Abstract

We investigate the two families of two-dimensional photonic crystal microlasers that are classified according to the approach used for the lateral confinement of the light (via trapping photons in a microcavity or via slowing down optical modes at an extreme of the dispersion characteristics), with a special emphasis on the characteristics of devices below and at laser threshold. The respective merits and drawbacks of the two families are analyzed in the light of an analytical modeling and of experimental results obtained on a variety of microlaser devices. The latter are processed in an InP-membrane heterostructure bounded onto silica on silicon. Promising prospects, which are expected from the combination of the two confinement approaches, are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Letartre, J. Mouette, C. Seassal, P. Rojo-Romeo, J.-L. Leclercq, and P. Viktorovitch, "Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures," J. Lightwave Technol. 21, 1691-1699 (2003).
    [CrossRef]
  2. J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Recgreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003)
    [CrossRef]
  3. O. J. Painter, A. Husain, A. Scherer, J. D. O'Brien, I. Kim, and P. D. Dapkus, "Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP," J. Lightwave Technol. 17, 2082-2088 (1999)
    [CrossRef]
  4. J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6µm," IEEE Photon. Technol. Lett. 12, 1295-1297 (2000)
    [CrossRef]
  5. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55µm," Electron. Lett. 37, 764-766 (2001).
    [CrossRef]
  6. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001).
    [CrossRef] [PubMed]
  7. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slisher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999)
    [CrossRef]
  8. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
    [CrossRef]
  9. M. Notomi, H. Susuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 78, 1325-1327 (2001)
    [CrossRef]
  10. H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-low threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
    [CrossRef]
  11. M. Imada, S. Noda, A. Chutinan, and T. Tokuda, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999).
    [CrossRef]
  12. S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, and S. B. Kim, "Photonic band-edge lasers in two-dimensional square-lattice photonic crystal slabs," Appl. Phys. Lett. 83, 3870-3872 (2003).
    [CrossRef]
  13. E. M. Purcell, H. C. Torrey, and R. V. Pound, "Resonance absorption by nuclear magnetic moments in a solid," Phys. Rev. 69, 37-38 (1946).
    [CrossRef]
  14. The loss rate of photocarriers in the barrier is essentially controlled by surface recombination processes (given that the thickness of the membrane--a fraction of a micrometer--is smaller than the diffusion length of photocarriers). Therefore the practical kinetics parameter, which is relevant to the estimate of photocarrier losses in the InP barrier, is the surface recombination velocity of InP, which does not exceed of few times 104 cms−1 at room temperature [see, for example, Y. Rosenwaks, Y. Shapira, and D. Huppert, "Evidence for low intrinsic surface-recombination velocity on p-type InP," Phys. Rev. B 44, 13097-13100 (1991)]. On the other hand, the kinetics of collection of photocarriers is essentially governed by the thermal velocity of photocarriers, which is around 107 cms−1 at room temperature.
    [CrossRef]
  15. C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
    [CrossRef]
  16. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor D'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering of InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003)
    [CrossRef]
  17. S. David, A. Chelnikov, and J. M. Lourtioz, "Isotropic photonic structures: Archimedean-like tilings and quasi-crystals," IEEE J. Quantum Electron. 37, 1427-1434 (2001)
    [CrossRef]
  18. Cavity-confined slow Bloch modes (CSBMs), which are localized modes, show up whenever photons related to the extreme at the Gamma point are left enough time to explore the boundaries of the cavity before being lost through optical loss or absorption processes or both. If, on the contrary, the SBM lifetime tauM is too short, the CSBMs are degenerated and merge into the SBM (which behaves like a delocalized mode); in this case the free spectral range of the CSBM is smaller than the spectral widening or bandwidth (almost = to 1/tauM) of the SBM mode.

2005 (1)

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

2003 (4)

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor D'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering of InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003)
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Recgreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003)
[CrossRef]

X. Letartre, J. Mouette, C. Seassal, P. Rojo-Romeo, J.-L. Leclercq, and P. Viktorovitch, "Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures," J. Lightwave Technol. 21, 1691-1699 (2003).
[CrossRef]

S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, and S. B. Kim, "Photonic band-edge lasers in two-dimensional square-lattice photonic crystal slabs," Appl. Phys. Lett. 83, 3870-3872 (2003).
[CrossRef]

2002 (2)

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-low threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

2001 (4)

M. Notomi, H. Susuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 78, 1325-1327 (2001)
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55µm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

S. David, A. Chelnikov, and J. M. Lourtioz, "Isotropic photonic structures: Archimedean-like tilings and quasi-crystals," IEEE J. Quantum Electron. 37, 1427-1434 (2001)
[CrossRef]

2000 (1)

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6µm," IEEE Photon. Technol. Lett. 12, 1295-1297 (2000)
[CrossRef]

1999 (3)

O. J. Painter, A. Husain, A. Scherer, J. D. O'Brien, I. Kim, and P. D. Dapkus, "Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP," J. Lightwave Technol. 17, 2082-2088 (1999)
[CrossRef]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slisher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999)
[CrossRef]

M. Imada, S. Noda, A. Chutinan, and T. Tokuda, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

1991 (1)

The loss rate of photocarriers in the barrier is essentially controlled by surface recombination processes (given that the thickness of the membrane--a fraction of a micrometer--is smaller than the diffusion length of photocarriers). Therefore the practical kinetics parameter, which is relevant to the estimate of photocarrier losses in the InP barrier, is the surface recombination velocity of InP, which does not exceed of few times 104 cms−1 at room temperature [see, for example, Y. Rosenwaks, Y. Shapira, and D. Huppert, "Evidence for low intrinsic surface-recombination velocity on p-type InP," Phys. Rev. B 44, 13097-13100 (1991)]. On the other hand, the kinetics of collection of photocarriers is essentially governed by the thermal velocity of photocarriers, which is around 107 cms−1 at room temperature.
[CrossRef]

1946 (1)

E. M. Purcell, H. C. Torrey, and R. V. Pound, "Resonance absorption by nuclear magnetic moments in a solid," Phys. Rev. 69, 37-38 (1946).
[CrossRef]

Albert, J. P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor D'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering of InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003)
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Aspar, B.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor D'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering of InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003)
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55µm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Bakir, B. B.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

Cassagne, D.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor D'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering of InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003)
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Chelnikov, A.

S. David, A. Chelnikov, and J. M. Lourtioz, "Isotropic photonic structures: Archimedean-like tilings and quasi-crystals," IEEE J. Quantum Electron. 37, 1427-1434 (2001)
[CrossRef]

Chutinan, A.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

M. Imada, S. Noda, A. Chutinan, and T. Tokuda, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Dapkus, P. D.

David, S.

S. David, A. Chelnikov, and J. M. Lourtioz, "Isotropic photonic structures: Archimedean-like tilings and quasi-crystals," IEEE J. Quantum Electron. 37, 1427-1434 (2001)
[CrossRef]

Dodabalapur, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slisher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999)
[CrossRef]

Gendry, M.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55µm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Han, I. Y.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6µm," IEEE Photon. Technol. Lett. 12, 1295-1297 (2000)
[CrossRef]

Hattori, H.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

Hollinger, G.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55µm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Huppert, D.

The loss rate of photocarriers in the barrier is essentially controlled by surface recombination processes (given that the thickness of the membrane--a fraction of a micrometer--is smaller than the diffusion length of photocarriers). Therefore the practical kinetics parameter, which is relevant to the estimate of photocarrier losses in the InP barrier, is the surface recombination velocity of InP, which does not exceed of few times 104 cms−1 at room temperature [see, for example, Y. Rosenwaks, Y. Shapira, and D. Huppert, "Evidence for low intrinsic surface-recombination velocity on p-type InP," Phys. Rev. B 44, 13097-13100 (1991)]. On the other hand, the kinetics of collection of photocarriers is essentially governed by the thermal velocity of photocarriers, which is around 107 cms−1 at room temperature.
[CrossRef]

Husain, A.

Hwang, J. K.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6µm," IEEE Photon. Technol. Lett. 12, 1295-1297 (2000)
[CrossRef]

Imada, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

M. Imada, S. Noda, A. Chutinan, and T. Tokuda, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Jalaguier, E.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor D'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering of InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003)
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Recgreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003)
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55µm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Jang, D. H.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6µm," IEEE Photon. Technol. Lett. 12, 1295-1297 (2000)
[CrossRef]

Joannopoulos, J. D.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slisher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999)
[CrossRef]

Kim, G. H.

S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, and S. B. Kim, "Photonic band-edge lasers in two-dimensional square-lattice photonic crystal slabs," Appl. Phys. Lett. 83, 3870-3872 (2003).
[CrossRef]

Kim, I.

Kim, J.-S.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-low threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Kim, S. B.

S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, and S. B. Kim, "Photonic band-edge lasers in two-dimensional square-lattice photonic crystal slabs," Appl. Phys. Lett. 83, 3870-3872 (2003).
[CrossRef]

Kwon, S. H.

S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, and S. B. Kim, "Photonic band-edge lasers in two-dimensional square-lattice photonic crystal slabs," Appl. Phys. Lett. 83, 3870-3872 (2003).
[CrossRef]

Kwon, S.-H.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-low threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Le Vassor D'Yerville, M.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor D'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering of InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003)
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

Leclercq, J. L.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

Leclercq, J.-L.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Recgreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003)
[CrossRef]

X. Letartre, J. Mouette, C. Seassal, P. Rojo-Romeo, J.-L. Leclercq, and P. Viktorovitch, "Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures," J. Lightwave Technol. 21, 1691-1699 (2003).
[CrossRef]

Lee, Y. H.

S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, and S. B. Kim, "Photonic band-edge lasers in two-dimensional square-lattice photonic crystal slabs," Appl. Phys. Lett. 83, 3870-3872 (2003).
[CrossRef]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6µm," IEEE Photon. Technol. Lett. 12, 1295-1297 (2000)
[CrossRef]

Lee, Y.-H.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-low threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Lee, Y.-J.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-low threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Letartre, X.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor D'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering of InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003)
[CrossRef]

X. Letartre, J. Mouette, C. Seassal, P. Rojo-Romeo, J.-L. Leclercq, and P. Viktorovitch, "Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures," J. Lightwave Technol. 21, 1691-1699 (2003).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Recgreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003)
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55µm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Lourtioz, J. M.

S. David, A. Chelnikov, and J. M. Lourtioz, "Isotropic photonic structures: Archimedean-like tilings and quasi-crystals," IEEE J. Quantum Electron. 37, 1427-1434 (2001)
[CrossRef]

Meier, M.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slisher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999)
[CrossRef]

Mekis, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slisher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999)
[CrossRef]

Mochizuki, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

Monat, C.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor D'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering of InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003)
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55µm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Moriceau, H.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Recgreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003)
[CrossRef]

Mouette, J.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Recgreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003)
[CrossRef]

X. Letartre, J. Mouette, C. Seassal, P. Rojo-Romeo, J.-L. Leclercq, and P. Viktorovitch, "Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures," J. Lightwave Technol. 21, 1691-1699 (2003).
[CrossRef]

Nalamasu, O.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slisher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999)
[CrossRef]

Noda, S.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

M. Imada, S. Noda, A. Chutinan, and T. Tokuda, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Notomi, M.

M. Notomi, H. Susuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 78, 1325-1327 (2001)
[CrossRef]

O'Brien, J. D.

Painter, O. J.

Park, H. K.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6µm," IEEE Photon. Technol. Lett. 12, 1295-1297 (2000)
[CrossRef]

Perreau, P.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Recgreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003)
[CrossRef]

Pocas, S.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor D'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering of InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003)
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55µm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Pound, R. V.

E. M. Purcell, H. C. Torrey, and R. V. Pound, "Resonance absorption by nuclear magnetic moments in a solid," Phys. Rev. 69, 37-38 (1946).
[CrossRef]

Purcell, E. M.

E. M. Purcell, H. C. Torrey, and R. V. Pound, "Resonance absorption by nuclear magnetic moments in a solid," Phys. Rev. 69, 37-38 (1946).
[CrossRef]

Recgreny, P.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Recgreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003)
[CrossRef]

Regreny, P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor D'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering of InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003)
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55µm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Rojo-Romeo, P.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor D'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering of InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003)
[CrossRef]

X. Letartre, J. Mouette, C. Seassal, P. Rojo-Romeo, J.-L. Leclercq, and P. Viktorovitch, "Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures," J. Lightwave Technol. 21, 1691-1699 (2003).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Recgreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003)
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55µm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Rosenwaks, Y.

The loss rate of photocarriers in the barrier is essentially controlled by surface recombination processes (given that the thickness of the membrane--a fraction of a micrometer--is smaller than the diffusion length of photocarriers). Therefore the practical kinetics parameter, which is relevant to the estimate of photocarrier losses in the InP barrier, is the surface recombination velocity of InP, which does not exceed of few times 104 cms−1 at room temperature [see, for example, Y. Rosenwaks, Y. Shapira, and D. Huppert, "Evidence for low intrinsic surface-recombination velocity on p-type InP," Phys. Rev. B 44, 13097-13100 (1991)]. On the other hand, the kinetics of collection of photocarriers is essentially governed by the thermal velocity of photocarriers, which is around 107 cms−1 at room temperature.
[CrossRef]

Ryu, H. Y.

S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, and S. B. Kim, "Photonic band-edge lasers in two-dimensional square-lattice photonic crystal slabs," Appl. Phys. Lett. 83, 3870-3872 (2003).
[CrossRef]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6µm," IEEE Photon. Technol. Lett. 12, 1295-1297 (2000)
[CrossRef]

Ryu, H.-Y.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-low threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Scherer, A.

Seassal, C.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor D'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering of InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003)
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Recgreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003)
[CrossRef]

X. Letartre, J. Mouette, C. Seassal, P. Rojo-Romeo, J.-L. Leclercq, and P. Viktorovitch, "Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures," J. Lightwave Technol. 21, 1691-1699 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55µm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Shapira, Y.

The loss rate of photocarriers in the barrier is essentially controlled by surface recombination processes (given that the thickness of the membrane--a fraction of a micrometer--is smaller than the diffusion length of photocarriers). Therefore the practical kinetics parameter, which is relevant to the estimate of photocarrier losses in the InP barrier, is the surface recombination velocity of InP, which does not exceed of few times 104 cms−1 at room temperature [see, for example, Y. Rosenwaks, Y. Shapira, and D. Huppert, "Evidence for low intrinsic surface-recombination velocity on p-type InP," Phys. Rev. B 44, 13097-13100 (1991)]. On the other hand, the kinetics of collection of photocarriers is essentially governed by the thermal velocity of photocarriers, which is around 107 cms−1 at room temperature.
[CrossRef]

Slisher, R. E.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slisher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999)
[CrossRef]

Song, D. S.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6µm," IEEE Photon. Technol. Lett. 12, 1295-1297 (2000)
[CrossRef]

Susuki, H.

M. Notomi, H. Susuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 78, 1325-1327 (2001)
[CrossRef]

Tamamura, T.

M. Notomi, H. Susuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 78, 1325-1327 (2001)
[CrossRef]

Timko, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slisher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999)
[CrossRef]

Tokuda, T.

M. Imada, S. Noda, A. Chutinan, and T. Tokuda, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Torrey, H. C.

E. M. Purcell, H. C. Torrey, and R. V. Pound, "Resonance absorption by nuclear magnetic moments in a solid," Phys. Rev. 69, 37-38 (1946).
[CrossRef]

Touraille, E.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

Viktorovitch, P.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor D'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering of InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003)
[CrossRef]

X. Letartre, J. Mouette, C. Seassal, P. Rojo-Romeo, J.-L. Leclercq, and P. Viktorovitch, "Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures," J. Lightwave Technol. 21, 1691-1699 (2003).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Recgreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003)
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55µm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Yokoyama, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slisher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999)
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002).
[CrossRef]

M. Notomi, H. Susuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 78, 1325-1327 (2001)
[CrossRef]

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-low threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, and T. Tokuda, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, and S. B. Kim, "Photonic band-edge lasers in two-dimensional square-lattice photonic crystal slabs," Appl. Phys. Lett. 83, 3870-3872 (2003).
[CrossRef]

Electron. Lett. (2)

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Recgreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003)
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55µm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor D'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering of InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003)
[CrossRef]

S. David, A. Chelnikov, and J. M. Lourtioz, "Isotropic photonic structures: Archimedean-like tilings and quasi-crystals," IEEE J. Quantum Electron. 37, 1427-1434 (2001)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, "Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6µm," IEEE Photon. Technol. Lett. 12, 1295-1297 (2000)
[CrossRef]

J. Lightwave Technol. (2)

Phys. Rev. (1)

E. M. Purcell, H. C. Torrey, and R. V. Pound, "Resonance absorption by nuclear magnetic moments in a solid," Phys. Rev. 69, 37-38 (1946).
[CrossRef]

Phys. Rev. B (1)

The loss rate of photocarriers in the barrier is essentially controlled by surface recombination processes (given that the thickness of the membrane--a fraction of a micrometer--is smaller than the diffusion length of photocarriers). Therefore the practical kinetics parameter, which is relevant to the estimate of photocarrier losses in the InP barrier, is the surface recombination velocity of InP, which does not exceed of few times 104 cms−1 at room temperature [see, for example, Y. Rosenwaks, Y. Shapira, and D. Huppert, "Evidence for low intrinsic surface-recombination velocity on p-type InP," Phys. Rev. B 44, 13097-13100 (1991)]. On the other hand, the kinetics of collection of photocarriers is essentially governed by the thermal velocity of photocarriers, which is around 107 cms−1 at room temperature.
[CrossRef]

Science (1)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

Other (1)

Cavity-confined slow Bloch modes (CSBMs), which are localized modes, show up whenever photons related to the extreme at the Gamma point are left enough time to explore the boundaries of the cavity before being lost through optical loss or absorption processes or both. If, on the contrary, the SBM lifetime tauM is too short, the CSBMs are degenerated and merge into the SBM (which behaves like a delocalized mode); in this case the free spectral range of the CSBM is smaller than the spectral widening or bandwidth (almost = to 1/tauM) of the SBM mode.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

General behavior of the threshold pumping power versus the pumping area ( S L ) , for the microcavity laser.

Fig. 2
Fig. 2

General behavior of the threshold pumping power versus pumping ( S L ) or active ( S A ) area, for the SBM microlaser.

Fig. 3
Fig. 3

Schematic view of the 2D PC InP-membrane heterostructure transferred onto silicon via SiO 2 SiO 2 bonding. QW, quantum well.

Fig. 4
Fig. 4

SEM micrographs of H n microcavities.

Fig. 5
Fig. 5

Emission spectra of a typical H 5 cavity below and beyond threshold. PL,

Fig. 6
Fig. 6

Gain characteristics of the H 5 cavity laser.

Fig. 7
Fig. 7

Threshold pumping power P th of a H 4 microcavity laser versus the operation wavelength. The H 4 resonance was changed by using lithographic tuning: Increasing the hole-filling factor blueshifts the resonant wavelength of the microcavity toward the maximum of the gain spectrum, as illustrated in the inset. FF, filling factor.

Fig. 8
Fig. 8

Dispersion characteristics and SEM micrographs of (a) triangular lattice, (b) graphite-lattice, and (c) archimedean tiling 2D PCs. The arrows indicates the extreme at the Γ point where the SBM microlaser is chosen to operate.

Fig. 9
Fig. 9

Emission spectra beyond threshold (the pumping power is around 2 mW) of a SBM microlaser for various hole-filling factors.

Fig. 10
Fig. 10

Gain characteristics of the SBM microlaser for a 20% hole-filling factor of the 2D PC graphite lattice. The effective threshold pump power is as low as 40 μ W .

Fig. 11
Fig. 11

(Color online) Far-field emission diagram of the graphite microlaser with a 19% filling factor.

Equations (61)

Equations on this page are rendered with MathJax. Learn more.

d N d t = n τ s ( λ ) ( N + 1 ) p τ s ( λ ) N N τ p ,
1 τ s ( λ ) = 1 τ s 0 3 λ 3 4 π 2 n mat 3 h S M Q mode = 1 τ s 0 3 λ 4 4 π 2 n mat 3 h S M δ λ ,
Q mode = ω τ M = λ δ λ .
1 τ M = p τ s ( λ ) + 1 τ p n τ s ( λ ) = n N τ s ( λ ) .
ω = ω 0 + v G ( k k 0 ) ,
S M v G v ph T 2 π τ M ,
ω = ω 0 + α 2 ( k k 0 ) 2 ,
S M = α τ M .
p 0 = n + p = D ( λ ) δ λ S M , if S A S M ,
p 0 = n + p = D ( λ ) δ λ S A , if S A S M .
1 τ M = 1 2 N + 1 [ 1 τ p + 1 τ a min ( 1 , S A S M ) ] = 2 π c δ λ λ 2 ,
n = τ s N 2 N + 1 [ 1 τ p + 1 τ a min ( 1 , S A S M ) ] ,
1 τ s = 1 τ s 0 λ 4 8 π n mat 3 h δ λ S M ,
1 τ a = 1 τ s 0 D ( λ ) λ 4 8 π n mat 3 h = D ( λ ) δ λ S M 1 τ s .
β L , D = 1 V L , D V L , D E 2 d V 1 V Mode V mode E 2 d V
d N d t = β L n τ s ( λ ) ( N + 1 ) β L S L D ( λ ) δ λ n τ s ( λ ) N β D ( S M S L ) D ( λ ) δ λ τ s ( λ ) N N τ p ,
n = τ s 1 3 [ 1 τ p + 1 τ a min ( 1 , S A S MS ) ] .
n D ( λ ) δ λ S MS min ( 1 , S A , L S MS ) ,
τ p τ a 2 max ( 1 , S MS S A ) , for S A , L = S A ,
τ p τ a 3 min ( 1 , S L S MS ) 1 , for S A , L = S L .
τ p τ a 2 max ( 1 , S C S A ) .
τ p τ a 3 min ( 1 , S L S C ) 1 .
S A , L α τ a .
S M 0 = α τ M = α [ 1 τ p + 1 τ a min ( 1 , S A S M 0 ) ] ,
P th = h ν pump N B [ K C ( 1 f ) D M Δ λ + 1 τ L ] S A , L ,
P th = h ν pump n τ nr max ( 1 , S A , L S MS ) D M Δ λ D ( λ ) δ λ K C ( 1 f ) D M Δ λ + 1 τ L K C ( 1 f ) D M Δ λ ,
f = n D ( λ ) δ λ min ( S A , L , S MS ) .
f = 1 3 ( 1 + τ a τ p ) min ( S L S MS , 1 ) .
P th = h ν pump D M Δ λ 3 τ nr ( 1 + τ a τ p ) max ( S L , S MS ) .
P th = h ν pump τ nr τ L K C 1 3 min ( 1 , S L S MS ) 1 + τ a τ p 1 S L .
P th = h ν pump τ nr τ L K C 1 3 S L S MS ( 1 + τ a τ p ) 1 S L .
P th = h ν pump D M Δ λ 3 τ nr ( 1 + τ a τ p ) S L ,
P th = h ν pump τ nr τ L K C 1 3 S L S C ( 1 + τ a τ p ) 1 S L ,
S C 3 ( 1 + τ a τ p ) .
P th = P th min = h ν pump D M Δ λ 3 τ nr ( 1 + τ a τ p ) S C ,
P th = h ν pump D M Δ λ 3 τ nr ( 1 + τ a τ p ) S L ,
P th = h ν pump τ nr τ L K C 1 3 S L S MS ( 1 + τ a τ p ) 1 S L = h ν pump τ nr τ L K C S L S L α τ a 1 ,
P th = P th min = h ν pump D M Δ λ 3 τ nr ( 1 + τ a τ p ) S MS = h ν pump D M Δ λ τ nr α τ a ,
P th min h ν pump D M Δ λ τ nr τ a τ p S C .
( P th min ) SBM ( = h v pump D M Δ λ τ nr α τ a )
h v pump D M Δ λ τ nr τ a τ p MC S C [ = 3 τ a τ a + τ p MC ( P th min ) MC ] .
( P th min ) SBM ( = h v pump D M Δ λ τ nr α τ a ) h v pump D M Δ λ τ nr τ a τ p MC S C [ = ( P th min ) MC ] .
P th = h ν pump D M Δ λ 3 τ nr ( 1 + τ a τ p ) S L ( 1 + τ a τ p ) S L ,
P th ( 1 + τ a τ p ) 2 τ a τ p S L .
α τ a S L 3 α τ a ( for τ p τ a 2 ) .
ω = ω 0 + v G ( k k 0 ) ,
δ ω = v G δ k .
2 π k 0 δ k 2 π S M = 2 π ω v Ph δ ω v G ,
S M = v G v Ph T 2 π τ M ,
r ( t ) = v G t
S M = E 2 d S E max 2 .
S M 0 v G τ M E 2 2 π r d r E max 2 = 2 π v G v Ph T τ M .
ω = ω 0 + ( α 2 ) ( k k 0 ) 2 ,
δ ω = α ( k k 0 ) δ k .
2 π ( k k 0 ) δ k = 2 π S M .
S M = α τ M .
r ( t ) α t ,
α t = α r .
S M = E 2 d S E max 2 .
S M 0 v G τ M E 2 2 π r d r E max 2 = 0 α τ M 2 π r d r = π α τ M .
α = ( a τ H ) 2 τ c ,

Metrics