Abstract

We study the effect of polarization and frequency-selective feedback on a two-mode vertical-cavity surface-emitting laser. By investigating the polarization and spatial properties of the intensity noise, we demonstrate single polarization and single-transverse-mode operation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Wilmsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface-Emitting Lasers (Cambridge U. Press, 1999).
  2. A. K. Jansen van Doorn, M. P. van Exter, A. M. van der Lee, and J. P. Woerdman, "Coupled-mode description for the polarization state of a vertical-cavity semiconductor laser," Phys. Rev. A 55, 1473-1484 (1997).
    [CrossRef]
  3. C. J. Chang-Hasnain, M. Orenstein, A. C. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers" Appl. Phys. Lett. 57, 218-220 (1990).
    [CrossRef]
  4. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
    [CrossRef]
  5. F. Prati, G. Giacomelli, and F. Marin, "Competition between orthogonally polarized transverse modes in vertical-cavity surface-emitting lasers and its influence on intensity noise," Phys. Rev. A 62, 033810 (2000).
    [CrossRef]
  6. G. Giacomelli, F. Marin, M. Gabrysch, K. H. Gulden, and M. Moser, "Polarization competition and noise properties of VCSELs," Opt. Commun. 146, 136-140 (1998).
    [CrossRef]
  7. D. C. Kilper, P. A. Roos, J. L. Carlsten, and K. L. Lear, "Squeezed light generated by a microcavity laser," Phys. Rev. A 55, R3323-R3326 (1997).
    [CrossRef]
  8. J.-P. Hermier, A. Bramati, A. Z. Khoury, V. Josse, E. Giacobino, P. Schnitzer, R. Michalzik, and K. J. Ebeling, "Noise characteristics of oxide-confined vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 37, 87-91 (2001).
    [CrossRef]
  9. M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, "Correlated fluctuations in the polarization modes of a vertical-cavity semiconductor laser," Phys. Rev. A 60, 4105-4113 (1999).
    [CrossRef]
  10. J.-P. Hermier, M. I. Kolobov, I. Maurin, and E. Giacobino, "Quantum spin flip model for vertical-cavity surface-emitting lasers," Phys. Rev. A 65, 053825 (2002).
    [CrossRef]
  11. N. Treps, V. Delaubert, A. Maitre, J. M. Courty, and C. Fabre, "Quantum noise in multipixel image processing," Phys. Rev. A 71, 013820 (2005).
    [CrossRef]
  12. A. Bramati, J.-P. Hermier, A. Z. Khoury, E. Giacobino, P. Schnitzer, R. Michalzik, K. J. Ebeling, J.-Ph. Poizat, and Ph. Grangier, "Spatial distribution of the intensity noise of a vertical-cavity surface-emitting semiconductor laser," Opt. Lett. 24, 893-895 (1999).
    [CrossRef]
  13. J.-P. Hermier, A. Bramati, A. Z. Khoury, E. Giacobino, J.-Ph. Poizat, T. J. Chang, and Ph. Grangier, "Spatial quantum noise of semiconductor lasers," J. Opt. Soc. Am. B 16, 2140-2146 (1999).
    [CrossRef]
  14. G. Giacomelli and F. Marin, "Statistics of polarization competition in VCSELs," Quantum Semiclassic. Opt. 10, 469-476 (1998).
    [CrossRef]
  15. F. Marin and G. Giacomelli, "Polarization and transverse mode dynamics of VCSELs," J. Opt. B 1, 128-132 (1999).
    [CrossRef]
  16. D. Wiedenmann, P. Schnitzer, C. Jung, M. Grabherr, R. Jager, R. Michalzik, and K. J. Ebeling, "Noise characteristics of 850 nm single-mode vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 73, 717-719 (1998).
    [CrossRef]
  17. G. Giacomelli, F. Marin, and M. Romanelli, "Multi-time-scale dynamics of a laser with polarized optical feedback," Phys. Rev. A 67, 053809 (2003).
    [CrossRef]
  18. F. Marino, S. Barland, and S. Balle, "Single-mode operation and transverse-mode control in VCSELs induced by frequency-selective feedback," IEEE Photonics Technol. Lett. 15, 789-791 (2003).
    [CrossRef]
  19. M. J. Littman and H. J. Metcalf, "Spectrally narrow pulsed dye laser without beam expander," Appl. Opt. 17, 2224-2227 (1978).
    [CrossRef] [PubMed]
  20. Y. C. Chung and Y. H. Lee, "Spectral characteristics of vertical-cavity surface-emitting lasers with external optical feedback," IEEE Photonics Technol. Lett. 3, 597-599 (1991).
    [CrossRef]
  21. K. Panajotov, M. Sciamanna, A. Tabaka, P. Mégret, M. Blondel, G. Giacomelli, F. Marin, H. Thienpont, and I. Veretennicoff, "Residence time distribution and coherence resonance of optical-feedback-induced polarization mode hopping in vertical-cavity surface-emitting lasers," Phys. Rev. A 69, 011801(R) (2004).
    [CrossRef]

2005 (1)

N. Treps, V. Delaubert, A. Maitre, J. M. Courty, and C. Fabre, "Quantum noise in multipixel image processing," Phys. Rev. A 71, 013820 (2005).
[CrossRef]

2004 (1)

K. Panajotov, M. Sciamanna, A. Tabaka, P. Mégret, M. Blondel, G. Giacomelli, F. Marin, H. Thienpont, and I. Veretennicoff, "Residence time distribution and coherence resonance of optical-feedback-induced polarization mode hopping in vertical-cavity surface-emitting lasers," Phys. Rev. A 69, 011801(R) (2004).
[CrossRef]

2003 (2)

G. Giacomelli, F. Marin, and M. Romanelli, "Multi-time-scale dynamics of a laser with polarized optical feedback," Phys. Rev. A 67, 053809 (2003).
[CrossRef]

F. Marino, S. Barland, and S. Balle, "Single-mode operation and transverse-mode control in VCSELs induced by frequency-selective feedback," IEEE Photonics Technol. Lett. 15, 789-791 (2003).
[CrossRef]

2002 (1)

J.-P. Hermier, M. I. Kolobov, I. Maurin, and E. Giacobino, "Quantum spin flip model for vertical-cavity surface-emitting lasers," Phys. Rev. A 65, 053825 (2002).
[CrossRef]

2001 (1)

J.-P. Hermier, A. Bramati, A. Z. Khoury, V. Josse, E. Giacobino, P. Schnitzer, R. Michalzik, and K. J. Ebeling, "Noise characteristics of oxide-confined vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 37, 87-91 (2001).
[CrossRef]

2000 (1)

F. Prati, G. Giacomelli, and F. Marin, "Competition between orthogonally polarized transverse modes in vertical-cavity surface-emitting lasers and its influence on intensity noise," Phys. Rev. A 62, 033810 (2000).
[CrossRef]

1999 (4)

1998 (3)

G. Giacomelli and F. Marin, "Statistics of polarization competition in VCSELs," Quantum Semiclassic. Opt. 10, 469-476 (1998).
[CrossRef]

D. Wiedenmann, P. Schnitzer, C. Jung, M. Grabherr, R. Jager, R. Michalzik, and K. J. Ebeling, "Noise characteristics of 850 nm single-mode vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 73, 717-719 (1998).
[CrossRef]

G. Giacomelli, F. Marin, M. Gabrysch, K. H. Gulden, and M. Moser, "Polarization competition and noise properties of VCSELs," Opt. Commun. 146, 136-140 (1998).
[CrossRef]

1997 (2)

D. C. Kilper, P. A. Roos, J. L. Carlsten, and K. L. Lear, "Squeezed light generated by a microcavity laser," Phys. Rev. A 55, R3323-R3326 (1997).
[CrossRef]

A. K. Jansen van Doorn, M. P. van Exter, A. M. van der Lee, and J. P. Woerdman, "Coupled-mode description for the polarization state of a vertical-cavity semiconductor laser," Phys. Rev. A 55, 1473-1484 (1997).
[CrossRef]

1991 (2)

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

Y. C. Chung and Y. H. Lee, "Spectral characteristics of vertical-cavity surface-emitting lasers with external optical feedback," IEEE Photonics Technol. Lett. 3, 597-599 (1991).
[CrossRef]

1990 (1)

C. J. Chang-Hasnain, M. Orenstein, A. C. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers" Appl. Phys. Lett. 57, 218-220 (1990).
[CrossRef]

1978 (1)

Balle, S.

F. Marino, S. Barland, and S. Balle, "Single-mode operation and transverse-mode control in VCSELs induced by frequency-selective feedback," IEEE Photonics Technol. Lett. 15, 789-791 (2003).
[CrossRef]

Barland, S.

F. Marino, S. Barland, and S. Balle, "Single-mode operation and transverse-mode control in VCSELs induced by frequency-selective feedback," IEEE Photonics Technol. Lett. 15, 789-791 (2003).
[CrossRef]

Blondel, M.

K. Panajotov, M. Sciamanna, A. Tabaka, P. Mégret, M. Blondel, G. Giacomelli, F. Marin, H. Thienpont, and I. Veretennicoff, "Residence time distribution and coherence resonance of optical-feedback-induced polarization mode hopping in vertical-cavity surface-emitting lasers," Phys. Rev. A 69, 011801(R) (2004).
[CrossRef]

Bramati, A.

Carlsten, J. L.

D. C. Kilper, P. A. Roos, J. L. Carlsten, and K. L. Lear, "Squeezed light generated by a microcavity laser," Phys. Rev. A 55, R3323-R3326 (1997).
[CrossRef]

Chang, T. J.

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

C. J. Chang-Hasnain, M. Orenstein, A. C. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers" Appl. Phys. Lett. 57, 218-220 (1990).
[CrossRef]

Chung, Y. C.

Y. C. Chung and Y. H. Lee, "Spectral characteristics of vertical-cavity surface-emitting lasers with external optical feedback," IEEE Photonics Technol. Lett. 3, 597-599 (1991).
[CrossRef]

Coldren, L. A.

C. Wilmsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface-Emitting Lasers (Cambridge U. Press, 1999).

Courty, J. M.

N. Treps, V. Delaubert, A. Maitre, J. M. Courty, and C. Fabre, "Quantum noise in multipixel image processing," Phys. Rev. A 71, 013820 (2005).
[CrossRef]

Delaubert, V.

N. Treps, V. Delaubert, A. Maitre, J. M. Courty, and C. Fabre, "Quantum noise in multipixel image processing," Phys. Rev. A 71, 013820 (2005).
[CrossRef]

Ebeling, K. J.

J.-P. Hermier, A. Bramati, A. Z. Khoury, V. Josse, E. Giacobino, P. Schnitzer, R. Michalzik, and K. J. Ebeling, "Noise characteristics of oxide-confined vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 37, 87-91 (2001).
[CrossRef]

A. Bramati, J.-P. Hermier, A. Z. Khoury, E. Giacobino, P. Schnitzer, R. Michalzik, K. J. Ebeling, J.-Ph. Poizat, and Ph. Grangier, "Spatial distribution of the intensity noise of a vertical-cavity surface-emitting semiconductor laser," Opt. Lett. 24, 893-895 (1999).
[CrossRef]

D. Wiedenmann, P. Schnitzer, C. Jung, M. Grabherr, R. Jager, R. Michalzik, and K. J. Ebeling, "Noise characteristics of 850 nm single-mode vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 73, 717-719 (1998).
[CrossRef]

Fabre, C.

N. Treps, V. Delaubert, A. Maitre, J. M. Courty, and C. Fabre, "Quantum noise in multipixel image processing," Phys. Rev. A 71, 013820 (2005).
[CrossRef]

Florez, L. T.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

C. J. Chang-Hasnain, M. Orenstein, A. C. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers" Appl. Phys. Lett. 57, 218-220 (1990).
[CrossRef]

Gabrysch, M.

G. Giacomelli, F. Marin, M. Gabrysch, K. H. Gulden, and M. Moser, "Polarization competition and noise properties of VCSELs," Opt. Commun. 146, 136-140 (1998).
[CrossRef]

Giacobino, E.

J.-P. Hermier, M. I. Kolobov, I. Maurin, and E. Giacobino, "Quantum spin flip model for vertical-cavity surface-emitting lasers," Phys. Rev. A 65, 053825 (2002).
[CrossRef]

J.-P. Hermier, A. Bramati, A. Z. Khoury, V. Josse, E. Giacobino, P. Schnitzer, R. Michalzik, and K. J. Ebeling, "Noise characteristics of oxide-confined vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 37, 87-91 (2001).
[CrossRef]

A. Bramati, J.-P. Hermier, A. Z. Khoury, E. Giacobino, P. Schnitzer, R. Michalzik, K. J. Ebeling, J.-Ph. Poizat, and Ph. Grangier, "Spatial distribution of the intensity noise of a vertical-cavity surface-emitting semiconductor laser," Opt. Lett. 24, 893-895 (1999).
[CrossRef]

J.-P. Hermier, A. Bramati, A. Z. Khoury, E. Giacobino, J.-Ph. Poizat, T. J. Chang, and Ph. Grangier, "Spatial quantum noise of semiconductor lasers," J. Opt. Soc. Am. B 16, 2140-2146 (1999).
[CrossRef]

Giacomelli, G.

K. Panajotov, M. Sciamanna, A. Tabaka, P. Mégret, M. Blondel, G. Giacomelli, F. Marin, H. Thienpont, and I. Veretennicoff, "Residence time distribution and coherence resonance of optical-feedback-induced polarization mode hopping in vertical-cavity surface-emitting lasers," Phys. Rev. A 69, 011801(R) (2004).
[CrossRef]

G. Giacomelli, F. Marin, and M. Romanelli, "Multi-time-scale dynamics of a laser with polarized optical feedback," Phys. Rev. A 67, 053809 (2003).
[CrossRef]

F. Prati, G. Giacomelli, and F. Marin, "Competition between orthogonally polarized transverse modes in vertical-cavity surface-emitting lasers and its influence on intensity noise," Phys. Rev. A 62, 033810 (2000).
[CrossRef]

F. Marin and G. Giacomelli, "Polarization and transverse mode dynamics of VCSELs," J. Opt. B 1, 128-132 (1999).
[CrossRef]

G. Giacomelli, F. Marin, M. Gabrysch, K. H. Gulden, and M. Moser, "Polarization competition and noise properties of VCSELs," Opt. Commun. 146, 136-140 (1998).
[CrossRef]

G. Giacomelli and F. Marin, "Statistics of polarization competition in VCSELs," Quantum Semiclassic. Opt. 10, 469-476 (1998).
[CrossRef]

Grabherr, M.

D. Wiedenmann, P. Schnitzer, C. Jung, M. Grabherr, R. Jager, R. Michalzik, and K. J. Ebeling, "Noise characteristics of 850 nm single-mode vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 73, 717-719 (1998).
[CrossRef]

Grangier, Ph.

Gulden, K. H.

G. Giacomelli, F. Marin, M. Gabrysch, K. H. Gulden, and M. Moser, "Polarization competition and noise properties of VCSELs," Opt. Commun. 146, 136-140 (1998).
[CrossRef]

Harbison, J. P.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

C. J. Chang-Hasnain, M. Orenstein, A. C. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers" Appl. Phys. Lett. 57, 218-220 (1990).
[CrossRef]

Hasnain, G.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

Hermier, J.-P.

J.-P. Hermier, M. I. Kolobov, I. Maurin, and E. Giacobino, "Quantum spin flip model for vertical-cavity surface-emitting lasers," Phys. Rev. A 65, 053825 (2002).
[CrossRef]

J.-P. Hermier, A. Bramati, A. Z. Khoury, V. Josse, E. Giacobino, P. Schnitzer, R. Michalzik, and K. J. Ebeling, "Noise characteristics of oxide-confined vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 37, 87-91 (2001).
[CrossRef]

A. Bramati, J.-P. Hermier, A. Z. Khoury, E. Giacobino, P. Schnitzer, R. Michalzik, K. J. Ebeling, J.-Ph. Poizat, and Ph. Grangier, "Spatial distribution of the intensity noise of a vertical-cavity surface-emitting semiconductor laser," Opt. Lett. 24, 893-895 (1999).
[CrossRef]

J.-P. Hermier, A. Bramati, A. Z. Khoury, E. Giacobino, J.-Ph. Poizat, T. J. Chang, and Ph. Grangier, "Spatial quantum noise of semiconductor lasers," J. Opt. Soc. Am. B 16, 2140-2146 (1999).
[CrossRef]

Jager, R.

D. Wiedenmann, P. Schnitzer, C. Jung, M. Grabherr, R. Jager, R. Michalzik, and K. J. Ebeling, "Noise characteristics of 850 nm single-mode vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 73, 717-719 (1998).
[CrossRef]

Josse, V.

J.-P. Hermier, A. Bramati, A. Z. Khoury, V. Josse, E. Giacobino, P. Schnitzer, R. Michalzik, and K. J. Ebeling, "Noise characteristics of oxide-confined vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 37, 87-91 (2001).
[CrossRef]

Jung, C.

D. Wiedenmann, P. Schnitzer, C. Jung, M. Grabherr, R. Jager, R. Michalzik, and K. J. Ebeling, "Noise characteristics of 850 nm single-mode vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 73, 717-719 (1998).
[CrossRef]

Khoury, A. Z.

Kilper, D. C.

D. C. Kilper, P. A. Roos, J. L. Carlsten, and K. L. Lear, "Squeezed light generated by a microcavity laser," Phys. Rev. A 55, R3323-R3326 (1997).
[CrossRef]

Kolobov, M. I.

J.-P. Hermier, M. I. Kolobov, I. Maurin, and E. Giacobino, "Quantum spin flip model for vertical-cavity surface-emitting lasers," Phys. Rev. A 65, 053825 (2002).
[CrossRef]

Lear, K. L.

D. C. Kilper, P. A. Roos, J. L. Carlsten, and K. L. Lear, "Squeezed light generated by a microcavity laser," Phys. Rev. A 55, R3323-R3326 (1997).
[CrossRef]

Lee, Y. H.

Y. C. Chung and Y. H. Lee, "Spectral characteristics of vertical-cavity surface-emitting lasers with external optical feedback," IEEE Photonics Technol. Lett. 3, 597-599 (1991).
[CrossRef]

Littman, M. J.

Maitre, A.

N. Treps, V. Delaubert, A. Maitre, J. M. Courty, and C. Fabre, "Quantum noise in multipixel image processing," Phys. Rev. A 71, 013820 (2005).
[CrossRef]

Marin, F.

K. Panajotov, M. Sciamanna, A. Tabaka, P. Mégret, M. Blondel, G. Giacomelli, F. Marin, H. Thienpont, and I. Veretennicoff, "Residence time distribution and coherence resonance of optical-feedback-induced polarization mode hopping in vertical-cavity surface-emitting lasers," Phys. Rev. A 69, 011801(R) (2004).
[CrossRef]

G. Giacomelli, F. Marin, and M. Romanelli, "Multi-time-scale dynamics of a laser with polarized optical feedback," Phys. Rev. A 67, 053809 (2003).
[CrossRef]

F. Prati, G. Giacomelli, and F. Marin, "Competition between orthogonally polarized transverse modes in vertical-cavity surface-emitting lasers and its influence on intensity noise," Phys. Rev. A 62, 033810 (2000).
[CrossRef]

F. Marin and G. Giacomelli, "Polarization and transverse mode dynamics of VCSELs," J. Opt. B 1, 128-132 (1999).
[CrossRef]

G. Giacomelli and F. Marin, "Statistics of polarization competition in VCSELs," Quantum Semiclassic. Opt. 10, 469-476 (1998).
[CrossRef]

G. Giacomelli, F. Marin, M. Gabrysch, K. H. Gulden, and M. Moser, "Polarization competition and noise properties of VCSELs," Opt. Commun. 146, 136-140 (1998).
[CrossRef]

Marino, F.

F. Marino, S. Barland, and S. Balle, "Single-mode operation and transverse-mode control in VCSELs induced by frequency-selective feedback," IEEE Photonics Technol. Lett. 15, 789-791 (2003).
[CrossRef]

Maurin, I.

J.-P. Hermier, M. I. Kolobov, I. Maurin, and E. Giacobino, "Quantum spin flip model for vertical-cavity surface-emitting lasers," Phys. Rev. A 65, 053825 (2002).
[CrossRef]

Mégret, P.

K. Panajotov, M. Sciamanna, A. Tabaka, P. Mégret, M. Blondel, G. Giacomelli, F. Marin, H. Thienpont, and I. Veretennicoff, "Residence time distribution and coherence resonance of optical-feedback-induced polarization mode hopping in vertical-cavity surface-emitting lasers," Phys. Rev. A 69, 011801(R) (2004).
[CrossRef]

Metcalf, H. J.

Michalzik, R.

J.-P. Hermier, A. Bramati, A. Z. Khoury, V. Josse, E. Giacobino, P. Schnitzer, R. Michalzik, and K. J. Ebeling, "Noise characteristics of oxide-confined vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 37, 87-91 (2001).
[CrossRef]

A. Bramati, J.-P. Hermier, A. Z. Khoury, E. Giacobino, P. Schnitzer, R. Michalzik, K. J. Ebeling, J.-Ph. Poizat, and Ph. Grangier, "Spatial distribution of the intensity noise of a vertical-cavity surface-emitting semiconductor laser," Opt. Lett. 24, 893-895 (1999).
[CrossRef]

D. Wiedenmann, P. Schnitzer, C. Jung, M. Grabherr, R. Jager, R. Michalzik, and K. J. Ebeling, "Noise characteristics of 850 nm single-mode vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 73, 717-719 (1998).
[CrossRef]

Moser, M.

G. Giacomelli, F. Marin, M. Gabrysch, K. H. Gulden, and M. Moser, "Polarization competition and noise properties of VCSELs," Opt. Commun. 146, 136-140 (1998).
[CrossRef]

Orenstein, M.

C. J. Chang-Hasnain, M. Orenstein, A. C. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers" Appl. Phys. Lett. 57, 218-220 (1990).
[CrossRef]

Panajotov, K.

K. Panajotov, M. Sciamanna, A. Tabaka, P. Mégret, M. Blondel, G. Giacomelli, F. Marin, H. Thienpont, and I. Veretennicoff, "Residence time distribution and coherence resonance of optical-feedback-induced polarization mode hopping in vertical-cavity surface-emitting lasers," Phys. Rev. A 69, 011801(R) (2004).
[CrossRef]

Poizat, J.-Ph.

Prati, F.

F. Prati, G. Giacomelli, and F. Marin, "Competition between orthogonally polarized transverse modes in vertical-cavity surface-emitting lasers and its influence on intensity noise," Phys. Rev. A 62, 033810 (2000).
[CrossRef]

Romanelli, M.

G. Giacomelli, F. Marin, and M. Romanelli, "Multi-time-scale dynamics of a laser with polarized optical feedback," Phys. Rev. A 67, 053809 (2003).
[CrossRef]

Roos, P. A.

D. C. Kilper, P. A. Roos, J. L. Carlsten, and K. L. Lear, "Squeezed light generated by a microcavity laser," Phys. Rev. A 55, R3323-R3326 (1997).
[CrossRef]

Schnitzer, P.

J.-P. Hermier, A. Bramati, A. Z. Khoury, V. Josse, E. Giacobino, P. Schnitzer, R. Michalzik, and K. J. Ebeling, "Noise characteristics of oxide-confined vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 37, 87-91 (2001).
[CrossRef]

A. Bramati, J.-P. Hermier, A. Z. Khoury, E. Giacobino, P. Schnitzer, R. Michalzik, K. J. Ebeling, J.-Ph. Poizat, and Ph. Grangier, "Spatial distribution of the intensity noise of a vertical-cavity surface-emitting semiconductor laser," Opt. Lett. 24, 893-895 (1999).
[CrossRef]

D. Wiedenmann, P. Schnitzer, C. Jung, M. Grabherr, R. Jager, R. Michalzik, and K. J. Ebeling, "Noise characteristics of 850 nm single-mode vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 73, 717-719 (1998).
[CrossRef]

Sciamanna, M.

K. Panajotov, M. Sciamanna, A. Tabaka, P. Mégret, M. Blondel, G. Giacomelli, F. Marin, H. Thienpont, and I. Veretennicoff, "Residence time distribution and coherence resonance of optical-feedback-induced polarization mode hopping in vertical-cavity surface-emitting lasers," Phys. Rev. A 69, 011801(R) (2004).
[CrossRef]

Stoffel, N. G.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

C. J. Chang-Hasnain, M. Orenstein, A. C. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers" Appl. Phys. Lett. 57, 218-220 (1990).
[CrossRef]

Tabaka, A.

K. Panajotov, M. Sciamanna, A. Tabaka, P. Mégret, M. Blondel, G. Giacomelli, F. Marin, H. Thienpont, and I. Veretennicoff, "Residence time distribution and coherence resonance of optical-feedback-induced polarization mode hopping in vertical-cavity surface-emitting lasers," Phys. Rev. A 69, 011801(R) (2004).
[CrossRef]

Temkin, H.

C. Wilmsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface-Emitting Lasers (Cambridge U. Press, 1999).

Thienpont, H.

K. Panajotov, M. Sciamanna, A. Tabaka, P. Mégret, M. Blondel, G. Giacomelli, F. Marin, H. Thienpont, and I. Veretennicoff, "Residence time distribution and coherence resonance of optical-feedback-induced polarization mode hopping in vertical-cavity surface-emitting lasers," Phys. Rev. A 69, 011801(R) (2004).
[CrossRef]

Treps, N.

N. Treps, V. Delaubert, A. Maitre, J. M. Courty, and C. Fabre, "Quantum noise in multipixel image processing," Phys. Rev. A 71, 013820 (2005).
[CrossRef]

van der Lee, A. M.

A. K. Jansen van Doorn, M. P. van Exter, A. M. van der Lee, and J. P. Woerdman, "Coupled-mode description for the polarization state of a vertical-cavity semiconductor laser," Phys. Rev. A 55, 1473-1484 (1997).
[CrossRef]

van Doorn, A. K.

A. K. Jansen van Doorn, M. P. van Exter, A. M. van der Lee, and J. P. Woerdman, "Coupled-mode description for the polarization state of a vertical-cavity semiconductor laser," Phys. Rev. A 55, 1473-1484 (1997).
[CrossRef]

van Exter, M. P.

M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, "Correlated fluctuations in the polarization modes of a vertical-cavity semiconductor laser," Phys. Rev. A 60, 4105-4113 (1999).
[CrossRef]

A. K. Jansen van Doorn, M. P. van Exter, A. M. van der Lee, and J. P. Woerdman, "Coupled-mode description for the polarization state of a vertical-cavity semiconductor laser," Phys. Rev. A 55, 1473-1484 (1997).
[CrossRef]

Veretennicoff, I.

K. Panajotov, M. Sciamanna, A. Tabaka, P. Mégret, M. Blondel, G. Giacomelli, F. Marin, H. Thienpont, and I. Veretennicoff, "Residence time distribution and coherence resonance of optical-feedback-induced polarization mode hopping in vertical-cavity surface-emitting lasers," Phys. Rev. A 69, 011801(R) (2004).
[CrossRef]

Von Lehmen, A. C.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

C. J. Chang-Hasnain, M. Orenstein, A. C. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers" Appl. Phys. Lett. 57, 218-220 (1990).
[CrossRef]

Wiedenmann, D.

D. Wiedenmann, P. Schnitzer, C. Jung, M. Grabherr, R. Jager, R. Michalzik, and K. J. Ebeling, "Noise characteristics of 850 nm single-mode vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 73, 717-719 (1998).
[CrossRef]

Willemsen, M. B.

M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, "Correlated fluctuations in the polarization modes of a vertical-cavity semiconductor laser," Phys. Rev. A 60, 4105-4113 (1999).
[CrossRef]

Wilmsen, C.

C. Wilmsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface-Emitting Lasers (Cambridge U. Press, 1999).

Woerdman, J. P.

M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, "Correlated fluctuations in the polarization modes of a vertical-cavity semiconductor laser," Phys. Rev. A 60, 4105-4113 (1999).
[CrossRef]

A. K. Jansen van Doorn, M. P. van Exter, A. M. van der Lee, and J. P. Woerdman, "Coupled-mode description for the polarization state of a vertical-cavity semiconductor laser," Phys. Rev. A 55, 1473-1484 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C. J. Chang-Hasnain, M. Orenstein, A. C. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, "Transverse mode characteristics of vertical cavity surface-emitting lasers" Appl. Phys. Lett. 57, 218-220 (1990).
[CrossRef]

D. Wiedenmann, P. Schnitzer, C. Jung, M. Grabherr, R. Jager, R. Michalzik, and K. J. Ebeling, "Noise characteristics of 850 nm single-mode vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 73, 717-719 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

J.-P. Hermier, A. Bramati, A. Z. Khoury, V. Josse, E. Giacobino, P. Schnitzer, R. Michalzik, and K. J. Ebeling, "Noise characteristics of oxide-confined vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 37, 87-91 (2001).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

Y. C. Chung and Y. H. Lee, "Spectral characteristics of vertical-cavity surface-emitting lasers with external optical feedback," IEEE Photonics Technol. Lett. 3, 597-599 (1991).
[CrossRef]

F. Marino, S. Barland, and S. Balle, "Single-mode operation and transverse-mode control in VCSELs induced by frequency-selective feedback," IEEE Photonics Technol. Lett. 15, 789-791 (2003).
[CrossRef]

J. Opt. B (1)

F. Marin and G. Giacomelli, "Polarization and transverse mode dynamics of VCSELs," J. Opt. B 1, 128-132 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

G. Giacomelli, F. Marin, M. Gabrysch, K. H. Gulden, and M. Moser, "Polarization competition and noise properties of VCSELs," Opt. Commun. 146, 136-140 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (8)

G. Giacomelli, F. Marin, and M. Romanelli, "Multi-time-scale dynamics of a laser with polarized optical feedback," Phys. Rev. A 67, 053809 (2003).
[CrossRef]

D. C. Kilper, P. A. Roos, J. L. Carlsten, and K. L. Lear, "Squeezed light generated by a microcavity laser," Phys. Rev. A 55, R3323-R3326 (1997).
[CrossRef]

M. B. Willemsen, M. P. van Exter, and J. P. Woerdman, "Correlated fluctuations in the polarization modes of a vertical-cavity semiconductor laser," Phys. Rev. A 60, 4105-4113 (1999).
[CrossRef]

J.-P. Hermier, M. I. Kolobov, I. Maurin, and E. Giacobino, "Quantum spin flip model for vertical-cavity surface-emitting lasers," Phys. Rev. A 65, 053825 (2002).
[CrossRef]

N. Treps, V. Delaubert, A. Maitre, J. M. Courty, and C. Fabre, "Quantum noise in multipixel image processing," Phys. Rev. A 71, 013820 (2005).
[CrossRef]

F. Prati, G. Giacomelli, and F. Marin, "Competition between orthogonally polarized transverse modes in vertical-cavity surface-emitting lasers and its influence on intensity noise," Phys. Rev. A 62, 033810 (2000).
[CrossRef]

A. K. Jansen van Doorn, M. P. van Exter, A. M. van der Lee, and J. P. Woerdman, "Coupled-mode description for the polarization state of a vertical-cavity semiconductor laser," Phys. Rev. A 55, 1473-1484 (1997).
[CrossRef]

K. Panajotov, M. Sciamanna, A. Tabaka, P. Mégret, M. Blondel, G. Giacomelli, F. Marin, H. Thienpont, and I. Veretennicoff, "Residence time distribution and coherence resonance of optical-feedback-induced polarization mode hopping in vertical-cavity surface-emitting lasers," Phys. Rev. A 69, 011801(R) (2004).
[CrossRef]

Quantum Semiclassic. Opt. (1)

G. Giacomelli and F. Marin, "Statistics of polarization competition in VCSELs," Quantum Semiclassic. Opt. 10, 469-476 (1998).
[CrossRef]

Other (1)

C. Wilmsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface-Emitting Lasers (Cambridge U. Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Color online) Experimental setup for polarization-selective optical feedback. O, collimation objective; BS, nonpolarizing beam splitter; HWP, half-wave plate; PBS, polarizing beam splitter; F50, lens (50 mm focal length); M, mirror; MM, movable mirror; PD, photodiode.

Fig. 2
Fig. 2

(Color online) P-I curve of the free-running laser. Curve (a) refers to the mode TEM 00 , horizontally polarized. Curve (b) refers to the mode TEM 01 , vertically polarized. The dashed vertical line indicates the value of the pump current in our experiments.

Fig. 3
Fig. 3

(Color online) Optical spectrum of the free-running laser (a), of the laser with polarization-selective feedback (b) and with polarization- and frequency-selective feedback (c). The higher-wavelength peak, which corresponds to TEM 00 , has been normalized in order to easily compare the relative height of the TEM 01 peak. The arrows indicate the linear polarization direction of the modes. The flat-top shape of the spectra is not due to the saturation of the detector but simply to the step-by-step motor of the monochromator.

Fig. 4
Fig. 4

(Color online) (a) Normalized intensity noise (logarithmic scale) of the free-running laser as a function of transmission through a half-wave plate and a polarizing beam splitter measured at a frequency of 6 MHz. The curve is a guide to the eyes. (b) Normalized intensity noise (linear scale) for the laser with polarized optical feedback measured at a frequency of 6 MHz. The straight line is a linear fit passing through 1 for zero transmission.

Fig. 5
Fig. 5

(Color online) (a) Experimental setup for polarized frequency-selective feedback. O, collimation objective; G, diffraction grating; HWP, half-wave plate; PBS, polarizing beam splitter; F50, lens (50 mm focal length); M, mirror; MM, movable mirror; PD, photodiode. (b) Setup for polarization-resolved noise measurements. (c) Setup for spatially resolved noise measurements with a movable razor blade (RB).

Fig. 6
Fig. 6

(Color online) Normalized intensity noise (measured at a frequency of 6 MHz) of the laser with polarized frequency-selective feedback as a function of transmission from a HWP and a PBS. The straight line is a linear fit passing through 1 for zero transmission.

Fig. 7
Fig. 7

(Color online) (a) Normalized intensity noise (measured at a frequency of 6 MHz) for the free-running laser. (b) Normalized intensity noise (measured at a frequency of 6 MHz) of the laser with polarized frequency-selective feedback as a function of transmission when the beam is cut with a razor blade. The straight line is a linear fit passing through 1 for zero transmission.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S ( T ) = 1 + T v ,

Metrics