Abstract

The possibility of realizing adiabatic rapid passage (ARP) with an intense chirped-pulse excitation (a concept well known in molecular systems) in direct-gap semiconductors is studied. Based on the semiconductor Bloch equations, the analysis shows that, in spite of complications due to band structure, signatures of ARP accompanied by an intrapulse pump-dump process (IPDP) should be observable in the dependence of the carriers’ density on the chirp rate in the frequency domain. The bandgap shrinkage, which is the main many-body effect, gives the dominant contribution to the asymmetry of this dependence on the chirp sign. We show that the bandgap shrinkage enlarges the carriers’ density and makes a major impact on the interplay of ARP with IPDP, enhancing ARP (suppressing IPDP) for positive chirped-pulse excitation and suppressing ARP (enhancing IPDP) for negative chirped-pulse excitation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Melinger, S. R. Gandhi, A. Hariharan, D. Goswami, and W. S. Warren, "Adiabatic population transfer with frequency-swept laser pulses," J. Chem. Phys. 101, 6439-6454 (1994).
    [CrossRef]
  2. S. Chelkowski, A. Bandrauk, and P. B. Corkum, "Efficient molecular dissociation by a chirped ultrashort infrared laser pulse," Phys. Rev. Lett. 65, 2355-2358 (1990).
    [CrossRef] [PubMed]
  3. B. W. Shore, K. Bergmann, A. Kuhn, S. Schiemann, J. Oreg, and J. H. Eberly, "Laser-induced population transfer in multistate systems: a comparative study," Phys. Rev. A 45, 5297-5300 (1992).
    [CrossRef] [PubMed]
  4. M. Shapiro and P. Brumer, "Coherent and incoherent laser control of photochemical reactions," Int. Rev. Phys. Chem. 13, 187-230 (1994).
    [CrossRef]
  5. R. J. Gordon, and S. A. Rice, "Active control of the dynamics of atoms and molecules," Annu. Rev. Phys. Chem. 48, 601-641 (1997).
    [CrossRef] [PubMed]
  6. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, "Laser-induced population transfer by adiabatic passage techniques," Annu. Rev. Phys. Chem. 52, 763-809 (2001).
    [CrossRef] [PubMed]
  7. J. Kunde, U. Siegner, S. Arlt, G. Steinmeyer, F. Morier-Genoud, and U. Keller, "Potential of femtosecond chirp control of ultrabroadband semiconductor continuum nonlinearities," J. Opt. Soc. Am. B 16, 2285-2294 (1999).
    [CrossRef]
  8. R. Binder and M. Lindenberg, "Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells," Phys. Rev. Lett. 81, 1477-1480 (1998).
    [CrossRef]
  9. J. M. Fraser and H. M. van Driel, "Quantum interference control of free-carrier density in GaAs," Phys. Rev. B 68, 085208-085208-14 (2003).
    [CrossRef]
  10. M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
    [CrossRef]
  11. L. Allen and J.-H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, 1975).
  12. E. B. Treacy, "Adiabatic inversion with light pulses," Phys. Lett. A 27, 421-422 (1968).
    [CrossRef]
  13. B. D. Fainberg and V. A. Gorbunov, "Coherent population transfer in molecules coupled with dissipative environment by intense ultrashort chirped pulse," J. Chem. Phys. 117, 7222-7232 (2002).
    [CrossRef]
  14. B. D. Fainberg and V. A. Gorbunov, "Coherent population transfer in molecules coupled with dissipative environment by intense ultrashort chirped pulse. II. A simple model," J. Chem. Phys. 121, 8748-8754 (2004).
    [CrossRef] [PubMed]
  15. S. Ruhman and R. Kosloff, "Application of chirped ultrashort pulses for generating large-amplitude ground state vibrational coherence: a computer simulation," J. Opt. Soc. Am. B 7, 1748-1952 (1990).
    [CrossRef]
  16. G. Cerullo, C. J. Bardeen, Q. Wang, and C. V. Shank, "High-power femtosecond chirped pulse excitation of molecules in solution," Chem. Phys. Lett. 262, 362-368 (1996).
    [CrossRef]
  17. D. J. Tannor and S. A. Rice, "Control of selectivity of chemical reaction via control of wave packet evolution," J. Chem. Phys. 83, 5013-5018 (1985).
    [CrossRef]
  18. G.-R. Unanyan, N. V. Vitanov, and K. Bergmann, "Preparation of entangled states by adiabatic passage," Phys. Rev. Lett. 87, 137902 (2001).
    [CrossRef] [PubMed]
  19. Y. Nagata and K. Yamashita, "Theoretical study on molecular excitation using chirped pulses in the condensed phase," Chem. Phys. Lett. 364, 144-151 (2002).
    [CrossRef]
  20. M. Demirplak and S. A. Rice, "Optical control of molecular dynamics in a liquid," J. Chem. Phys. 116, 8028-8035 (2002).
    [CrossRef]
  21. R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, "Carrier-carrier scattering and optical dephasing in highly excited semiconductors," Phys. Rev. B 45, 1107-1115 (1992).
    [CrossRef]
  22. R. A. Indik, R. Binder, M. Mlejnek, J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, "Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers," Phys. Rev. A 53, 3614-3620 (1996).
    [CrossRef] [PubMed]
  23. W. W. Chow, S. W. Koch, and M. Sargent, III, Semiconductor-Laser Physics (Springer-Verlag, 1997).
  24. B. D. Fainberg, B. Levinsky, and V. A. Gorbunov, "Femtosecond chirped pulse control of photoluminescence and generating electron-hole pairs in broadband semiconductors," J. Lumin. 102-103, 125-130 (2003).
    [CrossRef]
  25. B. M. Garraway and K.-A. Suominen, "Adiabatic passage by light-induced potentials in molecules," Phys. Rev. Lett. 80, 932-935 (1998).
    [CrossRef]
  26. M. Lindberg and S. W. Koch, "Effective Bloch equations for semiconductors," Phys. Rev. B 38, 3342-3350 (1988).
    [CrossRef]
  27. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2001).
  28. E. Sayed, L. Banyai, and H. Haug, "Coulomb quantum kinetics and optical dephasing on the femtosecond time scale," Phys. Rev. B 50,1541-1550 (1994).
    [CrossRef]
  29. M. Hartmann, H. Stolz, and R. Zimmermann, "Kinetics of screening in optically excited semiconductors," Phys. Status Solidi B 159, 35-42 (1988).
    [CrossRef]
  30. H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer-Verlag, 1996).
  31. R. Zimmermann, Many-Particle Theory of Highly Excited Semiconductors (Teubner, Berlin, 1988).
  32. H. Haug and S. W. Koch, "Semiconductor laser theory with many-body effects," Phys. Rev. A 39, 1887-1898 (1989).
    [CrossRef] [PubMed]
  33. A. Knorr, R. Binder, M. Lindberg, and S. W. Koch, "Theoretical study of resonant ultrashort-pulse propagation in semiconductors," Phys. Rev. A 46, 7179-7186 (1992).
    [CrossRef] [PubMed]
  34. M. Lindberg, R. Binder, and S. W. Koch, "Theory of the semiconductor photon echo," Phys. Rev. B 45, 1865-1875 (1992).
    [CrossRef]
  35. V. F. Gantmakher and Y. B. Levinson, Carrier Scattering in Metals and Semiconductors (North Holland, 1987).
  36. S. Haas, F. Rossi, and T. Kuhn, "Generalized Monte Carlo approach for the study of the coherent ultrafast carrier dynamics in photoexcited semiconductors," Phys. Rev. B 53, 12855-12868 (1996).
    [CrossRef]
  37. F. Rossi and T. Kuhn, "Theory of ultrafast phenomena in photoexcited semiconductors," Rev. Mod. Phys. 74, 895-950 (2002).
    [CrossRef]
  38. O. Hess and T. Kuhn, "Maxwell--Bloch equations for spatially inhomogeneous semiconductor lasers. I. Theoretical formulation," Phys. Rev. A 54, 3347-3359 (1998).
    [CrossRef]
  39. Y. N. Demkov and M. Kunike, Vestn. Leningr. Univ. Fiz. Khim. 16, 39 (1969).
  40. F. T. Hioe, "Solution of Bloch equations involving amplitude and frequency modulations," Phys. Rev. A 30, 2100-2103 (1984).
    [CrossRef]
  41. B. D. Fainberg, "Absorption spectrum of intense chirped pulse by molecules in solution and the time evolution of vibrationally nonequilibrium populations," Chem. Phys. Lett. 332, 181-189 (2000).
    [CrossRef]
  42. V. M. Galitskii, S. P. Goreslavskii, and V. F. Elesin, "Electric and magnetic properties of a semiconductor in the field of a strong electromagnetic wave," Sov. Phys. JETP 30, 117-122 (1970).
  43. S. Schmitt-Rink, D. S. Chemla, and H. Haug, "Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors," Phys. Rev. B 37, 941-955 (1988).
    [CrossRef]
  44. K. Henneberg and H. Haug, "Nonlinear optics and transport in laser-excited semiconductors," Phys. Rev. B 38, 9759-9770 (1988).
    [CrossRef]
  45. D. W. Snoke, "Density dependence of electron scattering at low density," Phys. Rev. B 50, 11583-11591 (1994).
    [CrossRef]
  46. M. Combescot and R. Combescot, "Conductivity relaxation time due to electron-hole collision in optically excited semiconductors," Phys. Rev. B 35, 7986-7991 (1987).
    [CrossRef]
  47. N. S. Wingreen and M. Combescot, "Electron-electron scattering: collision integral and relaxation rate," Phys. Rev. B 40, 3191-3196 (1989).
    [CrossRef]
  48. V. A. Gasparov and R. Huguenin, "Electron-phonon, electron-electron and electron-surface scattering in metals from ballistic effects," Adv. Phys. 42, 393-521 (1993).
    [CrossRef]
  49. G. A. Baker, Jr. and P. Graves-Morris, Padé Approximants (Addison-Wesley, 1981).
  50. S. M. Kogan, "On the theory of hot electrons in semiconductors," Sov. Phys. Solid State 4, 1813-1819 (1963).

2004

B. D. Fainberg and V. A. Gorbunov, "Coherent population transfer in molecules coupled with dissipative environment by intense ultrashort chirped pulse. II. A simple model," J. Chem. Phys. 121, 8748-8754 (2004).
[CrossRef] [PubMed]

2003

J. M. Fraser and H. M. van Driel, "Quantum interference control of free-carrier density in GaAs," Phys. Rev. B 68, 085208-085208-14 (2003).
[CrossRef]

B. D. Fainberg, B. Levinsky, and V. A. Gorbunov, "Femtosecond chirped pulse control of photoluminescence and generating electron-hole pairs in broadband semiconductors," J. Lumin. 102-103, 125-130 (2003).
[CrossRef]

2002

F. Rossi and T. Kuhn, "Theory of ultrafast phenomena in photoexcited semiconductors," Rev. Mod. Phys. 74, 895-950 (2002).
[CrossRef]

B. D. Fainberg and V. A. Gorbunov, "Coherent population transfer in molecules coupled with dissipative environment by intense ultrashort chirped pulse," J. Chem. Phys. 117, 7222-7232 (2002).
[CrossRef]

Y. Nagata and K. Yamashita, "Theoretical study on molecular excitation using chirped pulses in the condensed phase," Chem. Phys. Lett. 364, 144-151 (2002).
[CrossRef]

M. Demirplak and S. A. Rice, "Optical control of molecular dynamics in a liquid," J. Chem. Phys. 116, 8028-8035 (2002).
[CrossRef]

2001

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, "Laser-induced population transfer by adiabatic passage techniques," Annu. Rev. Phys. Chem. 52, 763-809 (2001).
[CrossRef] [PubMed]

G.-R. Unanyan, N. V. Vitanov, and K. Bergmann, "Preparation of entangled states by adiabatic passage," Phys. Rev. Lett. 87, 137902 (2001).
[CrossRef] [PubMed]

2000

B. D. Fainberg, "Absorption spectrum of intense chirped pulse by molecules in solution and the time evolution of vibrationally nonequilibrium populations," Chem. Phys. Lett. 332, 181-189 (2000).
[CrossRef]

1999

1998

R. Binder and M. Lindenberg, "Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells," Phys. Rev. Lett. 81, 1477-1480 (1998).
[CrossRef]

O. Hess and T. Kuhn, "Maxwell--Bloch equations for spatially inhomogeneous semiconductor lasers. I. Theoretical formulation," Phys. Rev. A 54, 3347-3359 (1998).
[CrossRef]

B. M. Garraway and K.-A. Suominen, "Adiabatic passage by light-induced potentials in molecules," Phys. Rev. Lett. 80, 932-935 (1998).
[CrossRef]

1997

M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
[CrossRef]

R. J. Gordon, and S. A. Rice, "Active control of the dynamics of atoms and molecules," Annu. Rev. Phys. Chem. 48, 601-641 (1997).
[CrossRef] [PubMed]

1996

G. Cerullo, C. J. Bardeen, Q. Wang, and C. V. Shank, "High-power femtosecond chirped pulse excitation of molecules in solution," Chem. Phys. Lett. 262, 362-368 (1996).
[CrossRef]

R. A. Indik, R. Binder, M. Mlejnek, J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, "Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers," Phys. Rev. A 53, 3614-3620 (1996).
[CrossRef] [PubMed]

S. Haas, F. Rossi, and T. Kuhn, "Generalized Monte Carlo approach for the study of the coherent ultrafast carrier dynamics in photoexcited semiconductors," Phys. Rev. B 53, 12855-12868 (1996).
[CrossRef]

1994

E. Sayed, L. Banyai, and H. Haug, "Coulomb quantum kinetics and optical dephasing on the femtosecond time scale," Phys. Rev. B 50,1541-1550 (1994).
[CrossRef]

J. S. Melinger, S. R. Gandhi, A. Hariharan, D. Goswami, and W. S. Warren, "Adiabatic population transfer with frequency-swept laser pulses," J. Chem. Phys. 101, 6439-6454 (1994).
[CrossRef]

M. Shapiro and P. Brumer, "Coherent and incoherent laser control of photochemical reactions," Int. Rev. Phys. Chem. 13, 187-230 (1994).
[CrossRef]

D. W. Snoke, "Density dependence of electron scattering at low density," Phys. Rev. B 50, 11583-11591 (1994).
[CrossRef]

1993

V. A. Gasparov and R. Huguenin, "Electron-phonon, electron-electron and electron-surface scattering in metals from ballistic effects," Adv. Phys. 42, 393-521 (1993).
[CrossRef]

1992

B. W. Shore, K. Bergmann, A. Kuhn, S. Schiemann, J. Oreg, and J. H. Eberly, "Laser-induced population transfer in multistate systems: a comparative study," Phys. Rev. A 45, 5297-5300 (1992).
[CrossRef] [PubMed]

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, "Carrier-carrier scattering and optical dephasing in highly excited semiconductors," Phys. Rev. B 45, 1107-1115 (1992).
[CrossRef]

A. Knorr, R. Binder, M. Lindberg, and S. W. Koch, "Theoretical study of resonant ultrashort-pulse propagation in semiconductors," Phys. Rev. A 46, 7179-7186 (1992).
[CrossRef] [PubMed]

M. Lindberg, R. Binder, and S. W. Koch, "Theory of the semiconductor photon echo," Phys. Rev. B 45, 1865-1875 (1992).
[CrossRef]

1990

S. Ruhman and R. Kosloff, "Application of chirped ultrashort pulses for generating large-amplitude ground state vibrational coherence: a computer simulation," J. Opt. Soc. Am. B 7, 1748-1952 (1990).
[CrossRef]

S. Chelkowski, A. Bandrauk, and P. B. Corkum, "Efficient molecular dissociation by a chirped ultrashort infrared laser pulse," Phys. Rev. Lett. 65, 2355-2358 (1990).
[CrossRef] [PubMed]

1989

H. Haug and S. W. Koch, "Semiconductor laser theory with many-body effects," Phys. Rev. A 39, 1887-1898 (1989).
[CrossRef] [PubMed]

N. S. Wingreen and M. Combescot, "Electron-electron scattering: collision integral and relaxation rate," Phys. Rev. B 40, 3191-3196 (1989).
[CrossRef]

1988

S. Schmitt-Rink, D. S. Chemla, and H. Haug, "Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors," Phys. Rev. B 37, 941-955 (1988).
[CrossRef]

K. Henneberg and H. Haug, "Nonlinear optics and transport in laser-excited semiconductors," Phys. Rev. B 38, 9759-9770 (1988).
[CrossRef]

M. Hartmann, H. Stolz, and R. Zimmermann, "Kinetics of screening in optically excited semiconductors," Phys. Status Solidi B 159, 35-42 (1988).
[CrossRef]

M. Lindberg and S. W. Koch, "Effective Bloch equations for semiconductors," Phys. Rev. B 38, 3342-3350 (1988).
[CrossRef]

1987

M. Combescot and R. Combescot, "Conductivity relaxation time due to electron-hole collision in optically excited semiconductors," Phys. Rev. B 35, 7986-7991 (1987).
[CrossRef]

1985

D. J. Tannor and S. A. Rice, "Control of selectivity of chemical reaction via control of wave packet evolution," J. Chem. Phys. 83, 5013-5018 (1985).
[CrossRef]

1984

F. T. Hioe, "Solution of Bloch equations involving amplitude and frequency modulations," Phys. Rev. A 30, 2100-2103 (1984).
[CrossRef]

1970

V. M. Galitskii, S. P. Goreslavskii, and V. F. Elesin, "Electric and magnetic properties of a semiconductor in the field of a strong electromagnetic wave," Sov. Phys. JETP 30, 117-122 (1970).

1969

Y. N. Demkov and M. Kunike, Vestn. Leningr. Univ. Fiz. Khim. 16, 39 (1969).

1968

E. B. Treacy, "Adiabatic inversion with light pulses," Phys. Lett. A 27, 421-422 (1968).
[CrossRef]

1963

S. M. Kogan, "On the theory of hot electrons in semiconductors," Sov. Phys. Solid State 4, 1813-1819 (1963).

Allen, L.

L. Allen and J.-H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, 1975).

Andrews, M. R.

M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
[CrossRef]

Arlt, S.

Baker, G. A.

G. A. Baker, Jr. and P. Graves-Morris, Padé Approximants (Addison-Wesley, 1981).

Bandrauk, A.

S. Chelkowski, A. Bandrauk, and P. B. Corkum, "Efficient molecular dissociation by a chirped ultrashort infrared laser pulse," Phys. Rev. Lett. 65, 2355-2358 (1990).
[CrossRef] [PubMed]

Banyai, L.

E. Sayed, L. Banyai, and H. Haug, "Coulomb quantum kinetics and optical dephasing on the femtosecond time scale," Phys. Rev. B 50,1541-1550 (1994).
[CrossRef]

Bardeen, C. J.

G. Cerullo, C. J. Bardeen, Q. Wang, and C. V. Shank, "High-power femtosecond chirped pulse excitation of molecules in solution," Chem. Phys. Lett. 262, 362-368 (1996).
[CrossRef]

Bergmann, K.

G.-R. Unanyan, N. V. Vitanov, and K. Bergmann, "Preparation of entangled states by adiabatic passage," Phys. Rev. Lett. 87, 137902 (2001).
[CrossRef] [PubMed]

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, "Laser-induced population transfer by adiabatic passage techniques," Annu. Rev. Phys. Chem. 52, 763-809 (2001).
[CrossRef] [PubMed]

B. W. Shore, K. Bergmann, A. Kuhn, S. Schiemann, J. Oreg, and J. H. Eberly, "Laser-induced population transfer in multistate systems: a comparative study," Phys. Rev. A 45, 5297-5300 (1992).
[CrossRef] [PubMed]

Binder, R.

R. Binder and M. Lindenberg, "Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells," Phys. Rev. Lett. 81, 1477-1480 (1998).
[CrossRef]

R. A. Indik, R. Binder, M. Mlejnek, J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, "Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers," Phys. Rev. A 53, 3614-3620 (1996).
[CrossRef] [PubMed]

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, "Carrier-carrier scattering and optical dephasing in highly excited semiconductors," Phys. Rev. B 45, 1107-1115 (1992).
[CrossRef]

A. Knorr, R. Binder, M. Lindberg, and S. W. Koch, "Theoretical study of resonant ultrashort-pulse propagation in semiconductors," Phys. Rev. A 46, 7179-7186 (1992).
[CrossRef] [PubMed]

M. Lindberg, R. Binder, and S. W. Koch, "Theory of the semiconductor photon echo," Phys. Rev. B 45, 1865-1875 (1992).
[CrossRef]

Brumer, P.

M. Shapiro and P. Brumer, "Coherent and incoherent laser control of photochemical reactions," Int. Rev. Phys. Chem. 13, 187-230 (1994).
[CrossRef]

Cerullo, G.

G. Cerullo, C. J. Bardeen, Q. Wang, and C. V. Shank, "High-power femtosecond chirped pulse excitation of molecules in solution," Chem. Phys. Lett. 262, 362-368 (1996).
[CrossRef]

Chelkowski, S.

S. Chelkowski, A. Bandrauk, and P. B. Corkum, "Efficient molecular dissociation by a chirped ultrashort infrared laser pulse," Phys. Rev. Lett. 65, 2355-2358 (1990).
[CrossRef] [PubMed]

Chemla, D. S.

S. Schmitt-Rink, D. S. Chemla, and H. Haug, "Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors," Phys. Rev. B 37, 941-955 (1988).
[CrossRef]

Chow, W. W.

W. W. Chow, S. W. Koch, and M. Sargent, III, Semiconductor-Laser Physics (Springer-Verlag, 1997).

Combescot, M.

N. S. Wingreen and M. Combescot, "Electron-electron scattering: collision integral and relaxation rate," Phys. Rev. B 40, 3191-3196 (1989).
[CrossRef]

M. Combescot and R. Combescot, "Conductivity relaxation time due to electron-hole collision in optically excited semiconductors," Phys. Rev. B 35, 7986-7991 (1987).
[CrossRef]

Combescot, R.

M. Combescot and R. Combescot, "Conductivity relaxation time due to electron-hole collision in optically excited semiconductors," Phys. Rev. B 35, 7986-7991 (1987).
[CrossRef]

Corkum, P. B.

S. Chelkowski, A. Bandrauk, and P. B. Corkum, "Efficient molecular dissociation by a chirped ultrashort infrared laser pulse," Phys. Rev. Lett. 65, 2355-2358 (1990).
[CrossRef] [PubMed]

Demirplak, M.

M. Demirplak and S. A. Rice, "Optical control of molecular dynamics in a liquid," J. Chem. Phys. 116, 8028-8035 (2002).
[CrossRef]

Demkov, Y. N.

Y. N. Demkov and M. Kunike, Vestn. Leningr. Univ. Fiz. Khim. 16, 39 (1969).

Durfee, D. S.

M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
[CrossRef]

Eberly, J. H.

B. W. Shore, K. Bergmann, A. Kuhn, S. Schiemann, J. Oreg, and J. H. Eberly, "Laser-induced population transfer in multistate systems: a comparative study," Phys. Rev. A 45, 5297-5300 (1992).
[CrossRef] [PubMed]

Eberly, J.-H.

L. Allen and J.-H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, 1975).

Elesin, V. F.

V. M. Galitskii, S. P. Goreslavskii, and V. F. Elesin, "Electric and magnetic properties of a semiconductor in the field of a strong electromagnetic wave," Sov. Phys. JETP 30, 117-122 (1970).

Fainberg, B. D.

B. D. Fainberg and V. A. Gorbunov, "Coherent population transfer in molecules coupled with dissipative environment by intense ultrashort chirped pulse. II. A simple model," J. Chem. Phys. 121, 8748-8754 (2004).
[CrossRef] [PubMed]

B. D. Fainberg, B. Levinsky, and V. A. Gorbunov, "Femtosecond chirped pulse control of photoluminescence and generating electron-hole pairs in broadband semiconductors," J. Lumin. 102-103, 125-130 (2003).
[CrossRef]

B. D. Fainberg and V. A. Gorbunov, "Coherent population transfer in molecules coupled with dissipative environment by intense ultrashort chirped pulse," J. Chem. Phys. 117, 7222-7232 (2002).
[CrossRef]

B. D. Fainberg, "Absorption spectrum of intense chirped pulse by molecules in solution and the time evolution of vibrationally nonequilibrium populations," Chem. Phys. Lett. 332, 181-189 (2000).
[CrossRef]

Fraser, J. M.

J. M. Fraser and H. M. van Driel, "Quantum interference control of free-carrier density in GaAs," Phys. Rev. B 68, 085208-085208-14 (2003).
[CrossRef]

Galitskii, V. M.

V. M. Galitskii, S. P. Goreslavskii, and V. F. Elesin, "Electric and magnetic properties of a semiconductor in the field of a strong electromagnetic wave," Sov. Phys. JETP 30, 117-122 (1970).

Gandhi, S. R.

J. S. Melinger, S. R. Gandhi, A. Hariharan, D. Goswami, and W. S. Warren, "Adiabatic population transfer with frequency-swept laser pulses," J. Chem. Phys. 101, 6439-6454 (1994).
[CrossRef]

Gantmakher, V. F.

V. F. Gantmakher and Y. B. Levinson, Carrier Scattering in Metals and Semiconductors (North Holland, 1987).

Garraway, B. M.

B. M. Garraway and K.-A. Suominen, "Adiabatic passage by light-induced potentials in molecules," Phys. Rev. Lett. 80, 932-935 (1998).
[CrossRef]

Gasparov, V. A.

V. A. Gasparov and R. Huguenin, "Electron-phonon, electron-electron and electron-surface scattering in metals from ballistic effects," Adv. Phys. 42, 393-521 (1993).
[CrossRef]

Gorbunov, V. A.

B. D. Fainberg and V. A. Gorbunov, "Coherent population transfer in molecules coupled with dissipative environment by intense ultrashort chirped pulse. II. A simple model," J. Chem. Phys. 121, 8748-8754 (2004).
[CrossRef] [PubMed]

B. D. Fainberg, B. Levinsky, and V. A. Gorbunov, "Femtosecond chirped pulse control of photoluminescence and generating electron-hole pairs in broadband semiconductors," J. Lumin. 102-103, 125-130 (2003).
[CrossRef]

B. D. Fainberg and V. A. Gorbunov, "Coherent population transfer in molecules coupled with dissipative environment by intense ultrashort chirped pulse," J. Chem. Phys. 117, 7222-7232 (2002).
[CrossRef]

Gordon, R. J.

R. J. Gordon, and S. A. Rice, "Active control of the dynamics of atoms and molecules," Annu. Rev. Phys. Chem. 48, 601-641 (1997).
[CrossRef] [PubMed]

Goreslavskii, S. P.

V. M. Galitskii, S. P. Goreslavskii, and V. F. Elesin, "Electric and magnetic properties of a semiconductor in the field of a strong electromagnetic wave," Sov. Phys. JETP 30, 117-122 (1970).

Goswami, D.

J. S. Melinger, S. R. Gandhi, A. Hariharan, D. Goswami, and W. S. Warren, "Adiabatic population transfer with frequency-swept laser pulses," J. Chem. Phys. 101, 6439-6454 (1994).
[CrossRef]

Graves-Morris, P.

G. A. Baker, Jr. and P. Graves-Morris, Padé Approximants (Addison-Wesley, 1981).

Haas, S.

S. Haas, F. Rossi, and T. Kuhn, "Generalized Monte Carlo approach for the study of the coherent ultrafast carrier dynamics in photoexcited semiconductors," Phys. Rev. B 53, 12855-12868 (1996).
[CrossRef]

Halfmann, T.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, "Laser-induced population transfer by adiabatic passage techniques," Annu. Rev. Phys. Chem. 52, 763-809 (2001).
[CrossRef] [PubMed]

Hariharan, A.

J. S. Melinger, S. R. Gandhi, A. Hariharan, D. Goswami, and W. S. Warren, "Adiabatic population transfer with frequency-swept laser pulses," J. Chem. Phys. 101, 6439-6454 (1994).
[CrossRef]

Hartmann, M.

M. Hartmann, H. Stolz, and R. Zimmermann, "Kinetics of screening in optically excited semiconductors," Phys. Status Solidi B 159, 35-42 (1988).
[CrossRef]

Haug, H.

E. Sayed, L. Banyai, and H. Haug, "Coulomb quantum kinetics and optical dephasing on the femtosecond time scale," Phys. Rev. B 50,1541-1550 (1994).
[CrossRef]

H. Haug and S. W. Koch, "Semiconductor laser theory with many-body effects," Phys. Rev. A 39, 1887-1898 (1989).
[CrossRef] [PubMed]

S. Schmitt-Rink, D. S. Chemla, and H. Haug, "Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors," Phys. Rev. B 37, 941-955 (1988).
[CrossRef]

K. Henneberg and H. Haug, "Nonlinear optics and transport in laser-excited semiconductors," Phys. Rev. B 38, 9759-9770 (1988).
[CrossRef]

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2001).

H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer-Verlag, 1996).

Henneberg, K.

K. Henneberg and H. Haug, "Nonlinear optics and transport in laser-excited semiconductors," Phys. Rev. B 38, 9759-9770 (1988).
[CrossRef]

Henneberger, K.

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, "Carrier-carrier scattering and optical dephasing in highly excited semiconductors," Phys. Rev. B 45, 1107-1115 (1992).
[CrossRef]

Hess, O.

O. Hess and T. Kuhn, "Maxwell--Bloch equations for spatially inhomogeneous semiconductor lasers. I. Theoretical formulation," Phys. Rev. A 54, 3347-3359 (1998).
[CrossRef]

Hioe, F. T.

F. T. Hioe, "Solution of Bloch equations involving amplitude and frequency modulations," Phys. Rev. A 30, 2100-2103 (1984).
[CrossRef]

Hughes, S.

R. A. Indik, R. Binder, M. Mlejnek, J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, "Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers," Phys. Rev. A 53, 3614-3620 (1996).
[CrossRef] [PubMed]

Huguenin, R.

V. A. Gasparov and R. Huguenin, "Electron-phonon, electron-electron and electron-surface scattering in metals from ballistic effects," Adv. Phys. 42, 393-521 (1993).
[CrossRef]

Indik, R. A.

R. A. Indik, R. Binder, M. Mlejnek, J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, "Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers," Phys. Rev. A 53, 3614-3620 (1996).
[CrossRef] [PubMed]

Jauho, A. P.

H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer-Verlag, 1996).

Keller, U.

Ketterle, W.

M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
[CrossRef]

Knorr, A.

R. A. Indik, R. Binder, M. Mlejnek, J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, "Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers," Phys. Rev. A 53, 3614-3620 (1996).
[CrossRef] [PubMed]

A. Knorr, R. Binder, M. Lindberg, and S. W. Koch, "Theoretical study of resonant ultrashort-pulse propagation in semiconductors," Phys. Rev. A 46, 7179-7186 (1992).
[CrossRef] [PubMed]

Koch, S. W.

R. A. Indik, R. Binder, M. Mlejnek, J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, "Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers," Phys. Rev. A 53, 3614-3620 (1996).
[CrossRef] [PubMed]

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, "Carrier-carrier scattering and optical dephasing in highly excited semiconductors," Phys. Rev. B 45, 1107-1115 (1992).
[CrossRef]

A. Knorr, R. Binder, M. Lindberg, and S. W. Koch, "Theoretical study of resonant ultrashort-pulse propagation in semiconductors," Phys. Rev. A 46, 7179-7186 (1992).
[CrossRef] [PubMed]

M. Lindberg, R. Binder, and S. W. Koch, "Theory of the semiconductor photon echo," Phys. Rev. B 45, 1865-1875 (1992).
[CrossRef]

H. Haug and S. W. Koch, "Semiconductor laser theory with many-body effects," Phys. Rev. A 39, 1887-1898 (1989).
[CrossRef] [PubMed]

M. Lindberg and S. W. Koch, "Effective Bloch equations for semiconductors," Phys. Rev. B 38, 3342-3350 (1988).
[CrossRef]

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2001).

W. W. Chow, S. W. Koch, and M. Sargent, III, Semiconductor-Laser Physics (Springer-Verlag, 1997).

Kogan, S. M.

S. M. Kogan, "On the theory of hot electrons in semiconductors," Sov. Phys. Solid State 4, 1813-1819 (1963).

Kosloff, R.

Kuhn, A.

B. W. Shore, K. Bergmann, A. Kuhn, S. Schiemann, J. Oreg, and J. H. Eberly, "Laser-induced population transfer in multistate systems: a comparative study," Phys. Rev. A 45, 5297-5300 (1992).
[CrossRef] [PubMed]

Kuhn, T.

F. Rossi and T. Kuhn, "Theory of ultrafast phenomena in photoexcited semiconductors," Rev. Mod. Phys. 74, 895-950 (2002).
[CrossRef]

O. Hess and T. Kuhn, "Maxwell--Bloch equations for spatially inhomogeneous semiconductor lasers. I. Theoretical formulation," Phys. Rev. A 54, 3347-3359 (1998).
[CrossRef]

S. Haas, F. Rossi, and T. Kuhn, "Generalized Monte Carlo approach for the study of the coherent ultrafast carrier dynamics in photoexcited semiconductors," Phys. Rev. B 53, 12855-12868 (1996).
[CrossRef]

Kunde, J.

Kunike, M.

Y. N. Demkov and M. Kunike, Vestn. Leningr. Univ. Fiz. Khim. 16, 39 (1969).

Kurn, D. M.

M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
[CrossRef]

Levinsky, B.

B. D. Fainberg, B. Levinsky, and V. A. Gorbunov, "Femtosecond chirped pulse control of photoluminescence and generating electron-hole pairs in broadband semiconductors," J. Lumin. 102-103, 125-130 (2003).
[CrossRef]

Levinson, Y. B.

V. F. Gantmakher and Y. B. Levinson, Carrier Scattering in Metals and Semiconductors (North Holland, 1987).

Lindberg, M.

M. Lindberg, R. Binder, and S. W. Koch, "Theory of the semiconductor photon echo," Phys. Rev. B 45, 1865-1875 (1992).
[CrossRef]

A. Knorr, R. Binder, M. Lindberg, and S. W. Koch, "Theoretical study of resonant ultrashort-pulse propagation in semiconductors," Phys. Rev. A 46, 7179-7186 (1992).
[CrossRef] [PubMed]

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, "Carrier-carrier scattering and optical dephasing in highly excited semiconductors," Phys. Rev. B 45, 1107-1115 (1992).
[CrossRef]

M. Lindberg and S. W. Koch, "Effective Bloch equations for semiconductors," Phys. Rev. B 38, 3342-3350 (1988).
[CrossRef]

Lindenberg, M.

R. Binder and M. Lindenberg, "Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells," Phys. Rev. Lett. 81, 1477-1480 (1998).
[CrossRef]

Melinger, J. S.

J. S. Melinger, S. R. Gandhi, A. Hariharan, D. Goswami, and W. S. Warren, "Adiabatic population transfer with frequency-swept laser pulses," J. Chem. Phys. 101, 6439-6454 (1994).
[CrossRef]

Mewes, M.-O.

M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
[CrossRef]

Mlejnek, M.

R. A. Indik, R. Binder, M. Mlejnek, J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, "Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers," Phys. Rev. A 53, 3614-3620 (1996).
[CrossRef] [PubMed]

Moloney, J. V.

R. A. Indik, R. Binder, M. Mlejnek, J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, "Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers," Phys. Rev. A 53, 3614-3620 (1996).
[CrossRef] [PubMed]

Morier-Genoud, F.

Nagata, Y.

Y. Nagata and K. Yamashita, "Theoretical study on molecular excitation using chirped pulses in the condensed phase," Chem. Phys. Lett. 364, 144-151 (2002).
[CrossRef]

Oreg, J.

B. W. Shore, K. Bergmann, A. Kuhn, S. Schiemann, J. Oreg, and J. H. Eberly, "Laser-induced population transfer in multistate systems: a comparative study," Phys. Rev. A 45, 5297-5300 (1992).
[CrossRef] [PubMed]

Paul, A. E.

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, "Carrier-carrier scattering and optical dephasing in highly excited semiconductors," Phys. Rev. B 45, 1107-1115 (1992).
[CrossRef]

Rice, S. A.

M. Demirplak and S. A. Rice, "Optical control of molecular dynamics in a liquid," J. Chem. Phys. 116, 8028-8035 (2002).
[CrossRef]

R. J. Gordon, and S. A. Rice, "Active control of the dynamics of atoms and molecules," Annu. Rev. Phys. Chem. 48, 601-641 (1997).
[CrossRef] [PubMed]

D. J. Tannor and S. A. Rice, "Control of selectivity of chemical reaction via control of wave packet evolution," J. Chem. Phys. 83, 5013-5018 (1985).
[CrossRef]

Rossi, F.

F. Rossi and T. Kuhn, "Theory of ultrafast phenomena in photoexcited semiconductors," Rev. Mod. Phys. 74, 895-950 (2002).
[CrossRef]

S. Haas, F. Rossi, and T. Kuhn, "Generalized Monte Carlo approach for the study of the coherent ultrafast carrier dynamics in photoexcited semiconductors," Phys. Rev. B 53, 12855-12868 (1996).
[CrossRef]

Ruhman, S.

Sargent, III, M.

W. W. Chow, S. W. Koch, and M. Sargent, III, Semiconductor-Laser Physics (Springer-Verlag, 1997).

Sayed, E.

E. Sayed, L. Banyai, and H. Haug, "Coulomb quantum kinetics and optical dephasing on the femtosecond time scale," Phys. Rev. B 50,1541-1550 (1994).
[CrossRef]

Schiemann, S.

B. W. Shore, K. Bergmann, A. Kuhn, S. Schiemann, J. Oreg, and J. H. Eberly, "Laser-induced population transfer in multistate systems: a comparative study," Phys. Rev. A 45, 5297-5300 (1992).
[CrossRef] [PubMed]

Schmitt-Rink, S.

S. Schmitt-Rink, D. S. Chemla, and H. Haug, "Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors," Phys. Rev. B 37, 941-955 (1988).
[CrossRef]

Scott, D.

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, "Carrier-carrier scattering and optical dephasing in highly excited semiconductors," Phys. Rev. B 45, 1107-1115 (1992).
[CrossRef]

Shank, C. V.

G. Cerullo, C. J. Bardeen, Q. Wang, and C. V. Shank, "High-power femtosecond chirped pulse excitation of molecules in solution," Chem. Phys. Lett. 262, 362-368 (1996).
[CrossRef]

Shapiro, M.

M. Shapiro and P. Brumer, "Coherent and incoherent laser control of photochemical reactions," Int. Rev. Phys. Chem. 13, 187-230 (1994).
[CrossRef]

Shore, B. W.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, "Laser-induced population transfer by adiabatic passage techniques," Annu. Rev. Phys. Chem. 52, 763-809 (2001).
[CrossRef] [PubMed]

B. W. Shore, K. Bergmann, A. Kuhn, S. Schiemann, J. Oreg, and J. H. Eberly, "Laser-induced population transfer in multistate systems: a comparative study," Phys. Rev. A 45, 5297-5300 (1992).
[CrossRef] [PubMed]

Siegner, U.

Snoke, D. W.

D. W. Snoke, "Density dependence of electron scattering at low density," Phys. Rev. B 50, 11583-11591 (1994).
[CrossRef]

Steinmeyer, G.

Stolz, H.

M. Hartmann, H. Stolz, and R. Zimmermann, "Kinetics of screening in optically excited semiconductors," Phys. Status Solidi B 159, 35-42 (1988).
[CrossRef]

Suominen, K.-A.

B. M. Garraway and K.-A. Suominen, "Adiabatic passage by light-induced potentials in molecules," Phys. Rev. Lett. 80, 932-935 (1998).
[CrossRef]

Tannor, D. J.

D. J. Tannor and S. A. Rice, "Control of selectivity of chemical reaction via control of wave packet evolution," J. Chem. Phys. 83, 5013-5018 (1985).
[CrossRef]

Townsend, C. G.

M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
[CrossRef]

Treacy, E. B.

E. B. Treacy, "Adiabatic inversion with light pulses," Phys. Lett. A 27, 421-422 (1968).
[CrossRef]

Unanyan, G.-R.

G.-R. Unanyan, N. V. Vitanov, and K. Bergmann, "Preparation of entangled states by adiabatic passage," Phys. Rev. Lett. 87, 137902 (2001).
[CrossRef] [PubMed]

van Driel, H. M.

J. M. Fraser and H. M. van Driel, "Quantum interference control of free-carrier density in GaAs," Phys. Rev. B 68, 085208-085208-14 (2003).
[CrossRef]

Vitanov, N. V.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, "Laser-induced population transfer by adiabatic passage techniques," Annu. Rev. Phys. Chem. 52, 763-809 (2001).
[CrossRef] [PubMed]

G.-R. Unanyan, N. V. Vitanov, and K. Bergmann, "Preparation of entangled states by adiabatic passage," Phys. Rev. Lett. 87, 137902 (2001).
[CrossRef] [PubMed]

Wang, Q.

G. Cerullo, C. J. Bardeen, Q. Wang, and C. V. Shank, "High-power femtosecond chirped pulse excitation of molecules in solution," Chem. Phys. Lett. 262, 362-368 (1996).
[CrossRef]

Warren, W. S.

J. S. Melinger, S. R. Gandhi, A. Hariharan, D. Goswami, and W. S. Warren, "Adiabatic population transfer with frequency-swept laser pulses," J. Chem. Phys. 101, 6439-6454 (1994).
[CrossRef]

Wingreen, N. S.

N. S. Wingreen and M. Combescot, "Electron-electron scattering: collision integral and relaxation rate," Phys. Rev. B 40, 3191-3196 (1989).
[CrossRef]

Yamashita, K.

Y. Nagata and K. Yamashita, "Theoretical study on molecular excitation using chirped pulses in the condensed phase," Chem. Phys. Lett. 364, 144-151 (2002).
[CrossRef]

Zimmermann, R.

M. Hartmann, H. Stolz, and R. Zimmermann, "Kinetics of screening in optically excited semiconductors," Phys. Status Solidi B 159, 35-42 (1988).
[CrossRef]

R. Zimmermann, Many-Particle Theory of Highly Excited Semiconductors (Teubner, Berlin, 1988).

Adv. Phys.

V. A. Gasparov and R. Huguenin, "Electron-phonon, electron-electron and electron-surface scattering in metals from ballistic effects," Adv. Phys. 42, 393-521 (1993).
[CrossRef]

Annu. Rev. Phys. Chem.

R. J. Gordon, and S. A. Rice, "Active control of the dynamics of atoms and molecules," Annu. Rev. Phys. Chem. 48, 601-641 (1997).
[CrossRef] [PubMed]

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, "Laser-induced population transfer by adiabatic passage techniques," Annu. Rev. Phys. Chem. 52, 763-809 (2001).
[CrossRef] [PubMed]

Chem. Phys. Lett.

G. Cerullo, C. J. Bardeen, Q. Wang, and C. V. Shank, "High-power femtosecond chirped pulse excitation of molecules in solution," Chem. Phys. Lett. 262, 362-368 (1996).
[CrossRef]

Y. Nagata and K. Yamashita, "Theoretical study on molecular excitation using chirped pulses in the condensed phase," Chem. Phys. Lett. 364, 144-151 (2002).
[CrossRef]

B. D. Fainberg, "Absorption spectrum of intense chirped pulse by molecules in solution and the time evolution of vibrationally nonequilibrium populations," Chem. Phys. Lett. 332, 181-189 (2000).
[CrossRef]

Int. Rev. Phys. Chem.

M. Shapiro and P. Brumer, "Coherent and incoherent laser control of photochemical reactions," Int. Rev. Phys. Chem. 13, 187-230 (1994).
[CrossRef]

J. Chem. Phys.

J. S. Melinger, S. R. Gandhi, A. Hariharan, D. Goswami, and W. S. Warren, "Adiabatic population transfer with frequency-swept laser pulses," J. Chem. Phys. 101, 6439-6454 (1994).
[CrossRef]

M. Demirplak and S. A. Rice, "Optical control of molecular dynamics in a liquid," J. Chem. Phys. 116, 8028-8035 (2002).
[CrossRef]

D. J. Tannor and S. A. Rice, "Control of selectivity of chemical reaction via control of wave packet evolution," J. Chem. Phys. 83, 5013-5018 (1985).
[CrossRef]

B. D. Fainberg and V. A. Gorbunov, "Coherent population transfer in molecules coupled with dissipative environment by intense ultrashort chirped pulse," J. Chem. Phys. 117, 7222-7232 (2002).
[CrossRef]

B. D. Fainberg and V. A. Gorbunov, "Coherent population transfer in molecules coupled with dissipative environment by intense ultrashort chirped pulse. II. A simple model," J. Chem. Phys. 121, 8748-8754 (2004).
[CrossRef] [PubMed]

J. Lumin.

B. D. Fainberg, B. Levinsky, and V. A. Gorbunov, "Femtosecond chirped pulse control of photoluminescence and generating electron-hole pairs in broadband semiconductors," J. Lumin. 102-103, 125-130 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Phys. Lett. A

E. B. Treacy, "Adiabatic inversion with light pulses," Phys. Lett. A 27, 421-422 (1968).
[CrossRef]

Phys. Rev. A

F. T. Hioe, "Solution of Bloch equations involving amplitude and frequency modulations," Phys. Rev. A 30, 2100-2103 (1984).
[CrossRef]

O. Hess and T. Kuhn, "Maxwell--Bloch equations for spatially inhomogeneous semiconductor lasers. I. Theoretical formulation," Phys. Rev. A 54, 3347-3359 (1998).
[CrossRef]

B. W. Shore, K. Bergmann, A. Kuhn, S. Schiemann, J. Oreg, and J. H. Eberly, "Laser-induced population transfer in multistate systems: a comparative study," Phys. Rev. A 45, 5297-5300 (1992).
[CrossRef] [PubMed]

R. A. Indik, R. Binder, M. Mlejnek, J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, "Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers," Phys. Rev. A 53, 3614-3620 (1996).
[CrossRef] [PubMed]

H. Haug and S. W. Koch, "Semiconductor laser theory with many-body effects," Phys. Rev. A 39, 1887-1898 (1989).
[CrossRef] [PubMed]

A. Knorr, R. Binder, M. Lindberg, and S. W. Koch, "Theoretical study of resonant ultrashort-pulse propagation in semiconductors," Phys. Rev. A 46, 7179-7186 (1992).
[CrossRef] [PubMed]

Phys. Rev. B

M. Lindberg, R. Binder, and S. W. Koch, "Theory of the semiconductor photon echo," Phys. Rev. B 45, 1865-1875 (1992).
[CrossRef]

M. Lindberg and S. W. Koch, "Effective Bloch equations for semiconductors," Phys. Rev. B 38, 3342-3350 (1988).
[CrossRef]

S. Haas, F. Rossi, and T. Kuhn, "Generalized Monte Carlo approach for the study of the coherent ultrafast carrier dynamics in photoexcited semiconductors," Phys. Rev. B 53, 12855-12868 (1996).
[CrossRef]

E. Sayed, L. Banyai, and H. Haug, "Coulomb quantum kinetics and optical dephasing on the femtosecond time scale," Phys. Rev. B 50,1541-1550 (1994).
[CrossRef]

J. M. Fraser and H. M. van Driel, "Quantum interference control of free-carrier density in GaAs," Phys. Rev. B 68, 085208-085208-14 (2003).
[CrossRef]

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, "Carrier-carrier scattering and optical dephasing in highly excited semiconductors," Phys. Rev. B 45, 1107-1115 (1992).
[CrossRef]

S. Schmitt-Rink, D. S. Chemla, and H. Haug, "Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors," Phys. Rev. B 37, 941-955 (1988).
[CrossRef]

K. Henneberg and H. Haug, "Nonlinear optics and transport in laser-excited semiconductors," Phys. Rev. B 38, 9759-9770 (1988).
[CrossRef]

D. W. Snoke, "Density dependence of electron scattering at low density," Phys. Rev. B 50, 11583-11591 (1994).
[CrossRef]

M. Combescot and R. Combescot, "Conductivity relaxation time due to electron-hole collision in optically excited semiconductors," Phys. Rev. B 35, 7986-7991 (1987).
[CrossRef]

N. S. Wingreen and M. Combescot, "Electron-electron scattering: collision integral and relaxation rate," Phys. Rev. B 40, 3191-3196 (1989).
[CrossRef]

Phys. Rev. Lett.

G.-R. Unanyan, N. V. Vitanov, and K. Bergmann, "Preparation of entangled states by adiabatic passage," Phys. Rev. Lett. 87, 137902 (2001).
[CrossRef] [PubMed]

M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output coupler for Bose-Einstein condensed atoms," Phys. Rev. Lett. 78, 582-585 (1997).
[CrossRef]

S. Chelkowski, A. Bandrauk, and P. B. Corkum, "Efficient molecular dissociation by a chirped ultrashort infrared laser pulse," Phys. Rev. Lett. 65, 2355-2358 (1990).
[CrossRef] [PubMed]

R. Binder and M. Lindenberg, "Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells," Phys. Rev. Lett. 81, 1477-1480 (1998).
[CrossRef]

B. M. Garraway and K.-A. Suominen, "Adiabatic passage by light-induced potentials in molecules," Phys. Rev. Lett. 80, 932-935 (1998).
[CrossRef]

Phys. Status Solidi B

M. Hartmann, H. Stolz, and R. Zimmermann, "Kinetics of screening in optically excited semiconductors," Phys. Status Solidi B 159, 35-42 (1988).
[CrossRef]

Rev. Mod. Phys.

F. Rossi and T. Kuhn, "Theory of ultrafast phenomena in photoexcited semiconductors," Rev. Mod. Phys. 74, 895-950 (2002).
[CrossRef]

Sov. Phys. JETP

V. M. Galitskii, S. P. Goreslavskii, and V. F. Elesin, "Electric and magnetic properties of a semiconductor in the field of a strong electromagnetic wave," Sov. Phys. JETP 30, 117-122 (1970).

Sov. Phys. Solid State

S. M. Kogan, "On the theory of hot electrons in semiconductors," Sov. Phys. Solid State 4, 1813-1819 (1963).

Vestn. Leningr. Univ. Fiz. Khim.

Y. N. Demkov and M. Kunike, Vestn. Leningr. Univ. Fiz. Khim. 16, 39 (1969).

Other

G. A. Baker, Jr. and P. Graves-Morris, Padé Approximants (Addison-Wesley, 1981).

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2001).

V. F. Gantmakher and Y. B. Levinson, Carrier Scattering in Metals and Semiconductors (North Holland, 1987).

H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer-Verlag, 1996).

R. Zimmermann, Many-Particle Theory of Highly Excited Semiconductors (Teubner, Berlin, 1988).

W. W. Chow, S. W. Koch, and M. Sargent, III, Semiconductor-Laser Physics (Springer-Verlag, 1997).

L. Allen and J.-H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagrams of the intrapulse pump-dump process for NC and PC pulse excitation. The time of the interaction of the excited molecule with light ( τ 2 ) shortens for PC excitation with respect to that for NC excitation. We used designations of the time arguments in accordance with the double-sided Feynman diagrams describing the intrapulse pump-dump process (see Fig. 6 of Ref. [13]).

Fig. 2
Fig. 2

Continuum part of the bandgap absorption spectrum in an unexcited sample (solid curve), calculated by the Elliott formula,[23, 27], together with exciting pulse spectra for different detunings of the carrier pulse frequency, ω, with respect to the semiconductor optical gap Δ 0 = ω E g = 0 (dashed curve), 80 (dashed–dotted curve) and 140.4 (dotted curve) meV. The Elliott formula is adjusted for the dipole moment dependence on the carrier energy [Eq. (9)].

Fig. 3
Fig. 3

Excited carrier densities n after the completion of the pulse action as functions of Φ ( ν ) for different detunings (a) Δ 0 = 0 , (b) 80, and (c) 140.4 meV. T, total model; F, free-carrier model; R, solely relaxation model; S, simplified relaxation model[24] Γ k e = Γ k h = 17 ps 1 adjusted for many-body effects (see text); P, partial many-body effects model.

Fig. 4
Fig. 4

(a) Relaxation rates [ γ k (A), Γ k e e + Γ k e h (B), Γ k h h + Γ k h e (C), Γ k e p h (D) and Γ k h p h (E)], (b) carrier density, and (c) carrier temperature as functions of time for PC [left column, Φ ( ν ) = 10 4 fs 2 ] and NC [right column, Φ ( ν ) = 10 4 fs 2 ] excitation. Detuning is Δ 0 = 140.4 meV . The exciting pulse shape [ E ( t ) E 0 ] 2 is also shown at each graph (dotted curves).

Fig. 5
Fig. 5

Energies {left axis; ϵ k cond , dashed–dotted line; ϵ k v , dotted curve, dressed states [Eq. (28)] E 1 , solid curve and E 2 , dashed curve} and the weighted nonequilibrium distribution functions (populations) [right axis; ( k a B ) 2 F k e , solid curve and ( k a B ) 2 F k h , dashed curve) as functions of the wave number k at the (a) beginning, (b) middle, and (c) end of the exciting pulse for positive (left column, Φ ( ν ) = 10 4 fs 2 ) and negative (right column, Φ ( ν ) = 10 4 fs 2 ) chirp. The parameters are identical to those of Fig. 4. Inset, the square of electric field amplitude [ E ( t ) E 0 ] 2 of the exciting pulse in relative units. The arrows show the instants of time corresponding to (a), (b), and (c).

Fig. 6
Fig. 6

Time evolution of renormalized electron energies ϵ k cond and ϵ k v (solid curves) and the corresponding nonrenormalized energies ϵ k 0 , cond and ϵ k 0 , v (dotted curves) for positive [left column, Φ ( ν ) = 10 4 fs 2 ] and negative [right column, Φ ( ν ) = 10 4 fs 2 ] chirp and different detunings (a) Δ 0 = 0 and (b) 140.4 meV . The other parameters are identical to those of Fig. 4. Inset, the square of electric field amplitude [ E ( t ) E 0 ] 2 of the exciting pulse in relative units. The arrows show the instants of time corresponding to curves (A), (B), and (C) for the ”photonic replications” of the valence band ϵ k v and ϵ k 0 , v .

Equations (59)

Equations on this page are rendered with MathJax. Learn more.

Φ ± ( t ) = [ sin ϑ ( t ) cos ϑ ( t ) ] 1 ± [ cos ϑ ( t ) sin ϑ ( t ) ] 2
E ( t ) = E ( + ) ( t ) + E ( ) ( t ) = 1 2 E ( t ) exp [ i ω t + i φ ( t ) ] + c.c. ,
d F k c d t = Im ( U k P k * ) + ( d F k c d t ) scat ,
d P k d t = i Δ k ( t ) P k + i 2 U k ( 1 F k e F k h ) + ( d P k d t ) scat ,
Δ k ( t ) = ω ( t ) E g ϵ k = Δ 0 d φ ( t ) d t ϵ k ,
Δ ϵ CH = q 0 [ V s ( q ) V ( q ) ]
Δ ϵ SX , k = q V s ( q ) ( F k + q e + F k + q h )
U k = d c v E ( t ) + 2 k V s ( k k ) P k
d c v ( k ) = d c v 1 + exp [ ( ϵ k ϵ c ) Δ c ] ,
V s ( q ) = V ( q ) [ 1 + κ 2 q 2 + C κ 2 ( q 2 4 m r ω pl ) 2 ] 1 ,
κ 2 = 4 π ( e 2 ϵ 0 ) 2 π 2 ( m e 0 d k F k e + m h 0 d k F k h ) ,
ω pl 2 = 4 π e 2 n e ( m r ϵ 0 ) ,
n c = 2 L 3 k F k c .
( d F k c d t ) scat = ( d F k c d t ) c ph ( 0 ) Γ k c { F k c f k  c [ μ c ( t ) , T ( t ) ] } ,
( d P k d t ) scat = γ k P k ,
γ k = ( Γ k e + Γ k h ) 2
Γ k e = Γ k e e + Γ k e h + Γ k e ph ,
Γ k h = Γ k h - h + Γ k h - e + Γ k h - ph ,
ϵ kin = 2 L 3 k , c ϵ k 0 c F k c .
E ( t ) exp [ i φ ( t ) ] = E 0 exp [ 1 2 ( δ  2 i μ ) ( t t 0 ) 2 ] .
δ  2 = { τ 0 2 + [ Φ 2 ( ω ) τ 0 2 ] } 1 , μ = Φ ( ω ) [ τ 0 4 + Φ 2 ( ω ) ] 1 ,
Φ ( ω ) τ 0 2 .
d ω ( t ) d t U k ( t ) 2 .
S 0 2 π .
U k ( t ) γ k ,
S 0 [ 2 π Φ ( ν ) ] 1 2 γ k .
ϵ k cond = 2 k 2 2 m e q V s ( q ) F k + q e
ϵ k v = ω ( t ) ( E g + Δ ϵ CH ) 2 k 2 2 m h + q V s ( q ) F k + q h .
E 1 , 2 ( t ) = 1 2 { ( ϵ k cond + ϵ k v ) [ Δ k 2 ( t ) + U k 2 ] 1 2 } ,
Δ k ( t ) = ϵ k v ϵ k cond = ( ϵ k 0 , v ϵ k 0 , cond ) Δ ϵ k = [ ω ( t ) E g ϵ k 0 h ϵ k 0 e ] Δ ϵ k ,
[ Δ k ( t f ) Δ k ( t i ) ] = [ ω ( t f ) ω ( t i ) ] Δ ϵ k ( t f ) ,
( d F k c d t ) scat = Γ in c [ k , F ] ( 1 F k c ) Γ out c [ k , F ] F k c ,
( d P k d t ) scat = P k k W ¯ k k p + k W ¯ k k p P k
W ¯ k k e = W ¯ k k e e + W ¯ k k e h + W ¯ k k e ph ,
W ¯ k k h = W ¯ k k h - h + W ¯ k k h - e + W ¯ k k h - ph ,
Γ k c - c , ND = 4 3 2 π 3 E B c ( T F c T ) 3 2 ln Q s 2 ,
Γ k e h , ND = 16 9 π 3 2 E B ( T n T ) 3 2 ln Q n 2 ,
Γ k c - c , D = π 2 6 E B c ( T T F c ) 2 k F κ ,
κ 2 = 4 m r ( e 2 ϵ 0 ) 2 ( 3 n π ) 1 3 ( m e ¯ + m h ¯ )
Γ k c - c , D = π 5 2 12 E B c ( T T F c ) 2 ( k B T F c E B c ) 1 4 m ¯ c 1∕2 ( m e ¯ + m h ¯ ) 1 2 .
Γ k e h , D = π 5 2 12 E B ( T T n ) 2 ( k B T n E B ) 1 4 m ¯ e 2 m ¯ h 2 ( m e ¯ + m h ¯ ) 1 2 .
( Γ k c - c , ND Γ k e h , ND ) = η g ND ( m ¯ c 1 2 2 2 3 ) n
( Γ k c - c , D Γ k e h , D ) = g D ( m ¯ c 3 m ¯ e 2 m ¯ h 2 ) n 7 6
g ND = 2 π E B 2 ( k B T m r ) 3 2
g D = ( π 3 ) 1 6 E B 3 4 ( k B T ) 2 m r 7 4 2 1 4 9 9 2 ( m e ¯ + m h ¯ ) 1 2 .
Γ k c - c = η g ND m ¯ c 1 2 n 1 + η g ND g D m ¯ c 7 2 n 13 6 ,
Γ k e h = 2 ( 2 3 ) η g ND n 1 + 2 ( 2 3 ) η g ND g D m ¯ e 2 m ¯ h 2 n 13 6 .
W ¯ k k ( ± ) c - ph = 2 π M k k ± q 2 [ N T 0 ( ω 0 ) + 1 2 ± 1 2 ] δ ( ϵ k 0 c ϵ k 0 c ω 0 ) ,
M k k ± q 2 = δ k , k q 1 L 3 B ( q ) ,
B ( q ) = B 0 q 2 ( q 2 q 2 + κ 2 ) 2
( d F k c d t ) c - ph ( 0 ) = 1 4 ( ω 0 ϵ k 0 c ) 1 2 1 τ P O [ N T ( ω 0 ) N T 0 ( ω 0 ) ] { [ f F  c ( ϵ k 0 c ω 0 ) f F  c ( ϵ k 0 c ) ] θ ( ϵ k 0 c ω 0 ) U c + + [ f F  c ( ϵ k 0 c + ω 0 ) f F  c ( ϵ k 0 c ) ] U c } ,
U c ± = ln [ ( ϵ k 0 c ω 0 ) 1 2 + ( ϵ k 0 c ) 1 2 ] 2 + κ 2 2 2 m c [ ( ϵ k 0 c ω 0 ) 1 2 ( ϵ k 0 c ) 1 2 ] 2 + κ 2 2 2 m c + κ 2 ( 2 m c 2 ) [ ( ϵ k 0 c ω 0 ) 1 2 + ( ϵ k 0 c ) 1 2 ] 2 + κ 2 κ 2 ( 2 m c 2 ) [ ( ϵ k 0 c ω 0 ) 1 2 ( ϵ k 0 c ) 1 2 ] 2 + κ 2 .
Γ k c - ph = k [ W ¯ k k ( + ) c - ph 1 f F  c ( ϵ k 0 c ω 0 ) 1 f F  c ( ϵ k 0 c ) + W ¯ k k ( ) c - ph 1 f F  c ( ϵ k 0 c + ω 0 ) 1 f F  c ( ϵ k 0 c ) ] .
Γ k c - ph = m c p 0 c 2 π 2 β n c 1 τ P O 1 2 0 q 3 d q ( q 2 + κ 2 ) 2 ( [ N T 0 ( ω 0 ) + 1 ] exp ( β ω 0 ) ln { 1 + exp [ β ( μ c + ω 0 ϵ + ) ] } + N T 0 ( ω 0 ) exp ( β ω 0 ) ln { 1 + exp [ β ( μ c ω 0 ϵ ) ] } ) ,
E ( t ) = E 0 sech ( t t 0 τ ) , φ ( t ) = γ π τ 0 t tanh ( t t 0 τ ) d t .
F k e ( ) + F k h ( ) = 2 sec [ ( γ + γ 0 ) 2 ) ] sec [ ( γ γ 0 ) 2 ] [ sin 2 ( Φ 2 ) cosh 2 ( γ 2 ) + cos 2 ( Φ 2 ) sinh 2 ( γ 2 ) ] ,
n ( ) = 2 m r 3 2 3 π 2 0 d ϵ ϵ 1 1 + exp [ ( ϵ ϵ c ) Δ c ] cosh γ cos Φ cosh γ + cosh γ 0 .
Δ ϵ CH = 7.62 E B r s 1 2 ( 1 + 8.4 r s 1 2 ) 1 2 ,
Δ ϵ SX , k = 0.81 E B r s 1 ( 1 1 1 + 2.51 r s 1 ) ,

Metrics