Abstract

Recently, laser activity has been achieved in the low-phonon-energy, moisture-resistant bromide host crystals: neodymium-doped potassium lead bromide (Nd3+:KPb2Br5) and rubidium lead bromide (Nd3+:RbPb2Br5). Laser activity at 1.07μm was observed for both crystalline materials. Laser operation at the new wavelengths of 1.18 and 0.97μm resulting from the F524+H922IJ4 transitions (J=132 and 112) in Nd:RbPb2Br5 was achieved for the first time in a solid-state laser material. We present cw pump–probe spectra and discuss excited-state absorption and reabsorption processes due to the long-lived lower laser levels, as well as possible depopulation mechanisms feasible for more efficient laser operation in these crystals. The bromides are compared with potassium lead chloride (Nd3+:KPb2Cl5).

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Rademaker, E. Heumann, S. A. Payne, G. Huber, W. F. Krupke, L. I. Isaenko, and A. Burger, "Laser activity at 1.18, 1.07, and 0.97 µm in the low-phonon-energy hosts KPb2Br5 and RbPb2Br5 doped with Nd3+," Opt. Lett. 30, 729-731 (2005).
    [CrossRef] [PubMed]
  2. K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, G. Huber, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with low nonradiative decay," J. Opt. Soc. Am. B 21, 2117-2129 (2004).
    [CrossRef]
  3. K. Rademaker, K. Petermann, G. Huber, W. F. Krupke, R. H. Page, S. A. Payne, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Slow nonradiative decay for rare earths in KPb2Br5 and RbPb2Br5," in Advanced Solid-State Photonics, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004).
  4. M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, "Optical properties of Dy3+- and Nd3+-doped KPb2Cl5," J. Opt. Soc. Am. B 18, 264-276 (2001).
    [CrossRef]
  5. S. Kueck, L. Fornasiero, E. Mix, and G. Huber, "Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3," Appl. Phys. B 67, 151-156 (1998).
  6. L. Fornasiero, S. Kueck, T. Jensen, G. Huber, and B. H. T. Chai, "Excited state absorption and stimulated emission of Nd3+ in crystals. Part II: YVO4, GdVO4, Sr5(PO4)3F," Appl. Phys. B 67, 549-553 (1998).
    [CrossRef]
  7. L. Fornasiero, T. Kellner, S. Kueck, J. P. Meyn, P. E.-A. Moebert, and G. Huber, "Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4, YLiF4," Appl. Phys. B 68, 67-72 (1999).
    [CrossRef]
  8. J. Koetke and G. Huber, "Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals," Appl. Phys. B 61, 151-158 (1995).
    [CrossRef]
  9. B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
    [CrossRef]
  10. G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
    [CrossRef]
  11. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, 1996).
  12. M. J. Weber, "Probabilities for radiative and nonradiative decay of Er3+ in LaF3," Phys. Rev. 157, 262-272 (1967).
    [CrossRef]
  13. B. G. Wybourne, "Composition of the electronic states of Nd(IV) and Er(IV)," J. Chem. Phys. 34, 279-281 (1961).
    [CrossRef]
  14. A. A. Kaminskii, Laser Crystals, Their Physics and Properties (Springer-Verlag, 1990).
    [CrossRef]
  15. U. Hoemmerich, E. Nyein, and S. B. Trivedi, "Crystal growth, upconversion, and emission properties of Er3+- and Nd3+- doped KPb2Br5," in Conference on Lasers and Electro-Optics, Postconference Digest Vol. 96 of OSA Trends in Optics and Photonics (Optical Society of America,2004).
  16. M. Nostrand, Lawrence Livermore National Laboratory (personal communication, 2003).
  17. N. W. Jenkins, S. R. Bowman, L. B. Shaw, and J. R. Lindle, "Spectroscopic analysis and laser modelling of neodymium-doped potassium lead chloride," J. Lumin. 97, 127-134 (2002).
    [CrossRef]
  18. K. Rademaker is preparing a manuscript titled "Rare-earth-doped alkali-lead--halide laser crystals of low-phonon energy."

2005 (1)

2004 (1)

2002 (1)

N. W. Jenkins, S. R. Bowman, L. B. Shaw, and J. R. Lindle, "Spectroscopic analysis and laser modelling of neodymium-doped potassium lead chloride," J. Lumin. 97, 127-134 (2002).
[CrossRef]

2001 (1)

1999 (1)

L. Fornasiero, T. Kellner, S. Kueck, J. P. Meyn, P. E.-A. Moebert, and G. Huber, "Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4, YLiF4," Appl. Phys. B 68, 67-72 (1999).
[CrossRef]

1998 (2)

S. Kueck, L. Fornasiero, E. Mix, and G. Huber, "Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3," Appl. Phys. B 67, 151-156 (1998).

L. Fornasiero, S. Kueck, T. Jensen, G. Huber, and B. H. T. Chai, "Excited state absorption and stimulated emission of Nd3+ in crystals. Part II: YVO4, GdVO4, Sr5(PO4)3F," Appl. Phys. B 67, 549-553 (1998).
[CrossRef]

1995 (1)

J. Koetke and G. Huber, "Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals," Appl. Phys. B 61, 151-158 (1995).
[CrossRef]

1967 (1)

M. J. Weber, "Probabilities for radiative and nonradiative decay of Er3+ in LaF3," Phys. Rev. 157, 262-272 (1967).
[CrossRef]

1962 (2)

B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
[CrossRef]

G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

1961 (1)

B. G. Wybourne, "Composition of the electronic states of Nd(IV) and Er(IV)," J. Chem. Phys. 34, 279-281 (1961).
[CrossRef]

Bowman, S. R.

N. W. Jenkins, S. R. Bowman, L. B. Shaw, and J. R. Lindle, "Spectroscopic analysis and laser modelling of neodymium-doped potassium lead chloride," J. Lumin. 97, 127-134 (2002).
[CrossRef]

Burger, A.

Chai, B. H. T.

L. Fornasiero, S. Kueck, T. Jensen, G. Huber, and B. H. T. Chai, "Excited state absorption and stimulated emission of Nd3+ in crystals. Part II: YVO4, GdVO4, Sr5(PO4)3F," Appl. Phys. B 67, 549-553 (1998).
[CrossRef]

Fornasiero, L.

L. Fornasiero, T. Kellner, S. Kueck, J. P. Meyn, P. E.-A. Moebert, and G. Huber, "Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4, YLiF4," Appl. Phys. B 68, 67-72 (1999).
[CrossRef]

S. Kueck, L. Fornasiero, E. Mix, and G. Huber, "Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3," Appl. Phys. B 67, 151-156 (1998).

L. Fornasiero, S. Kueck, T. Jensen, G. Huber, and B. H. T. Chai, "Excited state absorption and stimulated emission of Nd3+ in crystals. Part II: YVO4, GdVO4, Sr5(PO4)3F," Appl. Phys. B 67, 549-553 (1998).
[CrossRef]

Heumann, E.

Hoemmerich, U.

U. Hoemmerich, E. Nyein, and S. B. Trivedi, "Crystal growth, upconversion, and emission properties of Er3+- and Nd3+- doped KPb2Br5," in Conference on Lasers and Electro-Optics, Postconference Digest Vol. 96 of OSA Trends in Optics and Photonics (Optical Society of America,2004).

Huber, G.

K. Rademaker, E. Heumann, S. A. Payne, G. Huber, W. F. Krupke, L. I. Isaenko, and A. Burger, "Laser activity at 1.18, 1.07, and 0.97 µm in the low-phonon-energy hosts KPb2Br5 and RbPb2Br5 doped with Nd3+," Opt. Lett. 30, 729-731 (2005).
[CrossRef] [PubMed]

K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, G. Huber, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with low nonradiative decay," J. Opt. Soc. Am. B 21, 2117-2129 (2004).
[CrossRef]

L. Fornasiero, T. Kellner, S. Kueck, J. P. Meyn, P. E.-A. Moebert, and G. Huber, "Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4, YLiF4," Appl. Phys. B 68, 67-72 (1999).
[CrossRef]

S. Kueck, L. Fornasiero, E. Mix, and G. Huber, "Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3," Appl. Phys. B 67, 151-156 (1998).

L. Fornasiero, S. Kueck, T. Jensen, G. Huber, and B. H. T. Chai, "Excited state absorption and stimulated emission of Nd3+ in crystals. Part II: YVO4, GdVO4, Sr5(PO4)3F," Appl. Phys. B 67, 549-553 (1998).
[CrossRef]

J. Koetke and G. Huber, "Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals," Appl. Phys. B 61, 151-158 (1995).
[CrossRef]

K. Rademaker, K. Petermann, G. Huber, W. F. Krupke, R. H. Page, S. A. Payne, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Slow nonradiative decay for rare earths in KPb2Br5 and RbPb2Br5," in Advanced Solid-State Photonics, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004).

Isaenko, L. I.

Jenkins, N. W.

N. W. Jenkins, S. R. Bowman, L. B. Shaw, and J. R. Lindle, "Spectroscopic analysis and laser modelling of neodymium-doped potassium lead chloride," J. Lumin. 97, 127-134 (2002).
[CrossRef]

Jensen, T.

L. Fornasiero, S. Kueck, T. Jensen, G. Huber, and B. H. T. Chai, "Excited state absorption and stimulated emission of Nd3+ in crystals. Part II: YVO4, GdVO4, Sr5(PO4)3F," Appl. Phys. B 67, 549-553 (1998).
[CrossRef]

Judd, B. R.

B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, Laser Crystals, Their Physics and Properties (Springer-Verlag, 1990).
[CrossRef]

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, 1996).

Kellner, T.

L. Fornasiero, T. Kellner, S. Kueck, J. P. Meyn, P. E.-A. Moebert, and G. Huber, "Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4, YLiF4," Appl. Phys. B 68, 67-72 (1999).
[CrossRef]

Koetke, J.

J. Koetke and G. Huber, "Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals," Appl. Phys. B 61, 151-158 (1995).
[CrossRef]

Krupke, W. F.

Kueck, S.

L. Fornasiero, T. Kellner, S. Kueck, J. P. Meyn, P. E.-A. Moebert, and G. Huber, "Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4, YLiF4," Appl. Phys. B 68, 67-72 (1999).
[CrossRef]

L. Fornasiero, S. Kueck, T. Jensen, G. Huber, and B. H. T. Chai, "Excited state absorption and stimulated emission of Nd3+ in crystals. Part II: YVO4, GdVO4, Sr5(PO4)3F," Appl. Phys. B 67, 549-553 (1998).
[CrossRef]

S. Kueck, L. Fornasiero, E. Mix, and G. Huber, "Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3," Appl. Phys. B 67, 151-156 (1998).

Lindle, J. R.

N. W. Jenkins, S. R. Bowman, L. B. Shaw, and J. R. Lindle, "Spectroscopic analysis and laser modelling of neodymium-doped potassium lead chloride," J. Lumin. 97, 127-134 (2002).
[CrossRef]

Mandal, K. C.

K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, G. Huber, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with low nonradiative decay," J. Opt. Soc. Am. B 21, 2117-2129 (2004).
[CrossRef]

K. Rademaker, K. Petermann, G. Huber, W. F. Krupke, R. H. Page, S. A. Payne, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Slow nonradiative decay for rare earths in KPb2Br5 and RbPb2Br5," in Advanced Solid-State Photonics, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004).

Meyn, J. P.

L. Fornasiero, T. Kellner, S. Kueck, J. P. Meyn, P. E.-A. Moebert, and G. Huber, "Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4, YLiF4," Appl. Phys. B 68, 67-72 (1999).
[CrossRef]

Mix, E.

S. Kueck, L. Fornasiero, E. Mix, and G. Huber, "Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3," Appl. Phys. B 67, 151-156 (1998).

Moebert, P. E.-A.

L. Fornasiero, T. Kellner, S. Kueck, J. P. Meyn, P. E.-A. Moebert, and G. Huber, "Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4, YLiF4," Appl. Phys. B 68, 67-72 (1999).
[CrossRef]

Nitsch, K.

K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, G. Huber, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with low nonradiative decay," J. Opt. Soc. Am. B 21, 2117-2129 (2004).
[CrossRef]

K. Rademaker, K. Petermann, G. Huber, W. F. Krupke, R. H. Page, S. A. Payne, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Slow nonradiative decay for rare earths in KPb2Br5 and RbPb2Br5," in Advanced Solid-State Photonics, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004).

Nostrand, M.

M. Nostrand, Lawrence Livermore National Laboratory (personal communication, 2003).

Nostrand, M. C.

Nyein, E.

U. Hoemmerich, E. Nyein, and S. B. Trivedi, "Crystal growth, upconversion, and emission properties of Er3+- and Nd3+- doped KPb2Br5," in Conference on Lasers and Electro-Optics, Postconference Digest Vol. 96 of OSA Trends in Optics and Photonics (Optical Society of America,2004).

Ofelt, G. S.

G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

Page, R. H.

K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, G. Huber, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with low nonradiative decay," J. Opt. Soc. Am. B 21, 2117-2129 (2004).
[CrossRef]

M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, "Optical properties of Dy3+- and Nd3+-doped KPb2Cl5," J. Opt. Soc. Am. B 18, 264-276 (2001).
[CrossRef]

K. Rademaker, K. Petermann, G. Huber, W. F. Krupke, R. H. Page, S. A. Payne, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Slow nonradiative decay for rare earths in KPb2Br5 and RbPb2Br5," in Advanced Solid-State Photonics, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004).

Payne, S. A.

Petermann, K.

K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, G. Huber, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with low nonradiative decay," J. Opt. Soc. Am. B 21, 2117-2129 (2004).
[CrossRef]

K. Rademaker, K. Petermann, G. Huber, W. F. Krupke, R. H. Page, S. A. Payne, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Slow nonradiative decay for rare earths in KPb2Br5 and RbPb2Br5," in Advanced Solid-State Photonics, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004).

Rademaker, K.

K. Rademaker, E. Heumann, S. A. Payne, G. Huber, W. F. Krupke, L. I. Isaenko, and A. Burger, "Laser activity at 1.18, 1.07, and 0.97 µm in the low-phonon-energy hosts KPb2Br5 and RbPb2Br5 doped with Nd3+," Opt. Lett. 30, 729-731 (2005).
[CrossRef] [PubMed]

K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, G. Huber, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with low nonradiative decay," J. Opt. Soc. Am. B 21, 2117-2129 (2004).
[CrossRef]

K. Rademaker, K. Petermann, G. Huber, W. F. Krupke, R. H. Page, S. A. Payne, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Slow nonradiative decay for rare earths in KPb2Br5 and RbPb2Br5," in Advanced Solid-State Photonics, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004).

K. Rademaker is preparing a manuscript titled "Rare-earth-doped alkali-lead--halide laser crystals of low-phonon energy."

Roy, U. N.

K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, G. Huber, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with low nonradiative decay," J. Opt. Soc. Am. B 21, 2117-2129 (2004).
[CrossRef]

K. Rademaker, K. Petermann, G. Huber, W. F. Krupke, R. H. Page, S. A. Payne, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Slow nonradiative decay for rare earths in KPb2Br5 and RbPb2Br5," in Advanced Solid-State Photonics, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004).

Shaw, L. B.

N. W. Jenkins, S. R. Bowman, L. B. Shaw, and J. R. Lindle, "Spectroscopic analysis and laser modelling of neodymium-doped potassium lead chloride," J. Lumin. 97, 127-134 (2002).
[CrossRef]

Trivedi, S. B.

U. Hoemmerich, E. Nyein, and S. B. Trivedi, "Crystal growth, upconversion, and emission properties of Er3+- and Nd3+- doped KPb2Br5," in Conference on Lasers and Electro-Optics, Postconference Digest Vol. 96 of OSA Trends in Optics and Photonics (Optical Society of America,2004).

Weber, M. J.

M. J. Weber, "Probabilities for radiative and nonradiative decay of Er3+ in LaF3," Phys. Rev. 157, 262-272 (1967).
[CrossRef]

Wybourne, B. G.

B. G. Wybourne, "Composition of the electronic states of Nd(IV) and Er(IV)," J. Chem. Phys. 34, 279-281 (1961).
[CrossRef]

Yelisseyev, A. P.

K. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, G. Huber, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Optical properties of Nd3+- and Tb3+-doped KPb2Br5 and RbPb2Br5 with low nonradiative decay," J. Opt. Soc. Am. B 21, 2117-2129 (2004).
[CrossRef]

M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, "Optical properties of Dy3+- and Nd3+-doped KPb2Cl5," J. Opt. Soc. Am. B 18, 264-276 (2001).
[CrossRef]

K. Rademaker, K. Petermann, G. Huber, W. F. Krupke, R. H. Page, S. A. Payne, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Slow nonradiative decay for rare earths in KPb2Br5 and RbPb2Br5," in Advanced Solid-State Photonics, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004).

Appl. Phys. B (4)

S. Kueck, L. Fornasiero, E. Mix, and G. Huber, "Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3," Appl. Phys. B 67, 151-156 (1998).

L. Fornasiero, S. Kueck, T. Jensen, G. Huber, and B. H. T. Chai, "Excited state absorption and stimulated emission of Nd3+ in crystals. Part II: YVO4, GdVO4, Sr5(PO4)3F," Appl. Phys. B 67, 549-553 (1998).
[CrossRef]

L. Fornasiero, T. Kellner, S. Kueck, J. P. Meyn, P. E.-A. Moebert, and G. Huber, "Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4, YLiF4," Appl. Phys. B 68, 67-72 (1999).
[CrossRef]

J. Koetke and G. Huber, "Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals," Appl. Phys. B 61, 151-158 (1995).
[CrossRef]

J. Chem. Phys. (2)

B. G. Wybourne, "Composition of the electronic states of Nd(IV) and Er(IV)," J. Chem. Phys. 34, 279-281 (1961).
[CrossRef]

G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

J. Lumin. (1)

N. W. Jenkins, S. R. Bowman, L. B. Shaw, and J. R. Lindle, "Spectroscopic analysis and laser modelling of neodymium-doped potassium lead chloride," J. Lumin. 97, 127-134 (2002).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (1)

Phys. Rev. (2)

B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
[CrossRef]

M. J. Weber, "Probabilities for radiative and nonradiative decay of Er3+ in LaF3," Phys. Rev. 157, 262-272 (1967).
[CrossRef]

Other (6)

K. Rademaker, K. Petermann, G. Huber, W. F. Krupke, R. H. Page, S. A. Payne, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, K. C. Mandal, and K. Nitsch, "Slow nonradiative decay for rare earths in KPb2Br5 and RbPb2Br5," in Advanced Solid-State Photonics, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004).

K. Rademaker is preparing a manuscript titled "Rare-earth-doped alkali-lead--halide laser crystals of low-phonon energy."

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, 1996).

A. A. Kaminskii, Laser Crystals, Their Physics and Properties (Springer-Verlag, 1990).
[CrossRef]

U. Hoemmerich, E. Nyein, and S. B. Trivedi, "Crystal growth, upconversion, and emission properties of Er3+- and Nd3+- doped KPb2Br5," in Conference on Lasers and Electro-Optics, Postconference Digest Vol. 96 of OSA Trends in Optics and Photonics (Optical Society of America,2004).

M. Nostrand, Lawrence Livermore National Laboratory (personal communication, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Energy-level diagram of Nd:MPB ( M = K , Rb ) displays new laser transitions from the F 5 2 4 + H 9 2 2 level at 1.18 and 0.97 μ m and potential transitions at 0.82 and 1.55 μ m , in addition to the conventional laser transitions at 1.07 and 1.35 μ m from the F 3 2 4 level. Excited-state absorption transitions resulting from the F 5 2 4 + H 9 2 2 and F 3 2 4 levels, reabsorption transitions resulting from the I 4 levels, as well as depopulation mechanisms for the long-lived lower laser levels I J 4 ( J = 13 2 , 15 2 ) via cross relaxation (CR) are indicated. The pump bands at 0.75, 0.81, and 0.89 μ m are indicated. (Transitions resulting from the F 7 2 4 + S 3 2 4 level have been neglected to simplify the discussion.)

Fig. 2
Fig. 2

Input–output characteristic for an optical parametric oscillator-pumped Nd:KPB crystal lasing at 1.07 μ m and a Nd:RPB crystal lasing at 1.07 and 1.18 μ m (taken from Ref. [1]). The slope efficiency is given for output pulse energy with respect to absorbed pump energy. To achieve lasing at 1.07 μ m , the F 3 2 4 level was directly pumped, while for the laser wavelengths of 1.18 and 0.97 μ m , the F 5 2 4 level was pumped. OC, output coupling.

Fig. 3
Fig. 3

Experimental setup of the cw pump–probe technique. SHG, second-harmonic generation.

Fig. 4
Fig. 4

Emission spectra (thick curves) and pump–probe spectra (thin curves) of Nd 3 + : KPB determined by pumping into either the (a) F 3 2 4 or (b) F 7 2 4 + S 3 2 4 level, respectively (using the same crystal for both spectra). The inset in (b) displays an 5 × magnification for the wavelength range 1135 1500 nm . RA and ESA compete with gain as indicated. Depopulation via CR leads to less RA of transitions from the I 13 2 4 level compared with the I 11 2 4 level. Note that only the main transitions are indicated (Tables 1, 2 show others) and that the F 5 2 4 + H 9 2 2 and F 7 2 4 + S 3 2 4 levels are abbreviated by F 5 2 4 and F 7 2 4 , respectively.

Fig. 5
Fig. 5

Emission spectra (thick curves) and pump–probe spectra (thin curves) of (a) Nd 3 + : KPC determined by pumping into the F 5 2 4 + H 9 2 2 level and (b) Nd 3 + : RPB determined by pumping into the F 7 2 4 + S 3 2 4 level. RA and ESA compete with gain as indicated. Depopulation via CR leads to less RA of transitions from the I 13 2 4 level compared with the I 11 2 4 in the case of Nd:KPC compared with Nd:RPB due to the higher Nd concentration. (Note that the emission of Nd:RPB is not blackbody corrected.) The feature near 0.94 μ m in (b) could be due to the I 13 2 4 F 9 2 4 transition. Note that only the main transitions are indicated (Tables 1, 2 show others) and that the F 5 2 4 + H 9 2 2 and F 7 2 4 + S 3 2 4 levels are abbreviated by F 5 2 4 and F 7 2 4 , respectively.

Tables (4)

Tables Icon

Table 1 Calculated Line Strengths S of Induced Electric Dipole (ED) and of Magnetic Dipole (MD) Transitions for Relevant Emission (EM), RA, Bleaching, and ESA Transitions for Nd:KPB a

Tables Icon

Table 2 Calculated Line Strengths S of Induced Electric Dipole (ED) and of Magnetic Dipole (MD) Transitions for Relevant Emission (EM), RA, Bleaching, ESA Transitions for Nd:RPB a

Tables Icon

Table 3 Calculated Radiative τ rad and Measured τ meas Lifetimes for the Initial Level J of the Relevant Emission, RA, CR, and ESA Processes for Nd:KPB and Nd:RPB a

Tables Icon

Table 4 Calculated Line Strengths S of Induced Electric Dipole (ED) and of Magnetic Dipole (MD) Transitions for Nd:KPB and Nd:RPB a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I p I u I u = C n e l [ σ GSA + i n i n e ( σ em , i σ ESA RA , i ) ] ,
Σ eff = σ d λ λ ¯ 2 = 4 π 2 e 2 3 c 1 λ ¯ ( 2 J + 1 ) [ ( n 2 + 2 ) 2 9 n S ED + n S MD ]
= A J J λ ¯ 2 8 π c n 2 ,

Metrics