Abstract

We present new experimental data on the highly excited levels in mercury using the optogalvanic detection technique in conjunction with a dc discharge cell. The collisionally populated 6s6pP23 metastable level has been used as an intermediate level to access the Rydberg states using a frequency-doubled dye laser covering the wavelength region between 370 and 249 nm. The optogalvanic data reveal 6snsS13(13n50), 6sndD21(6n18), 6snpD13(6n14), 6sndD23(6n15), and 6sndD33(6n59) Rydberg series. The 6snsS13 and 6sndD33 Rydberg series to such a high n value have been reported for the first time. In addition, collisionally induced parity-forbidden transitions 6snpP13(44n50) have been detected.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. F. Gallagher, Rydberg Atoms (Cambridge U. Press, 1994).
    [CrossRef]
  2. J. P. Connerade, Highly Excited Atoms (Cambridge U. Press, 1998).
    [CrossRef]
  3. W. Demtroeder, Laser Spectroscopy (Springer-Verlag, 1998).
  4. M. A. Zia, B. Suleman and M. A. Baig, "Two-photon laser optogalvanic spectroscopy of the Rydberg of mercury by rf discharge," J. Phys. B 36, 4631-4639 (2003).
    [CrossRef]
  5. M. A. Zia and M. A. Baig, "Two-step laser optogalvanic spectroscopy of the odd-parity Rydberg states of atomic mercury," Eur. Phys. J. D 28, 323-330 (2004).
    [CrossRef]
  6. J. E. M. Goldsmith and J. E. Lawler, "Optogalvanic spectroscopy," Contemp. Phys. 22, 235-248 (1981).
    [CrossRef]
  7. B. Barbieri, N. Beverini, and A. Sasso, "Optogalvanic spectroscopy," Rev. Mod. Phys. 62, 603-644 (1990).
    [CrossRef]
  8. W. H. Richardson, L. Maleki, and E. Gamire, "Experimental and theoretical investigation of the optogalvanic effect in a Hg-Ar discharge," Phys. Rev. A 36, 5713-5728 (1987).
    [CrossRef] [PubMed]
  9. C. E. Moore, Atomic Energy Levels Vol III (NSRDS-NBS 35, Washington, D.C., 1971).
  10. A. A. Radzig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions, Springer Series in Chemical Physics (Springer-Verlag, 1985).
    [CrossRef]
  11. A. R. Stribanov and N. S. Sventitskii, Tables of Spectral Lines of Neutral and Ionized Atoms (Plenum, 1968).
    [CrossRef]
  12. B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules (Prentice Hall, 2003) p. 451.
  13. H. G. Kuhn, Atomic Spectra (Longman, 1971), p. 286.
  14. R. Beigang, K. Lucke, D. Schmidt, A. Timmermann, and P. J. West, "One-photon spectroscopy of Rydberg series from metastable levels in calcium and strontium," Phys. Scr. 26, 183-188 (1982).
    [CrossRef]
  15. L. J. Curtis, "Semiempirical specification of singlet-triplet mixing angles, oscillator strengths, and g factors in nsn′l,nsn′p5,np2, and np4 configurations," Phys. Rev. A 40, 6958-6968 (1989).
    [CrossRef] [PubMed]
  16. L. J. Curtis, "A semiclassical formula for the term energy of a many-electron atom," J. Phys. B 14, 1373-1386 (1981).
    [CrossRef]
  17. C. J. Lorenzen and K Niemmax, "Quantum defect of the n2P1/2,3/2 levels in K39 I and RB85 I," Phys. Scr. 27, 300-305 (1983).
    [CrossRef]
  18. M. A. Baig, R. Ali, and S. A. Bhatti, "High Rydberg transitions in the principal and intercombination series of mercury," J. Phys. B 16, 1511-1523 (1983).
    [CrossRef]
  19. D. Wu, Y. Yang, and K. T. Lu, "Collision-induced two-photon forbidden 6s2S1-6snpP1 transitions in Ba I," J. Phys. B 23, L149-L152 (1990).
    [CrossRef]
  20. J. Zhang and K. T. Lu, "Collision-induced two-photon forbidden 3s2S1-3snpP1 transitions and collisional enhancement of 3s2S1-3snsS1 in Mg I," J. Phys. B 20, 5065-5077 (1987).
    [CrossRef]
  21. B. N. Ganguly, "Measurement of high Rydberg P1 spectra of atomic helium and its application to glow discharge diagnostics," J. Appl. Phys. 60, 571-576 (1986).
    [CrossRef]

2004 (1)

M. A. Zia and M. A. Baig, "Two-step laser optogalvanic spectroscopy of the odd-parity Rydberg states of atomic mercury," Eur. Phys. J. D 28, 323-330 (2004).
[CrossRef]

2003 (1)

M. A. Zia, B. Suleman and M. A. Baig, "Two-photon laser optogalvanic spectroscopy of the Rydberg of mercury by rf discharge," J. Phys. B 36, 4631-4639 (2003).
[CrossRef]

1990 (2)

D. Wu, Y. Yang, and K. T. Lu, "Collision-induced two-photon forbidden 6s2S1-6snpP1 transitions in Ba I," J. Phys. B 23, L149-L152 (1990).
[CrossRef]

B. Barbieri, N. Beverini, and A. Sasso, "Optogalvanic spectroscopy," Rev. Mod. Phys. 62, 603-644 (1990).
[CrossRef]

1989 (1)

L. J. Curtis, "Semiempirical specification of singlet-triplet mixing angles, oscillator strengths, and g factors in nsn′l,nsn′p5,np2, and np4 configurations," Phys. Rev. A 40, 6958-6968 (1989).
[CrossRef] [PubMed]

1987 (2)

W. H. Richardson, L. Maleki, and E. Gamire, "Experimental and theoretical investigation of the optogalvanic effect in a Hg-Ar discharge," Phys. Rev. A 36, 5713-5728 (1987).
[CrossRef] [PubMed]

J. Zhang and K. T. Lu, "Collision-induced two-photon forbidden 3s2S1-3snpP1 transitions and collisional enhancement of 3s2S1-3snsS1 in Mg I," J. Phys. B 20, 5065-5077 (1987).
[CrossRef]

1986 (1)

B. N. Ganguly, "Measurement of high Rydberg P1 spectra of atomic helium and its application to glow discharge diagnostics," J. Appl. Phys. 60, 571-576 (1986).
[CrossRef]

1983 (2)

C. J. Lorenzen and K Niemmax, "Quantum defect of the n2P1/2,3/2 levels in K39 I and RB85 I," Phys. Scr. 27, 300-305 (1983).
[CrossRef]

M. A. Baig, R. Ali, and S. A. Bhatti, "High Rydberg transitions in the principal and intercombination series of mercury," J. Phys. B 16, 1511-1523 (1983).
[CrossRef]

1982 (1)

R. Beigang, K. Lucke, D. Schmidt, A. Timmermann, and P. J. West, "One-photon spectroscopy of Rydberg series from metastable levels in calcium and strontium," Phys. Scr. 26, 183-188 (1982).
[CrossRef]

1981 (2)

J. E. M. Goldsmith and J. E. Lawler, "Optogalvanic spectroscopy," Contemp. Phys. 22, 235-248 (1981).
[CrossRef]

L. J. Curtis, "A semiclassical formula for the term energy of a many-electron atom," J. Phys. B 14, 1373-1386 (1981).
[CrossRef]

Ali, R.

M. A. Baig, R. Ali, and S. A. Bhatti, "High Rydberg transitions in the principal and intercombination series of mercury," J. Phys. B 16, 1511-1523 (1983).
[CrossRef]

Baig, M. A.

M. A. Zia and M. A. Baig, "Two-step laser optogalvanic spectroscopy of the odd-parity Rydberg states of atomic mercury," Eur. Phys. J. D 28, 323-330 (2004).
[CrossRef]

M. A. Zia, B. Suleman and M. A. Baig, "Two-photon laser optogalvanic spectroscopy of the Rydberg of mercury by rf discharge," J. Phys. B 36, 4631-4639 (2003).
[CrossRef]

M. A. Baig, R. Ali, and S. A. Bhatti, "High Rydberg transitions in the principal and intercombination series of mercury," J. Phys. B 16, 1511-1523 (1983).
[CrossRef]

Barbieri, B.

B. Barbieri, N. Beverini, and A. Sasso, "Optogalvanic spectroscopy," Rev. Mod. Phys. 62, 603-644 (1990).
[CrossRef]

Beigang, R.

R. Beigang, K. Lucke, D. Schmidt, A. Timmermann, and P. J. West, "One-photon spectroscopy of Rydberg series from metastable levels in calcium and strontium," Phys. Scr. 26, 183-188 (1982).
[CrossRef]

Beverini, N.

B. Barbieri, N. Beverini, and A. Sasso, "Optogalvanic spectroscopy," Rev. Mod. Phys. 62, 603-644 (1990).
[CrossRef]

Bhatti, S. A.

M. A. Baig, R. Ali, and S. A. Bhatti, "High Rydberg transitions in the principal and intercombination series of mercury," J. Phys. B 16, 1511-1523 (1983).
[CrossRef]

Bransden, B. H.

B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules (Prentice Hall, 2003) p. 451.

Connerade, J. P.

J. P. Connerade, Highly Excited Atoms (Cambridge U. Press, 1998).
[CrossRef]

Curtis, L. J.

L. J. Curtis, "Semiempirical specification of singlet-triplet mixing angles, oscillator strengths, and g factors in nsn′l,nsn′p5,np2, and np4 configurations," Phys. Rev. A 40, 6958-6968 (1989).
[CrossRef] [PubMed]

L. J. Curtis, "A semiclassical formula for the term energy of a many-electron atom," J. Phys. B 14, 1373-1386 (1981).
[CrossRef]

Demtroeder, W.

W. Demtroeder, Laser Spectroscopy (Springer-Verlag, 1998).

Gallagher, T. F.

T. F. Gallagher, Rydberg Atoms (Cambridge U. Press, 1994).
[CrossRef]

Gamire, E.

W. H. Richardson, L. Maleki, and E. Gamire, "Experimental and theoretical investigation of the optogalvanic effect in a Hg-Ar discharge," Phys. Rev. A 36, 5713-5728 (1987).
[CrossRef] [PubMed]

Ganguly, B. N.

B. N. Ganguly, "Measurement of high Rydberg P1 spectra of atomic helium and its application to glow discharge diagnostics," J. Appl. Phys. 60, 571-576 (1986).
[CrossRef]

Goldsmith, J. E.

J. E. M. Goldsmith and J. E. Lawler, "Optogalvanic spectroscopy," Contemp. Phys. 22, 235-248 (1981).
[CrossRef]

Joachain, C. J.

B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules (Prentice Hall, 2003) p. 451.

Kuhn, H. G.

H. G. Kuhn, Atomic Spectra (Longman, 1971), p. 286.

Lawler, J. E.

J. E. M. Goldsmith and J. E. Lawler, "Optogalvanic spectroscopy," Contemp. Phys. 22, 235-248 (1981).
[CrossRef]

Lorenzen, C. J.

C. J. Lorenzen and K Niemmax, "Quantum defect of the n2P1/2,3/2 levels in K39 I and RB85 I," Phys. Scr. 27, 300-305 (1983).
[CrossRef]

Lu, K. T.

D. Wu, Y. Yang, and K. T. Lu, "Collision-induced two-photon forbidden 6s2S1-6snpP1 transitions in Ba I," J. Phys. B 23, L149-L152 (1990).
[CrossRef]

J. Zhang and K. T. Lu, "Collision-induced two-photon forbidden 3s2S1-3snpP1 transitions and collisional enhancement of 3s2S1-3snsS1 in Mg I," J. Phys. B 20, 5065-5077 (1987).
[CrossRef]

Lucke, K.

R. Beigang, K. Lucke, D. Schmidt, A. Timmermann, and P. J. West, "One-photon spectroscopy of Rydberg series from metastable levels in calcium and strontium," Phys. Scr. 26, 183-188 (1982).
[CrossRef]

Maleki, L.

W. H. Richardson, L. Maleki, and E. Gamire, "Experimental and theoretical investigation of the optogalvanic effect in a Hg-Ar discharge," Phys. Rev. A 36, 5713-5728 (1987).
[CrossRef] [PubMed]

Moore, C. E.

C. E. Moore, Atomic Energy Levels Vol III (NSRDS-NBS 35, Washington, D.C., 1971).

Niemmax, K

C. J. Lorenzen and K Niemmax, "Quantum defect of the n2P1/2,3/2 levels in K39 I and RB85 I," Phys. Scr. 27, 300-305 (1983).
[CrossRef]

Radzig, A. A.

A. A. Radzig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions, Springer Series in Chemical Physics (Springer-Verlag, 1985).
[CrossRef]

Richardson, W. H.

W. H. Richardson, L. Maleki, and E. Gamire, "Experimental and theoretical investigation of the optogalvanic effect in a Hg-Ar discharge," Phys. Rev. A 36, 5713-5728 (1987).
[CrossRef] [PubMed]

Sasso, A.

B. Barbieri, N. Beverini, and A. Sasso, "Optogalvanic spectroscopy," Rev. Mod. Phys. 62, 603-644 (1990).
[CrossRef]

Schmidt, D.

R. Beigang, K. Lucke, D. Schmidt, A. Timmermann, and P. J. West, "One-photon spectroscopy of Rydberg series from metastable levels in calcium and strontium," Phys. Scr. 26, 183-188 (1982).
[CrossRef]

Smirnov, B. M.

A. A. Radzig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions, Springer Series in Chemical Physics (Springer-Verlag, 1985).
[CrossRef]

Stribanov, A. R.

A. R. Stribanov and N. S. Sventitskii, Tables of Spectral Lines of Neutral and Ionized Atoms (Plenum, 1968).
[CrossRef]

Suleman, B.

M. A. Zia, B. Suleman and M. A. Baig, "Two-photon laser optogalvanic spectroscopy of the Rydberg of mercury by rf discharge," J. Phys. B 36, 4631-4639 (2003).
[CrossRef]

Sventitskii, N. S.

A. R. Stribanov and N. S. Sventitskii, Tables of Spectral Lines of Neutral and Ionized Atoms (Plenum, 1968).
[CrossRef]

Timmermann, A.

R. Beigang, K. Lucke, D. Schmidt, A. Timmermann, and P. J. West, "One-photon spectroscopy of Rydberg series from metastable levels in calcium and strontium," Phys. Scr. 26, 183-188 (1982).
[CrossRef]

West, P. J.

R. Beigang, K. Lucke, D. Schmidt, A. Timmermann, and P. J. West, "One-photon spectroscopy of Rydberg series from metastable levels in calcium and strontium," Phys. Scr. 26, 183-188 (1982).
[CrossRef]

Wu, D.

D. Wu, Y. Yang, and K. T. Lu, "Collision-induced two-photon forbidden 6s2S1-6snpP1 transitions in Ba I," J. Phys. B 23, L149-L152 (1990).
[CrossRef]

Yang, Y.

D. Wu, Y. Yang, and K. T. Lu, "Collision-induced two-photon forbidden 6s2S1-6snpP1 transitions in Ba I," J. Phys. B 23, L149-L152 (1990).
[CrossRef]

Zhang, J.

J. Zhang and K. T. Lu, "Collision-induced two-photon forbidden 3s2S1-3snpP1 transitions and collisional enhancement of 3s2S1-3snsS1 in Mg I," J. Phys. B 20, 5065-5077 (1987).
[CrossRef]

Zia, M. A.

M. A. Zia and M. A. Baig, "Two-step laser optogalvanic spectroscopy of the odd-parity Rydberg states of atomic mercury," Eur. Phys. J. D 28, 323-330 (2004).
[CrossRef]

M. A. Zia, B. Suleman and M. A. Baig, "Two-photon laser optogalvanic spectroscopy of the Rydberg of mercury by rf discharge," J. Phys. B 36, 4631-4639 (2003).
[CrossRef]

Contemp. Phys. (1)

J. E. M. Goldsmith and J. E. Lawler, "Optogalvanic spectroscopy," Contemp. Phys. 22, 235-248 (1981).
[CrossRef]

Eur. Phys. J. D (1)

M. A. Zia and M. A. Baig, "Two-step laser optogalvanic spectroscopy of the odd-parity Rydberg states of atomic mercury," Eur. Phys. J. D 28, 323-330 (2004).
[CrossRef]

J. Appl. Phys. (1)

B. N. Ganguly, "Measurement of high Rydberg P1 spectra of atomic helium and its application to glow discharge diagnostics," J. Appl. Phys. 60, 571-576 (1986).
[CrossRef]

J. Phys. B (5)

M. A. Zia, B. Suleman and M. A. Baig, "Two-photon laser optogalvanic spectroscopy of the Rydberg of mercury by rf discharge," J. Phys. B 36, 4631-4639 (2003).
[CrossRef]

L. J. Curtis, "A semiclassical formula for the term energy of a many-electron atom," J. Phys. B 14, 1373-1386 (1981).
[CrossRef]

M. A. Baig, R. Ali, and S. A. Bhatti, "High Rydberg transitions in the principal and intercombination series of mercury," J. Phys. B 16, 1511-1523 (1983).
[CrossRef]

D. Wu, Y. Yang, and K. T. Lu, "Collision-induced two-photon forbidden 6s2S1-6snpP1 transitions in Ba I," J. Phys. B 23, L149-L152 (1990).
[CrossRef]

J. Zhang and K. T. Lu, "Collision-induced two-photon forbidden 3s2S1-3snpP1 transitions and collisional enhancement of 3s2S1-3snsS1 in Mg I," J. Phys. B 20, 5065-5077 (1987).
[CrossRef]

Phys. Rev. A (2)

L. J. Curtis, "Semiempirical specification of singlet-triplet mixing angles, oscillator strengths, and g factors in nsn′l,nsn′p5,np2, and np4 configurations," Phys. Rev. A 40, 6958-6968 (1989).
[CrossRef] [PubMed]

W. H. Richardson, L. Maleki, and E. Gamire, "Experimental and theoretical investigation of the optogalvanic effect in a Hg-Ar discharge," Phys. Rev. A 36, 5713-5728 (1987).
[CrossRef] [PubMed]

Phys. Scr. (2)

R. Beigang, K. Lucke, D. Schmidt, A. Timmermann, and P. J. West, "One-photon spectroscopy of Rydberg series from metastable levels in calcium and strontium," Phys. Scr. 26, 183-188 (1982).
[CrossRef]

C. J. Lorenzen and K Niemmax, "Quantum defect of the n2P1/2,3/2 levels in K39 I and RB85 I," Phys. Scr. 27, 300-305 (1983).
[CrossRef]

Rev. Mod. Phys. (1)

B. Barbieri, N. Beverini, and A. Sasso, "Optogalvanic spectroscopy," Rev. Mod. Phys. 62, 603-644 (1990).
[CrossRef]

Other (8)

C. E. Moore, Atomic Energy Levels Vol III (NSRDS-NBS 35, Washington, D.C., 1971).

A. A. Radzig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions, Springer Series in Chemical Physics (Springer-Verlag, 1985).
[CrossRef]

A. R. Stribanov and N. S. Sventitskii, Tables of Spectral Lines of Neutral and Ionized Atoms (Plenum, 1968).
[CrossRef]

B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules (Prentice Hall, 2003) p. 451.

H. G. Kuhn, Atomic Spectra (Longman, 1971), p. 286.

T. F. Gallagher, Rydberg Atoms (Cambridge U. Press, 1994).
[CrossRef]

J. P. Connerade, Highly Excited Atoms (Cambridge U. Press, 1998).
[CrossRef]

W. Demtroeder, Laser Spectroscopy (Springer-Verlag, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup to record the single-photon excitation spectra of mercury.

Fig. 2
Fig. 2

Spectrum of mercury in the energy region 16480 16558 cm 1 , showing the fine structure of the 6 s 7 d configuration. The top and the middle traces are the optogalvanic spectrum of neon and the interference fringes of the etalon, respectively.

Fig. 3
Fig. 3

Multiplet structure of mercury for n = 10 to n = 13 , showing the merger of the 6 s n d D 2 1 and D 1 , 2 , 3 3 lines with an increasing principal quantum number.

Fig. 4
Fig. 4

Rydberg series of mercury corresponding to 6 s n d ( 15 n 22 ) configurations. The trace at the top is the optogalvanic spectrum of neon.

Fig. 5
Fig. 5

Highly excited Rydberg series in mercury. The dominating series are 6 s n d D 3 3 ( 23 n limit ) . The 6 s n s S 1 3 series are very weak compared with the 6 s n d D 3 3 series. The trace at the top shows the optogalvanic signals of neon that are used as wavelength standards.

Fig. 6
Fig. 6

Spectrum of mercury showing the 6 s n p P 1 3 , parity-forbidden transition close to the ionization limit that has been recorded with Kr as a buffer gas in the discharge cell. The neon optogalvanic signals are shown at the top.

Fig. 7
Fig. 7

The spectrum of mercury recorded with neon as a buffer gas in which the parity-forbidden transitions are too weak to be detected. The neon optogalvanic signals are shown at the top.

Tables (3)

Tables Icon

Table 1 Parameters Calculated from the 6 s n d D 2 1 , D 1 , 2 , 3 3 Energies

Tables Icon

Table 2 Term Energies of the 6 s n d D 2 1 , D 1 , 2 , 3 3 and 6 s n s S 1 3 States a

Tables Icon

Table 3 Term Energies of the Parity-Forbidden Transitions 6 s n p P 1 3

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E ( J ) E ( j 1 ) = A J
E 1 ( D 2 1 ) = F 0 1 4 ξ d + [ ( G 2 + 1 4 ξ d ) 2 + 3 2 ξ d 2 ] 1 2 ,
E 2 ( D 3 3 ) = F 0 G 2 + ξ d ,
E 3 ( D 2 3 ) = F 0 1 4 ξ d [ ( G 2 + 1 4 ξ d ) 2 + 3 2 ξ d 2 ] 1 2 ,
E 4 ( D 1 3 ) = F 0 G 2 3 2 ξ d .
F 0 = 1 2 [ E 1 ( D 2 1 ) + E 3 ( D 2 3 ) ] + 1 10 [ E 2 ( D 3 3 ) E 4 ( D 1 3 ) ] ,
G 2 = 1 2 [ E 1 ( D 2 1 ) E 2 ( D 3 3 ) + E 3 ( D 2 3 ) E 4 ( D 1 3 ) ] ,
ξ d = 2 5 [ E 2 ( D 3 3 ) E 4 ( D 1 3 ) ] .
D 2 1 = sin ( θ ) D 2 3 + cos ( θ ) D 2 1 ,
D 2 3 = cos ( θ ) D 2 3 sin ( θ ) D 2 1 .
sin ( θ ) = ( 1 + { ( 4 G 2 + ξ d 2 6 ξ d ) ± [ 1 + ( 4 G 2 + ξ d 2 6 ξ d ) 2 ] 1 2 } 2 ) 1 2 .
E n = IP R y ( n μ l ) 2 ,
μ l = a + b ( n a ) 2 + c ( n a ) 4 + d ( n a ) 6 + e ( n a ) 8 + .
P ( V cm ) = 1.23 × 10 9 n m 5 .

Metrics