis, and K. M. Ho, "Photonic band structure," in Topics in Computational Materials Science, C.Y.Fong, ed. (World Scientific, 1998), Chap. 4, pp. 143-168.
[CrossRef]

Smith, B. K.

S. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K.-M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Soukoulis, C. M.

M. Deubel, G. Von Freymann, M. Wegener, S. Perreira, K. Busch, and C. M. Soukoulis, "Direct laser writing of 3D photonic crystal templates for photonic bandgaps at 1.5 µm," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50, 1945-1948 (1994).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three-dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

R. Biswas, M. M. Sigalas, C. M. Soukoulis, and K. M. Ho, "Photonic band structure," in Topics in Computational Materials Science, C.Y.Fong, ed. (World Scientific, 1998), Chap. 4, pp. 143-168.
[CrossRef]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Tringides, M.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50, 1945-1948 (1994).
[CrossRef]

Tuttle, G.

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50, 1945-1948 (1994).
[CrossRef]

Von Freymann, G.

M. Deubel, G. Von Freymann, M. Wegener, S. Perreira, K. Busch, and C. M. Soukoulis, "Direct laser writing of 3D photonic crystal templates for photonic bandgaps at 1.5 µm," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1287 (2003).
[CrossRef]

Wegener, M.

M. Deubel, G. Von Freymann, M. Wegener, S. Perreira, K. Busch, and C. M. Soukoulis, "Direct laser writing of 3D photonic crystal templates for photonic bandgaps at 1.5 µm," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1287 (2003).
[CrossRef]

Whitesides, G. M.

X. M. Zhao, Y. Xia, and G. M. Whitesides, "Fabrication of three-dimensional micro-structures: microtransfer molding," Adv. Mater. 8, 837-840 (1996).
[CrossRef]

Xia, Y.

X. M. Zhao, Y. Xia, and G. M. Whitesides, "Fabrication of three-dimensional micro-structures: microtransfer molding," Adv. Mater. 8, 837-840 (1996).
[CrossRef]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Zhao, X. M.

X. M. Zhao, Y. Xia, and G. M. Whitesides, "Fabrication of three-dimensional micro-structures: microtransfer molding," Adv. Mater. 8, 837-840 (1996).
[CrossRef]

Zubrzycki, W.

S. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K.-M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Adv. Mater.

X. M. Zhao, Y. Xia, and G. M. Whitesides, "Fabrication of three-dimensional micro-structures: microtransfer molding," Adv. Mater. 8, 837-840 (1996).
[CrossRef]

Appl. Phys. Lett.

J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, W. Leung, and C. H. Oh, "Diffracted moiré fringes as analysis and alignment tools for multilayer fabrication in soft lithography," Appl. Phys. Lett. 86, 204101 (2005).
[CrossRef]

Y. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1287 (2003).
[CrossRef]

J. Appl. Phys.

R. Biswas, E. Ozbay, and K.-M. Ho, "Photonic band gaps with layer-by-layer double-etched structures," J. Appl. Phys. 80, 6749-6753 (1996).
[CrossRef]

W. Leung, H. Kang, K. Constant, D. Cann, C.-H. Kim, R. Biswas, M. M. Sigalas, and K.-M. Ho, "Fabrication of photonic band gap crystal using microtransfer molded templates," J. Appl. Phys. 93, 5866-5868 (2003).
[CrossRef]

Nat. Mater.

M. Deubel, G. Von Freymann, M. Wegener, S. Perreira, K. Busch, and C. M. Soukoulis, "Direct laser writing of 3D photonic crystal templates for photonic bandgaps at 1.5 µm," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Nature

S. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K.-M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Opt. Lett.

Phys. Rev. B

E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B 50, 1945-1948 (1994).
[CrossRef]

Phys. Rev. E

Z. Y. Li and L. L. Lan, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Science

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Solid State Commun.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three-dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Other

R. Biswas, M. M. Sigalas, C. M. Soukoulis, and K. M. Ho, "Photonic band structure," in Topics in Computational Materials Science, C.Y.Fong, ed. (World Scientific, 1998), Chap. 4, pp. 143-168.
[CrossRef]

J.R.Davis, ed., Handbook of Materials for Medical Devices (ASM International, 2003).

E. D. Palik, Handbook of Optical Constant of Solids II (Academic, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic figure of the original layer-by-layer photonic crystal before coating, with rectangular dielectric rods in each layer. (b) Scanning electron microscope image of the experimentally fabricated four-layer mold structure of polyurethane bars, viewed with a cross-sectional cut at 45° to the axis of the rods. This mold structure is the starting point for the conformal coating.

Fig. 2
Fig. 2

(a) Schematic figure of a conformally coated structure showing lower-refractive-index molds with bar width w, coated with higher-refractive-index material to a thickness t. The bar separation d and mold height h are unaltered by the coating. A cross section ( x z plane) showing adjacent bars in the z direction are shown. (b) A conformally coated structure with another cross section that does not include second- and fourth-layer bars is shown

Fig. 3
Fig. 3

(Color online) (a) Dimensionless ratio of complete photonic bandgaps for all directions of propagation ( ω gap ) to the midgap frequency ( ω mg ) for conformally coated molds with an inner polymeric core of refractive index 1.5 and a higher-index titania coating ( n = 2.7 ) as a function of the coating thickness t. Each curve corresponds to a fixed width w of the polymeric bar. Positive gap/midgap ratios correspond to complete bandgaps. (b) Stop bands in the 001 direction for polymeric bar molds coated with titania following the same conventions as in (a).

Fig. 4
Fig. 4

(Color online) Ratio of complete bandgap to the midgap frequency for a silicon-coated layer-by-layer mold as a function of thickness t of the silicon coating for two widths w of the mold bars. The refractive indices were 3.4 for silicon and 1.5 for the polymeric mold. w d is the ratio of the mold bar width to the bar separation. The conventions follow those of Fig. 2.

Fig. 5
Fig. 5

(Color online) Photonic band structure of the conformal-coated structure with silicon coatings ( n = 3.4 ) on a polyurethane rod template ( n = 1.5 ) . The coating thickness t d = 0.068 , corresponding to the best performing structure.

Fig. 6
Fig. 6

(Color online) Experimentally synthesized conformal titania coating of a four-layer polyurethane bar template using the atomic-layer deposition method. A titania coating of 0.45 μ m was achieved for a template with bar separation of 2.5 μ m and bar width of 1.4 μ m . In the scanning electron micrograph figure the structure is sliced in a plane at 90° to the first and third layers. The coating (lighter region) of titania is 0.45 μ m thick for an inner bar (dark region) width of 1.4 μ m . The dotted lines show the outline of the recessed second layer before the conformal coating.

Fig. 7
Fig. 7

(Color online) Reflection and transmission measurements for the four-layer conformally coated structure on a 150 μ m thick glass substrate, compared with measurements for the uncoated polyurethane mold on the same glass substrate.

Fig. 8
Fig. 8

(Color online) Simulated reflectance and transmission from S-matrix calculations for the four-layer conformally coated mold, compared with the experimental data of Fig. 6. The calculations used a bar width w = 1.3 μ m , coating thickness t = 0.45 μ m , and bar separation d = 2.5 μ m .

Metrics