Abstract

The generation mechanism of stimulated Raman scattering (SRS) in a gaseous medium pumped by a pulse with a duration close to one rotational period of molecular motion was studied. We found that the self-seeding effect caused by nonlinear pulse reshaping during propagation of a pump pulse was essential for the excitation of Raman coherence. This clearly explains the selective excitation of specific motions of molecules and the substantial reduction of the threshold of SRS generation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Bartels, T. C. Weinacht, N. Wabner, M. Baertschy, C. H. Greene, M. M. Murnane, and H. C. Kapteyn, "Phase modulation of ultrashort light pulse using molecular rotational wave packets," Phys. Rev. Lett. 88, 013903 (2002).
    [CrossRef]
  2. V. Kalosha, M. Spanner, J. Herrmann, and M. Ivanov, "Generation of single dispersion precompensated 1-fs pulses by shaped-pulse optimized high-order stimulated Raman scattering," Phys. Rev. Lett. 88, 103901 (2002).
    [CrossRef]
  3. N. Zhavoronkov and G. Korn, "Generation of single intense short optical pulses by ultrafast molecular phase modulation," Phys. Rev. Lett. 88, 203901 (2002).
    [CrossRef] [PubMed]
  4. R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, "Theory of Stokes pulse shapes in transient stimulated Raman scattering," Phys. Rev. A 2, 60-72 (1970).
    [CrossRef]
  5. J. K. Wang, Y. Siegal, C. Lü, and E. Mazur, "Subpicosecond stimulated Raman scattering in high-pressure hydrogen," J. Opt. Soc. Am. B 11, 1031-1037 (1994).
    [CrossRef]
  6. V. Krylov, O. Ollikainen, U. P. Wild, A. Rebane, V. G. Bespalov, and D. I. Staselko, "Femtosecond stimulated Raman scattering in pressurized gases in the ultraviolet and visible spectral ranges," J. Opt. Soc. Am. B 15, 2910-2916 (1998).
    [CrossRef]
  7. H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of high-order rotational lines in hydrogen by four-wave Raman mixing in the femtosecond regime," IEEE J. Quantum Electron. 34, 260-268 (1998).
    [CrossRef]
  8. G. Koprinkov, A. Suda, and K. Midorikawa, "Interference between stimulated Raman scattering and self-phase modulation in pressurrized methane in highly transient femtosecond pump regime," Opt. Commun. 174, 299-304 (2000).
    [CrossRef]
  9. Y. X. Yan, E. B. Gamble, Jr., and K. A. Nelson, "Impulsive stimulated scattering: general importance in femtosecond laser pulse interactions with matter, and spectroscopic applications," J. Chem. Phys. 83, 5391-5399 (1985).
    [CrossRef]
  10. G. Korn, O. Dühr, and A. Nazarkin, "Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibration," Phys. Rev. Lett. 81, 1215-1218 (1998).
    [CrossRef]
  11. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  12. P. G. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  13. A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, "Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium," Phys. Rev. Lett. 83, 2560-2563 (1999).
    [CrossRef]
  14. S. Zaitsu, Y. Kida, and T. Imasaka, "Self-compression of a femtosecond pulse due to Raman coherence of molecular rotations," Phys. Rev. A 70, 031801(R) (2004).
    [CrossRef]
  15. J. E. Rothenberg, "Pulse splitting during self-focusing in normally dispersive media," Opt. Lett. 17, 583-585 (1992).
    [CrossRef] [PubMed]
  16. S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, "Amplitude and phase measurement of femtosecond pulse splitting in nonlinear dispersive media," Opt. Lett. 23, 379-382 (1998).
    [CrossRef]
  17. M. Maier, W. Kaiser, and J. A. Giordmaine, "Backward stimulated Raman scattering," Phys. Rev. 177, 580-599 (1969).
    [CrossRef]
  18. N. Bloembergen, "The stimulated Raman effect," Am. J. Phys. 35, 989-1003 (1967).
    [CrossRef]
  19. R. A. Bartels, S. Backus, M. M. Murnane, and H. C. Kapteyn, "Impulsive stimulated Raman scattering of molecular vibration using nonlinear pulse shaping," Chem. Phys. Lett. 374, 326-333 (2003).
    [CrossRef]
  20. G. Yang and Y. R. Shen, "Spectral broadening of ultrashort pulses in a nonlinear medium," Opt. Lett. 9, 510-512 (1984).
    [CrossRef] [PubMed]
  21. A. E. Siegman, Lasers (University Science, 1986).
  22. R. W. Minck, E. E. Hagenlocker, and W. G. Rado, "Stimulated pure rotational Raman scattering in deuterium," Phys. Rev. Lett. 17, 229-231 (1966).
    [CrossRef]
  23. S. Kawasaki, S. Yoshikawa, T. Imasaka, and N. Ishibashi, "Generation of multicolor stimulated Raman emission from two-color linearly or circularly polarized pump beams," Appl. Phys. B 56, 259-262 (1993).
    [CrossRef]
  24. G. V. Venkin, Yu. A. Il'inskii, and G. M. Mikheev, "Influence of the polarization of radiation on the energy characteristics and threshold of stimulated Raman scattering due to rotational transitions," Sov. J. Quantum Electron. 15, 395-397 (1985).
    [CrossRef]
  25. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  26. D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998).
    [CrossRef]
  27. F. Hanson and P. Poiror, "Stimulated rotational Raman conversion in H2, D2, and HD," IEEE J. Quantum Electron. 29, 2342-2345 (1993).
    [CrossRef]
  28. M. Wittmann, A. Nazarkin, and G. Korn, "Synthesis of periodic femtosecond pulse trains in the ultraviolet by phase-locked Raman sideband generation," Opt. Lett. 26, 298-300 (2001).
    [CrossRef]
  29. L. S. Meng, P. A. Roos, and J. L. Carlsten, "Continuous-wave rotational Raman laser in H2," Opt. Lett. 27, 1226-1228 (2002).
    [CrossRef]
  30. M. Uchida, K. Nagasaka, and H. Tashiro, "Enhancement of Stokes conversion by diode-laser injection in a para-H2 Raman laser," Opt. Lett. 14, 1350-1352 (1989).
    [CrossRef] [PubMed]
  31. T. Imasaka, S. Kawasaki, and N. Ishibashi, "Generation of more than 40 laser emissions lines from the ultraviolet to the visible regions by two-color stimulated Raman effect," Appl. Phys. B 49, 389-392 (1989).
    [CrossRef]
  32. B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, "Coherent control using adaptive learning algorithms," Phys. Rev. A 63, 063412 (2001).
    [CrossRef]
  33. T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, "Coherent learning control of vibrational motion in room temperature molecular gases," Chem. Phys. Lett. 344, 333-338 (2001).
    [CrossRef]
  34. S. A. Malinovskaya, P. H. Bucksbaum, and P. R. Berman, "Theory of selective excitation in stimulated Raman scattering," Phys. Rev. A 69, 013801 (2004).
    [CrossRef]

2004

S. Zaitsu, Y. Kida, and T. Imasaka, "Self-compression of a femtosecond pulse due to Raman coherence of molecular rotations," Phys. Rev. A 70, 031801(R) (2004).
[CrossRef]

S. A. Malinovskaya, P. H. Bucksbaum, and P. R. Berman, "Theory of selective excitation in stimulated Raman scattering," Phys. Rev. A 69, 013801 (2004).
[CrossRef]

2003

R. A. Bartels, S. Backus, M. M. Murnane, and H. C. Kapteyn, "Impulsive stimulated Raman scattering of molecular vibration using nonlinear pulse shaping," Chem. Phys. Lett. 374, 326-333 (2003).
[CrossRef]

2002

R. A. Bartels, T. C. Weinacht, N. Wabner, M. Baertschy, C. H. Greene, M. M. Murnane, and H. C. Kapteyn, "Phase modulation of ultrashort light pulse using molecular rotational wave packets," Phys. Rev. Lett. 88, 013903 (2002).
[CrossRef]

V. Kalosha, M. Spanner, J. Herrmann, and M. Ivanov, "Generation of single dispersion precompensated 1-fs pulses by shaped-pulse optimized high-order stimulated Raman scattering," Phys. Rev. Lett. 88, 103901 (2002).
[CrossRef]

N. Zhavoronkov and G. Korn, "Generation of single intense short optical pulses by ultrafast molecular phase modulation," Phys. Rev. Lett. 88, 203901 (2002).
[CrossRef] [PubMed]

L. S. Meng, P. A. Roos, and J. L. Carlsten, "Continuous-wave rotational Raman laser in H2," Opt. Lett. 27, 1226-1228 (2002).
[CrossRef]

2001

M. Wittmann, A. Nazarkin, and G. Korn, "Synthesis of periodic femtosecond pulse trains in the ultraviolet by phase-locked Raman sideband generation," Opt. Lett. 26, 298-300 (2001).
[CrossRef]

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, "Coherent control using adaptive learning algorithms," Phys. Rev. A 63, 063412 (2001).
[CrossRef]

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, "Coherent learning control of vibrational motion in room temperature molecular gases," Chem. Phys. Lett. 344, 333-338 (2001).
[CrossRef]

2000

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

G. Koprinkov, A. Suda, and K. Midorikawa, "Interference between stimulated Raman scattering and self-phase modulation in pressurrized methane in highly transient femtosecond pump regime," Opt. Commun. 174, 299-304 (2000).
[CrossRef]

1999

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, "Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium," Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

1998

D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998).
[CrossRef]

V. Krylov, O. Ollikainen, U. P. Wild, A. Rebane, V. G. Bespalov, and D. I. Staselko, "Femtosecond stimulated Raman scattering in pressurized gases in the ultraviolet and visible spectral ranges," J. Opt. Soc. Am. B 15, 2910-2916 (1998).
[CrossRef]

H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of high-order rotational lines in hydrogen by four-wave Raman mixing in the femtosecond regime," IEEE J. Quantum Electron. 34, 260-268 (1998).
[CrossRef]

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, "Amplitude and phase measurement of femtosecond pulse splitting in nonlinear dispersive media," Opt. Lett. 23, 379-382 (1998).
[CrossRef]

G. Korn, O. Dühr, and A. Nazarkin, "Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibration," Phys. Rev. Lett. 81, 1215-1218 (1998).
[CrossRef]

1994

1993

F. Hanson and P. Poiror, "Stimulated rotational Raman conversion in H2, D2, and HD," IEEE J. Quantum Electron. 29, 2342-2345 (1993).
[CrossRef]

S. Kawasaki, S. Yoshikawa, T. Imasaka, and N. Ishibashi, "Generation of multicolor stimulated Raman emission from two-color linearly or circularly polarized pump beams," Appl. Phys. B 56, 259-262 (1993).
[CrossRef]

1992

1989

M. Uchida, K. Nagasaka, and H. Tashiro, "Enhancement of Stokes conversion by diode-laser injection in a para-H2 Raman laser," Opt. Lett. 14, 1350-1352 (1989).
[CrossRef] [PubMed]

T. Imasaka, S. Kawasaki, and N. Ishibashi, "Generation of more than 40 laser emissions lines from the ultraviolet to the visible regions by two-color stimulated Raman effect," Appl. Phys. B 49, 389-392 (1989).
[CrossRef]

1985

G. V. Venkin, Yu. A. Il'inskii, and G. M. Mikheev, "Influence of the polarization of radiation on the energy characteristics and threshold of stimulated Raman scattering due to rotational transitions," Sov. J. Quantum Electron. 15, 395-397 (1985).
[CrossRef]

Y. X. Yan, E. B. Gamble, Jr., and K. A. Nelson, "Impulsive stimulated scattering: general importance in femtosecond laser pulse interactions with matter, and spectroscopic applications," J. Chem. Phys. 83, 5391-5399 (1985).
[CrossRef]

1984

1970

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, "Theory of Stokes pulse shapes in transient stimulated Raman scattering," Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

1969

M. Maier, W. Kaiser, and J. A. Giordmaine, "Backward stimulated Raman scattering," Phys. Rev. 177, 580-599 (1969).
[CrossRef]

1967

N. Bloembergen, "The stimulated Raman effect," Am. J. Phys. 35, 989-1003 (1967).
[CrossRef]

1966

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, "Stimulated pure rotational Raman scattering in deuterium," Phys. Rev. Lett. 17, 229-231 (1966).
[CrossRef]

Agrawal, P. G.

P. G. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Backus, S.

R. A. Bartels, S. Backus, M. M. Murnane, and H. C. Kapteyn, "Impulsive stimulated Raman scattering of molecular vibration using nonlinear pulse shaping," Chem. Phys. Lett. 374, 326-333 (2003).
[CrossRef]

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, "Coherent learning control of vibrational motion in room temperature molecular gases," Chem. Phys. Lett. 344, 333-338 (2001).
[CrossRef]

Baertschy, M.

R. A. Bartels, T. C. Weinacht, N. Wabner, M. Baertschy, C. H. Greene, M. M. Murnane, and H. C. Kapteyn, "Phase modulation of ultrashort light pulse using molecular rotational wave packets," Phys. Rev. Lett. 88, 013903 (2002).
[CrossRef]

Bartels, R.

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, "Coherent learning control of vibrational motion in room temperature molecular gases," Chem. Phys. Lett. 344, 333-338 (2001).
[CrossRef]

Bartels, R. A.

R. A. Bartels, S. Backus, M. M. Murnane, and H. C. Kapteyn, "Impulsive stimulated Raman scattering of molecular vibration using nonlinear pulse shaping," Chem. Phys. Lett. 374, 326-333 (2003).
[CrossRef]

R. A. Bartels, T. C. Weinacht, N. Wabner, M. Baertschy, C. H. Greene, M. M. Murnane, and H. C. Kapteyn, "Phase modulation of ultrashort light pulse using molecular rotational wave packets," Phys. Rev. Lett. 88, 013903 (2002).
[CrossRef]

Berman, P. R.

S. A. Malinovskaya, P. H. Bucksbaum, and P. R. Berman, "Theory of selective excitation in stimulated Raman scattering," Phys. Rev. A 69, 013801 (2004).
[CrossRef]

Bespalov, V. G.

Bloembergen, N.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, "Theory of Stokes pulse shapes in transient stimulated Raman scattering," Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

N. Bloembergen, "The stimulated Raman effect," Am. J. Phys. 35, 989-1003 (1967).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Bucksbaum, P. H.

S. A. Malinovskaya, P. H. Bucksbaum, and P. R. Berman, "Theory of selective excitation in stimulated Raman scattering," Phys. Rev. A 69, 013801 (2004).
[CrossRef]

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, "Coherent learning control of vibrational motion in room temperature molecular gases," Chem. Phys. Lett. 344, 333-338 (2001).
[CrossRef]

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, "Coherent control using adaptive learning algorithms," Phys. Rev. A 63, 063412 (2001).
[CrossRef]

Carlsten, J. L.

Carman, R. L.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, "Theory of Stokes pulse shapes in transient stimulated Raman scattering," Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

Clement, T. S.

Diddams, S. A.

Dühr, O.

G. Korn, O. Dühr, and A. Nazarkin, "Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibration," Phys. Rev. Lett. 81, 1215-1218 (1998).
[CrossRef]

Eaton, H. K.

Elsaesser, T.

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, "Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium," Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

Gamble, E. B.

Y. X. Yan, E. B. Gamble, Jr., and K. A. Nelson, "Impulsive stimulated scattering: general importance in femtosecond laser pulse interactions with matter, and spectroscopic applications," J. Chem. Phys. 83, 5391-5399 (1985).
[CrossRef]

Geremia, J. M.

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, "Coherent learning control of vibrational motion in room temperature molecular gases," Chem. Phys. Lett. 344, 333-338 (2001).
[CrossRef]

Giordmaine, J. A.

M. Maier, W. Kaiser, and J. A. Giordmaine, "Backward stimulated Raman scattering," Phys. Rev. 177, 580-599 (1969).
[CrossRef]

Greene, C. H.

R. A. Bartels, T. C. Weinacht, N. Wabner, M. Baertschy, C. H. Greene, M. M. Murnane, and H. C. Kapteyn, "Phase modulation of ultrashort light pulse using molecular rotational wave packets," Phys. Rev. Lett. 88, 013903 (2002).
[CrossRef]

Hagenlocker, E. E.

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, "Stimulated pure rotational Raman scattering in deuterium," Phys. Rev. Lett. 17, 229-231 (1966).
[CrossRef]

Hanson, F.

F. Hanson and P. Poiror, "Stimulated rotational Raman conversion in H2, D2, and HD," IEEE J. Quantum Electron. 29, 2342-2345 (1993).
[CrossRef]

Herrmann, J.

V. Kalosha, M. Spanner, J. Herrmann, and M. Ivanov, "Generation of single dispersion precompensated 1-fs pulses by shaped-pulse optimized high-order stimulated Raman scattering," Phys. Rev. Lett. 88, 103901 (2002).
[CrossRef]

Hirakawa, Y.

H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of high-order rotational lines in hydrogen by four-wave Raman mixing in the femtosecond regime," IEEE J. Quantum Electron. 34, 260-268 (1998).
[CrossRef]

Il'inskii, Yu. A.

G. V. Venkin, Yu. A. Il'inskii, and G. M. Mikheev, "Influence of the polarization of radiation on the energy characteristics and threshold of stimulated Raman scattering due to rotational transitions," Sov. J. Quantum Electron. 15, 395-397 (1985).
[CrossRef]

Imasaka, T.

S. Zaitsu, Y. Kida, and T. Imasaka, "Self-compression of a femtosecond pulse due to Raman coherence of molecular rotations," Phys. Rev. A 70, 031801(R) (2004).
[CrossRef]

H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of high-order rotational lines in hydrogen by four-wave Raman mixing in the femtosecond regime," IEEE J. Quantum Electron. 34, 260-268 (1998).
[CrossRef]

S. Kawasaki, S. Yoshikawa, T. Imasaka, and N. Ishibashi, "Generation of multicolor stimulated Raman emission from two-color linearly or circularly polarized pump beams," Appl. Phys. B 56, 259-262 (1993).
[CrossRef]

T. Imasaka, S. Kawasaki, and N. Ishibashi, "Generation of more than 40 laser emissions lines from the ultraviolet to the visible regions by two-color stimulated Raman effect," Appl. Phys. B 49, 389-392 (1989).
[CrossRef]

Ishibashi, N.

S. Kawasaki, S. Yoshikawa, T. Imasaka, and N. Ishibashi, "Generation of multicolor stimulated Raman emission from two-color linearly or circularly polarized pump beams," Appl. Phys. B 56, 259-262 (1993).
[CrossRef]

T. Imasaka, S. Kawasaki, and N. Ishibashi, "Generation of more than 40 laser emissions lines from the ultraviolet to the visible regions by two-color stimulated Raman effect," Appl. Phys. B 49, 389-392 (1989).
[CrossRef]

Ivanov, M.

V. Kalosha, M. Spanner, J. Herrmann, and M. Ivanov, "Generation of single dispersion precompensated 1-fs pulses by shaped-pulse optimized high-order stimulated Raman scattering," Phys. Rev. Lett. 88, 103901 (2002).
[CrossRef]

Kaiser, W.

M. Maier, W. Kaiser, and J. A. Giordmaine, "Backward stimulated Raman scattering," Phys. Rev. 177, 580-599 (1969).
[CrossRef]

Kalosha, V.

V. Kalosha, M. Spanner, J. Herrmann, and M. Ivanov, "Generation of single dispersion precompensated 1-fs pulses by shaped-pulse optimized high-order stimulated Raman scattering," Phys. Rev. Lett. 88, 103901 (2002).
[CrossRef]

Kapteyn, H. C.

R. A. Bartels, S. Backus, M. M. Murnane, and H. C. Kapteyn, "Impulsive stimulated Raman scattering of molecular vibration using nonlinear pulse shaping," Chem. Phys. Lett. 374, 326-333 (2003).
[CrossRef]

R. A. Bartels, T. C. Weinacht, N. Wabner, M. Baertschy, C. H. Greene, M. M. Murnane, and H. C. Kapteyn, "Phase modulation of ultrashort light pulse using molecular rotational wave packets," Phys. Rev. Lett. 88, 013903 (2002).
[CrossRef]

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, "Coherent learning control of vibrational motion in room temperature molecular gases," Chem. Phys. Lett. 344, 333-338 (2001).
[CrossRef]

Kawano, H.

H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of high-order rotational lines in hydrogen by four-wave Raman mixing in the femtosecond regime," IEEE J. Quantum Electron. 34, 260-268 (1998).
[CrossRef]

Kawasaki, S.

S. Kawasaki, S. Yoshikawa, T. Imasaka, and N. Ishibashi, "Generation of multicolor stimulated Raman emission from two-color linearly or circularly polarized pump beams," Appl. Phys. B 56, 259-262 (1993).
[CrossRef]

T. Imasaka, S. Kawasaki, and N. Ishibashi, "Generation of more than 40 laser emissions lines from the ultraviolet to the visible regions by two-color stimulated Raman effect," Appl. Phys. B 49, 389-392 (1989).
[CrossRef]

Kida, Y.

S. Zaitsu, Y. Kida, and T. Imasaka, "Self-compression of a femtosecond pulse due to Raman coherence of molecular rotations," Phys. Rev. A 70, 031801(R) (2004).
[CrossRef]

Koprinkov, G.

G. Koprinkov, A. Suda, and K. Midorikawa, "Interference between stimulated Raman scattering and self-phase modulation in pressurrized methane in highly transient femtosecond pump regime," Opt. Commun. 174, 299-304 (2000).
[CrossRef]

Korn, G.

N. Zhavoronkov and G. Korn, "Generation of single intense short optical pulses by ultrafast molecular phase modulation," Phys. Rev. Lett. 88, 203901 (2002).
[CrossRef] [PubMed]

M. Wittmann, A. Nazarkin, and G. Korn, "Synthesis of periodic femtosecond pulse trains in the ultraviolet by phase-locked Raman sideband generation," Opt. Lett. 26, 298-300 (2001).
[CrossRef]

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, "Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium," Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

G. Korn, O. Dühr, and A. Nazarkin, "Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibration," Phys. Rev. Lett. 81, 1215-1218 (1998).
[CrossRef]

Krylov, V.

Lü, C.

Maier, M.

M. Maier, W. Kaiser, and J. A. Giordmaine, "Backward stimulated Raman scattering," Phys. Rev. 177, 580-599 (1969).
[CrossRef]

Malinovskaya, S. A.

S. A. Malinovskaya, P. H. Bucksbaum, and P. R. Berman, "Theory of selective excitation in stimulated Raman scattering," Phys. Rev. A 69, 013801 (2004).
[CrossRef]

Mazur, E.

Meng, L. S.

Meshulach, D.

D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998).
[CrossRef]

Midorikawa, K.

G. Koprinkov, A. Suda, and K. Midorikawa, "Interference between stimulated Raman scattering and self-phase modulation in pressurrized methane in highly transient femtosecond pump regime," Opt. Commun. 174, 299-304 (2000).
[CrossRef]

Mikheev, G. M.

G. V. Venkin, Yu. A. Il'inskii, and G. M. Mikheev, "Influence of the polarization of radiation on the energy characteristics and threshold of stimulated Raman scattering due to rotational transitions," Sov. J. Quantum Electron. 15, 395-397 (1985).
[CrossRef]

Minck, R. W.

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, "Stimulated pure rotational Raman scattering in deuterium," Phys. Rev. Lett. 17, 229-231 (1966).
[CrossRef]

Murnane, M. M.

R. A. Bartels, S. Backus, M. M. Murnane, and H. C. Kapteyn, "Impulsive stimulated Raman scattering of molecular vibration using nonlinear pulse shaping," Chem. Phys. Lett. 374, 326-333 (2003).
[CrossRef]

R. A. Bartels, T. C. Weinacht, N. Wabner, M. Baertschy, C. H. Greene, M. M. Murnane, and H. C. Kapteyn, "Phase modulation of ultrashort light pulse using molecular rotational wave packets," Phys. Rev. Lett. 88, 013903 (2002).
[CrossRef]

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, "Coherent learning control of vibrational motion in room temperature molecular gases," Chem. Phys. Lett. 344, 333-338 (2001).
[CrossRef]

Nagasaka, K.

Nazarkin, A.

M. Wittmann, A. Nazarkin, and G. Korn, "Synthesis of periodic femtosecond pulse trains in the ultraviolet by phase-locked Raman sideband generation," Opt. Lett. 26, 298-300 (2001).
[CrossRef]

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, "Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium," Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

G. Korn, O. Dühr, and A. Nazarkin, "Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibration," Phys. Rev. Lett. 81, 1215-1218 (1998).
[CrossRef]

Nelson, K. A.

Y. X. Yan, E. B. Gamble, Jr., and K. A. Nelson, "Impulsive stimulated scattering: general importance in femtosecond laser pulse interactions with matter, and spectroscopic applications," J. Chem. Phys. 83, 5391-5399 (1985).
[CrossRef]

Ollikainen, O.

Pearson, B.

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, "Coherent learning control of vibrational motion in room temperature molecular gases," Chem. Phys. Lett. 344, 333-338 (2001).
[CrossRef]

Pearson, B. J.

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, "Coherent control using adaptive learning algorithms," Phys. Rev. A 63, 063412 (2001).
[CrossRef]

Poiror, P.

F. Hanson and P. Poiror, "Stimulated rotational Raman conversion in H2, D2, and HD," IEEE J. Quantum Electron. 29, 2342-2345 (1993).
[CrossRef]

Rabitz, H.

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, "Coherent learning control of vibrational motion in room temperature molecular gases," Chem. Phys. Lett. 344, 333-338 (2001).
[CrossRef]

Rado, W. G.

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, "Stimulated pure rotational Raman scattering in deuterium," Phys. Rev. Lett. 17, 229-231 (1966).
[CrossRef]

Rebane, A.

Roos, P. A.

Rothenberg, J. E.

Shen, Y. R.

Shimizu, F.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, "Theory of Stokes pulse shapes in transient stimulated Raman scattering," Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

Siegal, Y.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986).

Silberberg, Y.

D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998).
[CrossRef]

Spanner, M.

V. Kalosha, M. Spanner, J. Herrmann, and M. Ivanov, "Generation of single dispersion precompensated 1-fs pulses by shaped-pulse optimized high-order stimulated Raman scattering," Phys. Rev. Lett. 88, 103901 (2002).
[CrossRef]

Staselko, D. I.

Suda, A.

G. Koprinkov, A. Suda, and K. Midorikawa, "Interference between stimulated Raman scattering and self-phase modulation in pressurrized methane in highly transient femtosecond pump regime," Opt. Commun. 174, 299-304 (2000).
[CrossRef]

Tashiro, H.

Uchida, M.

Venkin, G. V.

G. V. Venkin, Yu. A. Il'inskii, and G. M. Mikheev, "Influence of the polarization of radiation on the energy characteristics and threshold of stimulated Raman scattering due to rotational transitions," Sov. J. Quantum Electron. 15, 395-397 (1985).
[CrossRef]

Wabner, N.

R. A. Bartels, T. C. Weinacht, N. Wabner, M. Baertschy, C. H. Greene, M. M. Murnane, and H. C. Kapteyn, "Phase modulation of ultrashort light pulse using molecular rotational wave packets," Phys. Rev. Lett. 88, 013903 (2002).
[CrossRef]

Wang, C. S.

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, "Theory of Stokes pulse shapes in transient stimulated Raman scattering," Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

Wang, J. K.

Weinacht, T. C.

R. A. Bartels, T. C. Weinacht, N. Wabner, M. Baertschy, C. H. Greene, M. M. Murnane, and H. C. Kapteyn, "Phase modulation of ultrashort light pulse using molecular rotational wave packets," Phys. Rev. Lett. 88, 013903 (2002).
[CrossRef]

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, "Coherent control using adaptive learning algorithms," Phys. Rev. A 63, 063412 (2001).
[CrossRef]

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, "Coherent learning control of vibrational motion in room temperature molecular gases," Chem. Phys. Lett. 344, 333-338 (2001).
[CrossRef]

Weiner, A. M.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

White, J. L.

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, "Coherent control using adaptive learning algorithms," Phys. Rev. A 63, 063412 (2001).
[CrossRef]

Wild, U. P.

Wittmann, M.

M. Wittmann, A. Nazarkin, and G. Korn, "Synthesis of periodic femtosecond pulse trains in the ultraviolet by phase-locked Raman sideband generation," Opt. Lett. 26, 298-300 (2001).
[CrossRef]

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, "Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium," Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

Yan, Y. X.

Y. X. Yan, E. B. Gamble, Jr., and K. A. Nelson, "Impulsive stimulated scattering: general importance in femtosecond laser pulse interactions with matter, and spectroscopic applications," J. Chem. Phys. 83, 5391-5399 (1985).
[CrossRef]

Yang, G.

Yoshikawa, S.

S. Kawasaki, S. Yoshikawa, T. Imasaka, and N. Ishibashi, "Generation of multicolor stimulated Raman emission from two-color linearly or circularly polarized pump beams," Appl. Phys. B 56, 259-262 (1993).
[CrossRef]

Zaitsu, S.

S. Zaitsu, Y. Kida, and T. Imasaka, "Self-compression of a femtosecond pulse due to Raman coherence of molecular rotations," Phys. Rev. A 70, 031801(R) (2004).
[CrossRef]

Zhavoronkov, N.

N. Zhavoronkov and G. Korn, "Generation of single intense short optical pulses by ultrafast molecular phase modulation," Phys. Rev. Lett. 88, 203901 (2002).
[CrossRef] [PubMed]

Zozulya, A. A.

Am. J. Phys.

N. Bloembergen, "The stimulated Raman effect," Am. J. Phys. 35, 989-1003 (1967).
[CrossRef]

Appl. Phys. B

S. Kawasaki, S. Yoshikawa, T. Imasaka, and N. Ishibashi, "Generation of multicolor stimulated Raman emission from two-color linearly or circularly polarized pump beams," Appl. Phys. B 56, 259-262 (1993).
[CrossRef]

T. Imasaka, S. Kawasaki, and N. Ishibashi, "Generation of more than 40 laser emissions lines from the ultraviolet to the visible regions by two-color stimulated Raman effect," Appl. Phys. B 49, 389-392 (1989).
[CrossRef]

Chem. Phys. Lett.

T. C. Weinacht, R. Bartels, S. Backus, P. H. Bucksbaum, B. Pearson, J. M. Geremia, H. Rabitz, H. C. Kapteyn, and M. M. Murnane, "Coherent learning control of vibrational motion in room temperature molecular gases," Chem. Phys. Lett. 344, 333-338 (2001).
[CrossRef]

R. A. Bartels, S. Backus, M. M. Murnane, and H. C. Kapteyn, "Impulsive stimulated Raman scattering of molecular vibration using nonlinear pulse shaping," Chem. Phys. Lett. 374, 326-333 (2003).
[CrossRef]

IEEE J. Quantum Electron.

H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of high-order rotational lines in hydrogen by four-wave Raman mixing in the femtosecond regime," IEEE J. Quantum Electron. 34, 260-268 (1998).
[CrossRef]

F. Hanson and P. Poiror, "Stimulated rotational Raman conversion in H2, D2, and HD," IEEE J. Quantum Electron. 29, 2342-2345 (1993).
[CrossRef]

J. Chem. Phys.

Y. X. Yan, E. B. Gamble, Jr., and K. A. Nelson, "Impulsive stimulated scattering: general importance in femtosecond laser pulse interactions with matter, and spectroscopic applications," J. Chem. Phys. 83, 5391-5399 (1985).
[CrossRef]

J. Opt. Soc. Am. B

Nature

D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998).
[CrossRef]

Opt. Commun.

G. Koprinkov, A. Suda, and K. Midorikawa, "Interference between stimulated Raman scattering and self-phase modulation in pressurrized methane in highly transient femtosecond pump regime," Opt. Commun. 174, 299-304 (2000).
[CrossRef]

Opt. Lett.

Phys. Rev.

M. Maier, W. Kaiser, and J. A. Giordmaine, "Backward stimulated Raman scattering," Phys. Rev. 177, 580-599 (1969).
[CrossRef]

Phys. Rev. A

S. Zaitsu, Y. Kida, and T. Imasaka, "Self-compression of a femtosecond pulse due to Raman coherence of molecular rotations," Phys. Rev. A 70, 031801(R) (2004).
[CrossRef]

S. A. Malinovskaya, P. H. Bucksbaum, and P. R. Berman, "Theory of selective excitation in stimulated Raman scattering," Phys. Rev. A 69, 013801 (2004).
[CrossRef]

B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, "Coherent control using adaptive learning algorithms," Phys. Rev. A 63, 063412 (2001).
[CrossRef]

R. L. Carman, F. Shimizu, C. S. Wang, and N. Bloembergen, "Theory of Stokes pulse shapes in transient stimulated Raman scattering," Phys. Rev. A 2, 60-72 (1970).
[CrossRef]

Phys. Rev. Lett.

A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, "Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium," Phys. Rev. Lett. 83, 2560-2563 (1999).
[CrossRef]

R. A. Bartels, T. C. Weinacht, N. Wabner, M. Baertschy, C. H. Greene, M. M. Murnane, and H. C. Kapteyn, "Phase modulation of ultrashort light pulse using molecular rotational wave packets," Phys. Rev. Lett. 88, 013903 (2002).
[CrossRef]

V. Kalosha, M. Spanner, J. Herrmann, and M. Ivanov, "Generation of single dispersion precompensated 1-fs pulses by shaped-pulse optimized high-order stimulated Raman scattering," Phys. Rev. Lett. 88, 103901 (2002).
[CrossRef]

N. Zhavoronkov and G. Korn, "Generation of single intense short optical pulses by ultrafast molecular phase modulation," Phys. Rev. Lett. 88, 203901 (2002).
[CrossRef] [PubMed]

G. Korn, O. Dühr, and A. Nazarkin, "Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibration," Phys. Rev. Lett. 81, 1215-1218 (1998).
[CrossRef]

R. W. Minck, E. E. Hagenlocker, and W. G. Rado, "Stimulated pure rotational Raman scattering in deuterium," Phys. Rev. Lett. 17, 229-231 (1966).
[CrossRef]

Rev. Sci. Instrum.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Sov. J. Quantum Electron.

G. V. Venkin, Yu. A. Il'inskii, and G. M. Mikheev, "Influence of the polarization of radiation on the energy characteristics and threshold of stimulated Raman scattering due to rotational transitions," Sov. J. Quantum Electron. 15, 395-397 (1985).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics (Academic, 2003).

P. G. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

A. E. Siegman, Lasers (University Science, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Excited Raman coherence by (a) a pump pulse with a duration shorter than a single motional period of a molecule τ 0 and (b) a pump pulse including a temporal structure faster than τ 0 .

Fig. 2
Fig. 2

Experimental setup. WP, wave plate; Pol, polarizer; TS, telescope; MCS, multichannel spectrometer; AC, autocorrelator.

Fig. 3
Fig. 3

Dependence of an output spectrum on an input pulse duration of (a) 430 fs with positive chirp, (b) 145 fs with positive chirp, (c) 100 fs (a nearly transform-limited pulse), (d) 185 fs with negative chirp, (e) 520 fs with negative chirp.

Fig. 4
Fig. 4

Output spectra for intensity I from 2.1 × 10 12 to 6.5 × 10 12 W cm 2 and a focusing condition with a confocal parameter (CP) from 1.2 to 3.5 cm .

Fig. 5
Fig. 5

Observed output spectra for a (a) circularly, (b) elliptically, and (c) linearly polarized input beam.

Fig. 6
Fig. 6

Evolution of the output spectra and the autocorrelation traces of output pulses as a function of input energy from 0.23 to 0.58 mJ . Input pulse spectra are shown as well.

Fig. 7
Fig. 7

Autocorrelation traces of pulses after passing through (a) an evacuated cell and (b) a cell filled with Ar gas at a pressure of 10 atm . Δ t is calculated under the assumption of a sech 2 shape.

Fig. 8
Fig. 8

Output spectra in the case of our using (a) a pulse with the autocorrelation trace shown in Fig. 7a, 7b the pulse shown in Fig. 7b as an input pulse.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ ( 1 + i ω 0 t ) 1 2 + 2 i k 0 z + 2 k 0 D ] E ( r , t ) = μ 0 ω 0 2 ( 1 + i ω 0 t ) P NL ( r , t ) ,
P NL = P ele + P Ram = χ ( 3 ) E 2 E + N ( α Q ) 0 Q E ,
d 2 Q ( t ) d t 2 + 1 T 2 d Q ( t ) d t + Ω 2 Q ( t ) = 1 2 m ( α Q ) E ( t ) 2 ,

Metrics