Abstract

Three kinds of artificial composite material are considered: left-handed materials (LHMs) with both negative permittivity and permeability, negative dielectric permittivity materials (NDPMs), and negative magnetic permeability materials (NMPMs). We study the properties of surface plasmon polaritons (SPPs) for both p and s polarizations at three interfaces of LHM and NDPM, NDPM and NMPM, and LHM and NMPM. We mainly investigate the existence regions, dispersion relations, and excitation of SPPs in different frequency regions and find them to be strongly dependent on the parameters of composite materials across the interface. We also examine the possibility of exciting and observing SPPs by attenuated total reflection.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
    [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. 10, 4785-4809 (1998).
  4. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
    [CrossRef]
  5. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  6. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  7. J. D. Baena, R. Marqués, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B 69, 014402 (2004).
    [CrossRef]
  8. L. Venema, "Negative refraction: a lens less ordinary," Nature 420, 119-122 (2002).
    [CrossRef] [PubMed]
  9. J. Martel, R. Marqués, J. D. Baena, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Application of modified split-ring resonators to the design of small microstrip and CPW filters," in Progress in Electromagnetics Research Symposium (Progress in Electromagnetics Research, 2003), p. 194.
  10. R. Marqués, J. D. Baena, J. Martel, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Novel small resonant electromagnetic particles for metamaterial and filter design," in Proceedings of the International Conference on Electromagnetics in Advanced Application (International Conference on Electromagnetics in Adanced Applications, 2003), pp. 439-443, 2003.
  11. F. Martín, F. Falcone, R. Marqués, J. Bonache, M. Sorolla, "Transmission characteristics in split ring resonator based left-handed coplanar waveguides," in Progress in Electromagnetics Research Symposium (Progress in Electromagnetics Research, 2003), p. 293.
  12. R. Marqués, J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides," Phys. Rev. Lett. 89, 183901 (2002).
    [CrossRef] [PubMed]
  13. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  14. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
    [CrossRef]
  15. A. Otto, "Excitation by light of omega+ and omega− surface plasma waves in thin metal layers," Z. Phys. 219, 227-233 (1969).
    [CrossRef]
  16. J. S. Nkoma, "Surface modes of a composite medium," Solid State Commun. 87, 241-244 (1993).
    [CrossRef]
  17. J. A. Gaspar-Armenta and F. Villa, "Photonic surface-wave excitation: photonic crystal-metal interface," J. Opt. Soc. Am. B 20, 2349-2354 (2003).
    [CrossRef]
  18. S. A. Darmanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103 (2004).
    [CrossRef]
  19. R. Ruppin, "Surface polaritons of a left-handed medium," Phys. Lett. A 277, 61-64 (2000).
    [CrossRef]
  20. R. Ruppin, "Surface polaritons of a left-handed material slab," J. Phys. 13, 1811-1819 (2001).
  21. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617 (2004).
    [CrossRef]
  22. S. A. Darmanyan, M. Nevière, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Opt. Commun. 225, 233-240 (2003).
    [CrossRef]
  23. K. P. Chiu and D. P. Tsai, "Surface plasmon polariton in visible frequency of a nano-slab consisting of left-handed material," Scanning 26, I118-I123, Suppl. 1 (2004).
    [PubMed]
  24. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes and negative refraction in metal nanowire composites," Opt. Express 11, 735-745 (2003).
    [CrossRef] [PubMed]
  25. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  26. E. Kretschmann, "Die bestimmung optischer Konstanten von Metallen durch Auregung von Oberflächenplasmaschwingungen," Z. Phys. 241, 313-324 (1971).
    [CrossRef]
  27. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
    [CrossRef]
  28. I. Hirabayashi, T. Koda, Y. Tokura, J. Murata, and Y. Kaneko, "Surface exciton polariton in CuCl and CuBr," J. Phys. Soc. Jpn. 43, 173-180 (1977).
    [CrossRef]
  29. J. Lagois, "Excitonic surface polaritons in anisotropic ZnO crystals," Solid State Commun. 39, 563-567 (1981).
    [CrossRef]
  30. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984).

2004 (4)

J. D. Baena, R. Marqués, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B 69, 014402 (2004).
[CrossRef]

S. A. Darmanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103 (2004).
[CrossRef]

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617 (2004).
[CrossRef]

K. P. Chiu and D. P. Tsai, "Surface plasmon polariton in visible frequency of a nano-slab consisting of left-handed material," Scanning 26, I118-I123, Suppl. 1 (2004).
[PubMed]

2003 (4)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes and negative refraction in metal nanowire composites," Opt. Express 11, 735-745 (2003).
[CrossRef] [PubMed]

J. A. Gaspar-Armenta and F. Villa, "Photonic surface-wave excitation: photonic crystal-metal interface," J. Opt. Soc. Am. B 20, 2349-2354 (2003).
[CrossRef]

S. A. Darmanyan, M. Nevière, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Opt. Commun. 225, 233-240 (2003).
[CrossRef]

2002 (2)

L. Venema, "Negative refraction: a lens less ordinary," Nature 420, 119-122 (2002).
[CrossRef] [PubMed]

R. Marqués, J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides," Phys. Rev. Lett. 89, 183901 (2002).
[CrossRef] [PubMed]

2001 (2)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

R. Ruppin, "Surface polaritons of a left-handed material slab," J. Phys. 13, 1811-1819 (2001).

2000 (3)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

R. Ruppin, "Surface polaritons of a left-handed medium," Phys. Lett. A 277, 61-64 (2000).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

1998 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. 10, 4785-4809 (1998).

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

1993 (1)

J. S. Nkoma, "Surface modes of a composite medium," Solid State Commun. 87, 241-244 (1993).
[CrossRef]

1981 (1)

J. Lagois, "Excitonic surface polaritons in anisotropic ZnO crystals," Solid State Commun. 39, 563-567 (1981).
[CrossRef]

1977 (1)

I. Hirabayashi, T. Koda, Y. Tokura, J. Murata, and Y. Kaneko, "Surface exciton polariton in CuCl and CuBr," J. Phys. Soc. Jpn. 43, 173-180 (1977).
[CrossRef]

1971 (1)

E. Kretschmann, "Die bestimmung optischer Konstanten von Metallen durch Auregung von Oberflächenplasmaschwingungen," Z. Phys. 241, 313-324 (1971).
[CrossRef]

1969 (2)

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

A. Otto, "Excitation by light of omega+ and omega− surface plasma waves in thin metal layers," Z. Phys. 219, 227-233 (1969).
[CrossRef]

1968 (2)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

Baena, J. D.

J. D. Baena, R. Marqués, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B 69, 014402 (2004).
[CrossRef]

J. Martel, R. Marqués, J. D. Baena, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Application of modified split-ring resonators to the design of small microstrip and CPW filters," in Progress in Electromagnetics Research Symposium (Progress in Electromagnetics Research, 2003), p. 194.

R. Marqués, J. D. Baena, J. Martel, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Novel small resonant electromagnetic particles for metamaterial and filter design," in Proceedings of the International Conference on Electromagnetics in Advanced Application (International Conference on Electromagnetics in Adanced Applications, 2003), pp. 439-443, 2003.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Bonache, J.

F. Martín, F. Falcone, R. Marqués, J. Bonache, M. Sorolla, "Transmission characteristics in split ring resonator based left-handed coplanar waveguides," in Progress in Electromagnetics Research Symposium (Progress in Electromagnetics Research, 2003), p. 293.

Chiu, K. P.

K. P. Chiu and D. P. Tsai, "Surface plasmon polariton in visible frequency of a nano-slab consisting of left-handed material," Scanning 26, I118-I123, Suppl. 1 (2004).
[PubMed]

Darmanyan, S. A.

S. A. Darmanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103 (2004).
[CrossRef]

S. A. Darmanyan, M. Nevière, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Opt. Commun. 225, 233-240 (2003).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Economou, E. N.

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Falcone, F.

F. Martín, F. Falcone, R. Marqués, J. Bonache, M. Sorolla, "Transmission characteristics in split ring resonator based left-handed coplanar waveguides," in Progress in Electromagnetics Research Symposium (Progress in Electromagnetics Research, 2003), p. 293.

R. Marqués, J. D. Baena, J. Martel, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Novel small resonant electromagnetic particles for metamaterial and filter design," in Proceedings of the International Conference on Electromagnetics in Advanced Application (International Conference on Electromagnetics in Adanced Applications, 2003), pp. 439-443, 2003.

J. Martel, R. Marqués, J. D. Baena, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Application of modified split-ring resonators to the design of small microstrip and CPW filters," in Progress in Electromagnetics Research Symposium (Progress in Electromagnetics Research, 2003), p. 194.

Gaspar-Armenta, J. A.

Hirabayashi, I.

I. Hirabayashi, T. Koda, Y. Tokura, J. Murata, and Y. Kaneko, "Surface exciton polariton in CuCl and CuBr," J. Phys. Soc. Jpn. 43, 173-180 (1977).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. 10, 4785-4809 (1998).

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Kaneko, Y.

I. Hirabayashi, T. Koda, Y. Tokura, J. Murata, and Y. Kaneko, "Surface exciton polariton in CuCl and CuBr," J. Phys. Soc. Jpn. 43, 173-180 (1977).
[CrossRef]

Kivshar, Y. S.

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617 (2004).
[CrossRef]

Koda, T.

I. Hirabayashi, T. Koda, Y. Tokura, J. Murata, and Y. Kaneko, "Surface exciton polariton in CuCl and CuBr," J. Phys. Soc. Jpn. 43, 173-180 (1977).
[CrossRef]

Kretschmann, E.

E. Kretschmann, "Die bestimmung optischer Konstanten von Metallen durch Auregung von Oberflächenplasmaschwingungen," Z. Phys. 241, 313-324 (1971).
[CrossRef]

Lagois, J.

J. Lagois, "Excitonic surface polaritons in anisotropic ZnO crystals," Solid State Commun. 39, 563-567 (1981).
[CrossRef]

Marqués, R.

J. D. Baena, R. Marqués, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B 69, 014402 (2004).
[CrossRef]

R. Marqués, J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides," Phys. Rev. Lett. 89, 183901 (2002).
[CrossRef] [PubMed]

F. Martín, F. Falcone, R. Marqués, J. Bonache, M. Sorolla, "Transmission characteristics in split ring resonator based left-handed coplanar waveguides," in Progress in Electromagnetics Research Symposium (Progress in Electromagnetics Research, 2003), p. 293.

J. Martel, R. Marqués, J. D. Baena, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Application of modified split-ring resonators to the design of small microstrip and CPW filters," in Progress in Electromagnetics Research Symposium (Progress in Electromagnetics Research, 2003), p. 194.

R. Marqués, J. D. Baena, J. Martel, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Novel small resonant electromagnetic particles for metamaterial and filter design," in Proceedings of the International Conference on Electromagnetics in Advanced Application (International Conference on Electromagnetics in Adanced Applications, 2003), pp. 439-443, 2003.

Martel, J.

J. D. Baena, R. Marqués, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B 69, 014402 (2004).
[CrossRef]

R. Marqués, J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides," Phys. Rev. Lett. 89, 183901 (2002).
[CrossRef] [PubMed]

J. Martel, R. Marqués, J. D. Baena, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Application of modified split-ring resonators to the design of small microstrip and CPW filters," in Progress in Electromagnetics Research Symposium (Progress in Electromagnetics Research, 2003), p. 194.

R. Marqués, J. D. Baena, J. Martel, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Novel small resonant electromagnetic particles for metamaterial and filter design," in Proceedings of the International Conference on Electromagnetics in Advanced Application (International Conference on Electromagnetics in Adanced Applications, 2003), pp. 439-443, 2003.

Martín, F.

J. Martel, R. Marqués, J. D. Baena, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Application of modified split-ring resonators to the design of small microstrip and CPW filters," in Progress in Electromagnetics Research Symposium (Progress in Electromagnetics Research, 2003), p. 194.

R. Marqués, J. D. Baena, J. Martel, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Novel small resonant electromagnetic particles for metamaterial and filter design," in Proceedings of the International Conference on Electromagnetics in Advanced Application (International Conference on Electromagnetics in Adanced Applications, 2003), pp. 439-443, 2003.

F. Martín, F. Falcone, R. Marqués, J. Bonache, M. Sorolla, "Transmission characteristics in split ring resonator based left-handed coplanar waveguides," in Progress in Electromagnetics Research Symposium (Progress in Electromagnetics Research, 2003), p. 293.

Medina, F.

J. D. Baena, R. Marqués, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B 69, 014402 (2004).
[CrossRef]

R. Marqués, J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides," Phys. Rev. Lett. 89, 183901 (2002).
[CrossRef] [PubMed]

R. Marqués, J. D. Baena, J. Martel, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Novel small resonant electromagnetic particles for metamaterial and filter design," in Proceedings of the International Conference on Electromagnetics in Advanced Application (International Conference on Electromagnetics in Adanced Applications, 2003), pp. 439-443, 2003.

J. Martel, R. Marqués, J. D. Baena, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Application of modified split-ring resonators to the design of small microstrip and CPW filters," in Progress in Electromagnetics Research Symposium (Progress in Electromagnetics Research, 2003), p. 194.

Mesa, F.

R. Marqués, J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides," Phys. Rev. Lett. 89, 183901 (2002).
[CrossRef] [PubMed]

Murata, J.

I. Hirabayashi, T. Koda, Y. Tokura, J. Murata, and Y. Kaneko, "Surface exciton polariton in CuCl and CuBr," J. Phys. Soc. Jpn. 43, 173-180 (1977).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Nevière, M.

S. A. Darmanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103 (2004).
[CrossRef]

S. A. Darmanyan, M. Nevière, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Opt. Commun. 225, 233-240 (2003).
[CrossRef]

Nkoma, J. S.

J. S. Nkoma, "Surface modes of a composite medium," Solid State Commun. 87, 241-244 (1993).
[CrossRef]

Otto, A.

A. Otto, "Excitation by light of omega+ and omega− surface plasma waves in thin metal layers," Z. Phys. 219, 227-233 (1969).
[CrossRef]

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. 10, 4785-4809 (1998).

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Podolskiy, V. A.

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. 10, 4785-4809 (1998).

Ruppin, R.

R. Ruppin, "Surface polaritons of a left-handed material slab," J. Phys. 13, 1811-1819 (2001).

R. Ruppin, "Surface polaritons of a left-handed medium," Phys. Lett. A 277, 61-64 (2000).
[CrossRef]

Sarychev, A. K.

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Shadrivov, I. V.

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617 (2004).
[CrossRef]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984).

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Sorolla, M.

J. Martel, R. Marqués, J. D. Baena, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Application of modified split-ring resonators to the design of small microstrip and CPW filters," in Progress in Electromagnetics Research Symposium (Progress in Electromagnetics Research, 2003), p. 194.

R. Marqués, J. D. Baena, J. Martel, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Novel small resonant electromagnetic particles for metamaterial and filter design," in Proceedings of the International Conference on Electromagnetics in Advanced Application (International Conference on Electromagnetics in Adanced Applications, 2003), pp. 439-443, 2003.

F. Martín, F. Falcone, R. Marqués, J. Bonache, M. Sorolla, "Transmission characteristics in split ring resonator based left-handed coplanar waveguides," in Progress in Electromagnetics Research Symposium (Progress in Electromagnetics Research, 2003), p. 293.

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. 10, 4785-4809 (1998).

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Sukhorukov, A. A.

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617 (2004).
[CrossRef]

Tokura, Y.

I. Hirabayashi, T. Koda, Y. Tokura, J. Murata, and Y. Kaneko, "Surface exciton polariton in CuCl and CuBr," J. Phys. Soc. Jpn. 43, 173-180 (1977).
[CrossRef]

Tsai, D. P.

K. P. Chiu and D. P. Tsai, "Surface plasmon polariton in visible frequency of a nano-slab consisting of left-handed material," Scanning 26, I118-I123, Suppl. 1 (2004).
[PubMed]

Venema, L.

L. Venema, "Negative refraction: a lens less ordinary," Nature 420, 119-122 (2002).
[CrossRef] [PubMed]

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Villa, F.

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Zakhidov, A. A.

S. A. Darmanyan, M. Nevière, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Opt. Commun. 225, 233-240 (2003).
[CrossRef]

Zayats, A. V.

S. A. Darmanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103 (2004).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. (2)

R. Ruppin, "Surface polaritons of a left-handed material slab," J. Phys. 13, 1811-1819 (2001).

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. 10, 4785-4809 (1998).

J. Phys. Soc. Jpn. (1)

I. Hirabayashi, T. Koda, Y. Tokura, J. Murata, and Y. Kaneko, "Surface exciton polariton in CuCl and CuBr," J. Phys. Soc. Jpn. 43, 173-180 (1977).
[CrossRef]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

L. Venema, "Negative refraction: a lens less ordinary," Nature 420, 119-122 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. A. Darmanyan, M. Nevière, and A. A. Zakhidov, "Surface modes at the interface of conventional and left-handed media," Opt. Commun. 225, 233-240 (2003).
[CrossRef]

Opt. Express (1)

Phys. Lett. A (1)

R. Ruppin, "Surface polaritons of a left-handed medium," Phys. Lett. A 277, 61-64 (2000).
[CrossRef]

Phys. Rev. (1)

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Phys. Rev. B (2)

J. D. Baena, R. Marqués, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B 69, 014402 (2004).
[CrossRef]

S. A. Darmanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103 (2004).
[CrossRef]

Phys. Rev. E (1)

I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617 (2004).
[CrossRef]

Phys. Rev. Lett. (4)

R. Marqués, J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides," Phys. Rev. Lett. 89, 183901 (2002).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Scanning (1)

K. P. Chiu and D. P. Tsai, "Surface plasmon polariton in visible frequency of a nano-slab consisting of left-handed material," Scanning 26, I118-I123, Suppl. 1 (2004).
[PubMed]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Solid State Commun. (2)

J. S. Nkoma, "Surface modes of a composite medium," Solid State Commun. 87, 241-244 (1993).
[CrossRef]

J. Lagois, "Excitonic surface polaritons in anisotropic ZnO crystals," Solid State Commun. 39, 563-567 (1981).
[CrossRef]

Sov. Phys. Usp. (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Z. Phys. (3)

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[CrossRef]

A. Otto, "Excitation by light of omega+ and omega− surface plasma waves in thin metal layers," Z. Phys. 219, 227-233 (1969).
[CrossRef]

E. Kretschmann, "Die bestimmung optischer Konstanten von Metallen durch Auregung von Oberflächenplasmaschwingungen," Z. Phys. 241, 313-324 (1971).
[CrossRef]

Other (4)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984).

J. Martel, R. Marqués, J. D. Baena, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Application of modified split-ring resonators to the design of small microstrip and CPW filters," in Progress in Electromagnetics Research Symposium (Progress in Electromagnetics Research, 2003), p. 194.

R. Marqués, J. D. Baena, J. Martel, F. Medina, F. Falcone, M. Sorolla, and F. Martín, "Novel small resonant electromagnetic particles for metamaterial and filter design," in Proceedings of the International Conference on Electromagnetics in Advanced Application (International Conference on Electromagnetics in Adanced Applications, 2003), pp. 439-443, 2003.

F. Martín, F. Falcone, R. Marqués, J. Bonache, M. Sorolla, "Transmission characteristics in split ring resonator based left-handed coplanar waveguides," in Progress in Electromagnetics Research Symposium (Progress in Electromagnetics Research, 2003), p. 293.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Geometry of the interface between media 2 and 1 and the coordinate system.

Fig. 2
Fig. 2

Existence regions of SPPs, (a) on the parameter plane ( ϵ 1 ϵ 2 , μ 1 μ 2 ) for the case ϵ 2 μ 2 > ϵ 1 μ 1 and (b) on the parameter plane ( ϵ 2 ϵ 1 , μ 2 μ 1 ) for the case ϵ 1 μ 1 > ϵ 2 μ 2 .

Fig. 3
Fig. 3

Existence regions of SPPs on the plane ( β , ω ) for different values of ω a at the interface of LHM and NDPM. (a) ω a = 2.0 GHz , (b) ω a = 4.0 GHz , and (c) ω a = 6.0 GHz . β is in units of β 0 = ω 0 c . The other parameters used are ω 0 = 4 GHz and F = 0.56 .

Fig. 4
Fig. 4

Dispersion-relation curves of SPPs on the plane ( β , ω ) for different values of ω a at the interface of LHM and NDPM. Curves P H and P L are for p polarization, and curve S is for s polarization. (a) ω a = 2.0 GHz , (b) ω a = 4.0 GHz , and (c) ω a = 6.0 GHz . The other parameters used are ω 0 = 4 GHz and F = 0.56 .

Fig. 5
Fig. 5

Configuration of a dielectric prism for ATR spectra study.

Fig. 6
Fig. 6

ATR spectra for exciting and observing SPPs at the interface of LHM and NDPM in the frequency regime at three values of ω a = 2.0 GHz (solid curves), 4.0 GHz (dashed curves), and 6.0 GHz (dotted curves), and the coupling prism used has ϵ 0 = 3.0 and μ 0 = 1.0 . (a) The p-polarization case with d = 12 mm and the incident angle of θ 0 = 45 ° . (b) The s-polarization case with d = 2 mm and θ 0 = 60 ° .

Fig. 7
Fig. 7

Existence regions of SPPs on the plane ( β , ω ) for different values of ω a at the interface of NDPM and NMPM. (a) ω a = 6.0 GHz , (b) ω a = 4.0 GHz , and (c) ω a = 2.0 GHz . The other parameters used are ω 0 = 4 GHz and F = 0.56 .

Fig. 8
Fig. 8

Dispersion-relation curves of SPPs on the plane ( β , ω ) for different values of ω a at the interface of NDPM and NMPM. Curves P H and P L are for p polarization, and curve S is for s polarization. (a) ω a = 6.0 GHz , (b) ω a = 4.0 GHz , and (c) ω a = 2.0 GHz . The other parameters used are ω 0 = 4 GHz and F = 0.56 .

Fig. 9
Fig. 9

ATR spectra for exciting and observing SPPs at the interface of NDPM and NMPM in the frequency regime at three values of ω a = 6.0 GHz (solid curves), 4.0 GHz (dashed curves), and 2.0 GHz (dotted curves), and the coupling prism used has ϵ 0 = 3.5 and μ 0 = 1.0 . (a) The p-polarization case with d = 10 , 15, and 30 mm corresponding to ω a = 6.0 , 4.0 and 2.0 GHz and the incident angle of θ 0 = 45 ° . (b) The s-polarization case with d = 5 mm and θ 0 = 60 ° .

Fig. 10
Fig. 10

Existence regions of SPPs on the plane ( β , ω ) for ω p = 10.0 GHz at the interface of LHM and NMPM. The other parameters used are ω 0 = 4 GHz and F = 0.56 .

Fig. 11
Fig. 11

Dispersion-relation curves of SPPs on the plane ( β , ω ) for different values of ω p at the interface of LHM and NMPM. Curves P H and P L are for p polarization, and curve S is for s polarization. (a) ω p = 10.0 GHz , (b) ω p = 8.0 GHz , and (c) ω p = 6.0 GHz . The other parameters used are ω 0 = 4 GHz and F = 0.56 .

Fig. 12
Fig. 12

ATR spectra for exciting and observing SPPs at the interface of LHM and NMPM in the frequency regime at three values of ω p = 10.0 GHz (solid curves), 8.0 GHz (dashed curves), and 6.0 GHz (dotted curves), and the coupling prism used has ϵ 0 = 3.0 and μ 0 = 1.0 . (a) The p-polarization case with d = 6 mm and the incident angle of θ 0 = 45 ° . (b) The s-polarization case with d = 4 mm and θ 0 = 60 ° .

Tables (1)

Tables Icon

Table 1 Locations of Dips in the Calculated ATR Spectra a

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ϵ 1 α 2 + ϵ 2 α 1 = 0
μ 1 α 2 + μ 2 α 1 = 0
α 1 , 2 2 = β 2 ϵ 1 , 2 μ 1 , 2 ω 2 c 2 ,
β 2 > max [ ϵ 1 μ 1 ( ω c ) 2 , ϵ 2 μ 2 ( ω c ) 2 ] .
ϵ 1 ϵ 2 < 1 μ 1 μ 2 > ( ϵ 1 ϵ 2 ) 1 for ϵ 2 μ 2 > 0 ,
ϵ 1 ϵ 2 < 1 μ 1 μ 2 < ( ϵ 1 ϵ 2 ) 1 for ϵ 2 μ 2 < 0 ,
μ 1 μ 2 < 1 ϵ 1 ϵ 2 > ( μ 1 μ 2 ) 1 for ϵ 2 μ 2 > 0 ,
μ 1 μ 2 < 1 ϵ 1 ϵ 2 < ( μ 1 μ 2 ) 1 for ϵ 2 μ 2 < 0 ,
ϵ 2 ( ω ) = 1 ω p 2 ω ( ω + i γ ) ,
μ 2 ( ω ) = 1 F ω 2 ω 2 ω 0 2 + i Γ ω ,
ϵ 1 ( ω ) = 1 ω a 2 ω ( ω + i γ a ) ,
r = r 01 + r 12 exp ( 2 i k 1 z d ) 1 + r 01 r 12 exp ( 2 i k 1 z d ) ,
r j k = ϵ k k j z ϵ j 0 k k z ϵ k k j z + ϵ j 0 k k z ,
k j z = ( ω c ) 2 ϵ j μ j β 2 ,
μ 1 ( ω ) = 1 F 1 ω 2 ω 2 ω 0 2 + i Γ 1 ω ,

Metrics