Abstract

Based on the model of cw end-pumped four-level system, the laser performances of Nd3+:YAG and Nd3+:YVO4 under indirect and direct pumping Nd3+ ions into the upper laser level are compared. The model takes the effect of concentration-dependent fluorescence quenching into account and enables the optimization of Nd3+ lasers. The slope efficiencies for incident and absorbed pumping powers as well as the incident and absorbed pumping thresholds of Nd3+:YAG and Nd3+:YVO4 lasers under indirect and direct pumping are analyzed. When the slope efficiency for the incident pumping power and the incident pumping threshold are concerned, a simple criterion determining which sample is suitable for direct pumping is given; however, in the case of the slope efficiency for the absorbed pumping power and the absorbed pumping threshold, the direct pumping is always better than the indirect pumping.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Johnson and R. Thomas, "Maser oscillations at 0.9 and 1.35 microns in CaWO4:Nd3+," Phys. Rev. 131, 2038-2040 (1963).
    [CrossRef]
  2. T. Zhao, Z. Luo, Y. Huang, M. Qiu, and G. Chen, "Experimental study of laser-diode end-pumped Nd:YAl3(BO3)4 laser at 1.06 µm," Opt. Commun. 109, 115-118 (1994).
    [CrossRef]
  3. M. Birnbaum, A. Tucker, and C. Fincher, "cw room temperature laser operation of Nd:CAMGAR at 0.941 and 1.059 µm," J. Appl. Phys. 49, 2984-2985 (1978).
    [CrossRef]
  4. R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, "885 nm high-power diodes end-pumped Nd:YAG laser," Opt. Commun. 195, 427-430 (2001).
    [CrossRef]
  5. Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
    [CrossRef]
  6. V. Lupei, N. Pavel, and T. Taira, "Laser emission in highly doped Nd:YAG crystals under F5/24 and F3/24 pumping," Opt. Lett. 26, 1678-1680 (2001).
    [CrossRef]
  7. Z. Luo, Y. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminum borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004).
    [CrossRef]
  8. V. Lupei, N. Pavel, and T. Taira, "Highly efficient continuous-wave 946 nm Nd:YAG laser emission under direct 885-nm pumping," Appl. Phys. Lett. 81, 2677-2679 (2002).
    [CrossRef]
  9. T. Taira, W. Tulloch, and R. Byer, "Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers," Appl. Opt. 36, 1867-1874 (1997).
    [CrossRef] [PubMed]
  10. A. Brenier, "Numerical investigation of the cw end-pumped NYAB and LiNbO3:MgO:Nd self-doubling lasers," Opt. Commun. 129, 57-61 (1996).
    [CrossRef]
  11. T. Y. Fan and R. L. Byer, "Modeling and cw operation of a quasi-three level 946 nm Nd:YAG lasers," IEEE J. Quantum Electron. QE-23, 605-612 (1987).
  12. Z. Huang, Y. Huang, M. Huang, and Z. Luo, "Optimizing the doping concentration and the crystal thickness in Yb3+-doped microchip lasers," J. Opt. Soc. Am. B 20, 2061-2067 (2003).
    [CrossRef]
  13. V. Lupei, N. Pavel, and T. Taira, "Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level," IEEE J. Quantum Electron. 38, 240-245 (2002).
    [CrossRef]
  14. V. Lupei, N. Pavel, and T. Taira, "Highly efficient laser emission in concentrated Nd:YVO4 components under direct pumping into the emitting level," Opt. Commun. 201, 431-435 (2002).
    [CrossRef]
  15. J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Waba, and H. Tashiro, "Highly doped Nd:YAG crystal used for microchip lasers," Opt. Commun. 197, 413-418 (2001).
    [CrossRef]
  16. T. Taira, A. Mikai, Y. Nozawa, and T. Kobayashi, "Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers," Opt. Lett. 16, 1955-1957 (1991).
    [CrossRef] [PubMed]
  17. P. Yaney and L. Deshazer, "Spectroscopic studies and analysis of the laser states of Nd3+ in YVO4," J. Opt. Soc. Am. 66, 1405-1414 (1976).
    [CrossRef]
  18. J. K. Neeland and V. Evtuhov, "Measurement of the laser transition cross section for Nd3+ in yttrium aluminum garnet," Phys. Rev. 156, 244-246 (1967).
    [CrossRef]
  19. A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erier, "Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4," J. Appl. Phys. 48, 4907-4911 (1977).
    [CrossRef]
  20. D. L. Dexter and J. H. Schulman, "Theory of concentration quenching in inorganic phosphors," J. Chem. Phys. 22, 1063-1070 (1954).
    [CrossRef]
  21. F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, "The interplay of self-trapping and self-quenching for resonant transitions in solids: role of a cavity," J. Lumin. 94-95, 293-297 (2001).
    [CrossRef]
  22. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, "Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics," Appl. Phys. Lett. 77, 939-941 (2000).
    [CrossRef]
  23. V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, "Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
    [CrossRef]

2004 (1)

Z. Luo, Y. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminum borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004).
[CrossRef]

2003 (2)

Z. Huang, Y. Huang, M. Huang, and Z. Luo, "Optimizing the doping concentration and the crystal thickness in Yb3+-doped microchip lasers," J. Opt. Soc. Am. B 20, 2061-2067 (2003).
[CrossRef]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

2002 (3)

V. Lupei, N. Pavel, and T. Taira, "Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level," IEEE J. Quantum Electron. 38, 240-245 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Highly efficient laser emission in concentrated Nd:YVO4 components under direct pumping into the emitting level," Opt. Commun. 201, 431-435 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Highly efficient continuous-wave 946 nm Nd:YAG laser emission under direct 885-nm pumping," Appl. Phys. Lett. 81, 2677-2679 (2002).
[CrossRef]

2001 (5)

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, "885 nm high-power diodes end-pumped Nd:YAG laser," Opt. Commun. 195, 427-430 (2001).
[CrossRef]

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Waba, and H. Tashiro, "Highly doped Nd:YAG crystal used for microchip lasers," Opt. Commun. 197, 413-418 (2001).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Laser emission in highly doped Nd:YAG crystals under F5/24 and F3/24 pumping," Opt. Lett. 26, 1678-1680 (2001).
[CrossRef]

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, "The interplay of self-trapping and self-quenching for resonant transitions in solids: role of a cavity," J. Lumin. 94-95, 293-297 (2001).
[CrossRef]

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, "Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
[CrossRef]

2000 (1)

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, "Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics," Appl. Phys. Lett. 77, 939-941 (2000).
[CrossRef]

1997 (1)

1996 (1)

A. Brenier, "Numerical investigation of the cw end-pumped NYAB and LiNbO3:MgO:Nd self-doubling lasers," Opt. Commun. 129, 57-61 (1996).
[CrossRef]

1994 (1)

T. Zhao, Z. Luo, Y. Huang, M. Qiu, and G. Chen, "Experimental study of laser-diode end-pumped Nd:YAl3(BO3)4 laser at 1.06 µm," Opt. Commun. 109, 115-118 (1994).
[CrossRef]

1991 (1)

1987 (1)

T. Y. Fan and R. L. Byer, "Modeling and cw operation of a quasi-three level 946 nm Nd:YAG lasers," IEEE J. Quantum Electron. QE-23, 605-612 (1987).

1978 (1)

M. Birnbaum, A. Tucker, and C. Fincher, "cw room temperature laser operation of Nd:CAMGAR at 0.941 and 1.059 µm," J. Appl. Phys. 49, 2984-2985 (1978).
[CrossRef]

1977 (1)

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erier, "Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4," J. Appl. Phys. 48, 4907-4911 (1977).
[CrossRef]

1976 (1)

1967 (1)

J. K. Neeland and V. Evtuhov, "Measurement of the laser transition cross section for Nd3+ in yttrium aluminum garnet," Phys. Rev. 156, 244-246 (1967).
[CrossRef]

1963 (1)

L. Johnson and R. Thomas, "Maser oscillations at 0.9 and 1.35 microns in CaWO4:Nd3+," Phys. Rev. 131, 2038-2040 (1963).
[CrossRef]

1954 (1)

D. L. Dexter and J. H. Schulman, "Theory of concentration quenching in inorganic phosphors," J. Chem. Phys. 22, 1063-1070 (1954).
[CrossRef]

Auzel, F.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, "The interplay of self-trapping and self-quenching for resonant transitions in solids: role of a cavity," J. Lumin. 94-95, 293-297 (2001).
[CrossRef]

Baldacchini, G.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, "The interplay of self-trapping and self-quenching for resonant transitions in solids: role of a cavity," J. Lumin. 94-95, 293-297 (2001).
[CrossRef]

Birnbaum, M.

M. Birnbaum, A. Tucker, and C. Fincher, "cw room temperature laser operation of Nd:CAMGAR at 0.941 and 1.059 µm," J. Appl. Phys. 49, 2984-2985 (1978).
[CrossRef]

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erier, "Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4," J. Appl. Phys. 48, 4907-4911 (1977).
[CrossRef]

Bonfigli, F.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, "The interplay of self-trapping and self-quenching for resonant transitions in solids: role of a cavity," J. Lumin. 94-95, 293-297 (2001).
[CrossRef]

Brenier, A.

A. Brenier, "Numerical investigation of the cw end-pumped NYAB and LiNbO3:MgO:Nd self-doubling lasers," Opt. Commun. 129, 57-61 (1996).
[CrossRef]

Byer, R.

Byer, R. L.

T. Y. Fan and R. L. Byer, "Modeling and cw operation of a quasi-three level 946 nm Nd:YAG lasers," IEEE J. Quantum Electron. QE-23, 605-612 (1987).

Chen, G.

T. Zhao, Z. Luo, Y. Huang, M. Qiu, and G. Chen, "Experimental study of laser-diode end-pumped Nd:YAl3(BO3)4 laser at 1.06 µm," Opt. Commun. 109, 115-118 (1994).
[CrossRef]

Deng, P.

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Waba, and H. Tashiro, "Highly doped Nd:YAG crystal used for microchip lasers," Opt. Commun. 197, 413-418 (2001).
[CrossRef]

Deshazer, L.

Dexter, D. L.

D. L. Dexter and J. H. Schulman, "Theory of concentration quenching in inorganic phosphors," J. Chem. Phys. 22, 1063-1070 (1954).
[CrossRef]

Dong, J.

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Waba, and H. Tashiro, "Highly doped Nd:YAG crystal used for microchip lasers," Opt. Commun. 197, 413-418 (2001).
[CrossRef]

Erier, J. W.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erier, "Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4," J. Appl. Phys. 48, 4907-4911 (1977).
[CrossRef]

Evtuhov, V.

J. K. Neeland and V. Evtuhov, "Measurement of the laser transition cross section for Nd3+ in yttrium aluminum garnet," Phys. Rev. 156, 244-246 (1967).
[CrossRef]

Fan, T. Y.

T. Y. Fan and R. L. Byer, "Modeling and cw operation of a quasi-three level 946 nm Nd:YAG lasers," IEEE J. Quantum Electron. QE-23, 605-612 (1987).

Fincher, C.

M. Birnbaum, A. Tucker, and C. Fincher, "cw room temperature laser operation of Nd:CAMGAR at 0.941 and 1.059 µm," J. Appl. Phys. 49, 2984-2985 (1978).
[CrossRef]

Fincher, C. L.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erier, "Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4," J. Appl. Phys. 48, 4907-4911 (1977).
[CrossRef]

Gagliari, S.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, "The interplay of self-trapping and self-quenching for resonant transitions in solids: role of a cavity," J. Lumin. 94-95, 293-297 (2001).
[CrossRef]

Gan, F.

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Waba, and H. Tashiro, "Highly doped Nd:YAG crystal used for microchip lasers," Opt. Commun. 197, 413-418 (2001).
[CrossRef]

Goldring, S.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, "885 nm high-power diodes end-pumped Nd:YAG laser," Opt. Commun. 195, 427-430 (2001).
[CrossRef]

Hua, R.

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Waba, and H. Tashiro, "Highly doped Nd:YAG crystal used for microchip lasers," Opt. Commun. 197, 413-418 (2001).
[CrossRef]

Huang, M.

Huang, Y.

Z. Luo, Y. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminum borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004).
[CrossRef]

Z. Huang, Y. Huang, M. Huang, and Z. Luo, "Optimizing the doping concentration and the crystal thickness in Yb3+-doped microchip lasers," J. Opt. Soc. Am. B 20, 2061-2067 (2003).
[CrossRef]

T. Zhao, Z. Luo, Y. Huang, M. Qiu, and G. Chen, "Experimental study of laser-diode end-pumped Nd:YAl3(BO3)4 laser at 1.06 µm," Opt. Commun. 109, 115-118 (1994).
[CrossRef]

Huang, Z.

Ikesue, A.

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, "Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, "Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics," Appl. Phys. Lett. 77, 939-941 (2000).
[CrossRef]

Jackel, S.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, "885 nm high-power diodes end-pumped Nd:YAG laser," Opt. Commun. 195, 427-430 (2001).
[CrossRef]

Jaque, D.

Z. Luo, Y. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminum borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004).
[CrossRef]

Johnson, L.

L. Johnson and R. Thomas, "Maser oscillations at 0.9 and 1.35 microns in CaWO4:Nd3+," Phys. Rev. 131, 2038-2040 (1963).
[CrossRef]

Kobayashi, T.

Kurimura, S.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, "Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics," Appl. Phys. Lett. 77, 939-941 (2000).
[CrossRef]

Lavi, R.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, "885 nm high-power diodes end-pumped Nd:YAG laser," Opt. Commun. 195, 427-430 (2001).
[CrossRef]

Lebiush, E.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, "885 nm high-power diodes end-pumped Nd:YAG laser," Opt. Commun. 195, 427-430 (2001).
[CrossRef]

Luo, Z.

Z. Luo, Y. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminum borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004).
[CrossRef]

Z. Huang, Y. Huang, M. Huang, and Z. Luo, "Optimizing the doping concentration and the crystal thickness in Yb3+-doped microchip lasers," J. Opt. Soc. Am. B 20, 2061-2067 (2003).
[CrossRef]

T. Zhao, Z. Luo, Y. Huang, M. Qiu, and G. Chen, "Experimental study of laser-diode end-pumped Nd:YAl3(BO3)4 laser at 1.06 µm," Opt. Commun. 109, 115-118 (1994).
[CrossRef]

Lupei, A.

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, "Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
[CrossRef]

Lupei, V.

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Highly efficient continuous-wave 946 nm Nd:YAG laser emission under direct 885-nm pumping," Appl. Phys. Lett. 81, 2677-2679 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level," IEEE J. Quantum Electron. 38, 240-245 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Highly efficient laser emission in concentrated Nd:YVO4 components under direct pumping into the emitting level," Opt. Commun. 201, 431-435 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Laser emission in highly doped Nd:YAG crystals under F5/24 and F3/24 pumping," Opt. Lett. 26, 1678-1680 (2001).
[CrossRef]

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, "Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
[CrossRef]

Mikai, A.

Montes, M.

Z. Luo, Y. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminum borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004).
[CrossRef]

Neeland, J. K.

J. K. Neeland and V. Evtuhov, "Measurement of the laser transition cross section for Nd3+ in yttrium aluminum garnet," Phys. Rev. 156, 244-246 (1967).
[CrossRef]

Nozawa, Y.

Pavel, N.

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Highly efficient continuous-wave 946 nm Nd:YAG laser emission under direct 885-nm pumping," Appl. Phys. Lett. 81, 2677-2679 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Highly efficient laser emission in concentrated Nd:YVO4 components under direct pumping into the emitting level," Opt. Commun. 201, 431-435 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level," IEEE J. Quantum Electron. 38, 240-245 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Laser emission in highly doped Nd:YAG crystals under F5/24 and F3/24 pumping," Opt. Lett. 26, 1678-1680 (2001).
[CrossRef]

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, "Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
[CrossRef]

Qiu, M.

T. Zhao, Z. Luo, Y. Huang, M. Qiu, and G. Chen, "Experimental study of laser-diode end-pumped Nd:YAl3(BO3)4 laser at 1.06 µm," Opt. Commun. 109, 115-118 (1994).
[CrossRef]

Sato, Y.

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, "Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics," Appl. Phys. Lett. 77, 939-941 (2000).
[CrossRef]

Schulman, J. H.

D. L. Dexter and J. H. Schulman, "Theory of concentration quenching in inorganic phosphors," J. Chem. Phys. 22, 1063-1070 (1954).
[CrossRef]

Shoji, I.

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, "Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, "Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics," Appl. Phys. Lett. 77, 939-941 (2000).
[CrossRef]

Taira, T.

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Highly efficient continuous-wave 946 nm Nd:YAG laser emission under direct 885-nm pumping," Appl. Phys. Lett. 81, 2677-2679 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level," IEEE J. Quantum Electron. 38, 240-245 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Highly efficient laser emission in concentrated Nd:YVO4 components under direct pumping into the emitting level," Opt. Commun. 201, 431-435 (2002).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Laser emission in highly doped Nd:YAG crystals under F5/24 and F3/24 pumping," Opt. Lett. 26, 1678-1680 (2001).
[CrossRef]

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, "Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, "Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics," Appl. Phys. Lett. 77, 939-941 (2000).
[CrossRef]

T. Taira, W. Tulloch, and R. Byer, "Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers," Appl. Opt. 36, 1867-1874 (1997).
[CrossRef] [PubMed]

T. Taira, A. Mikai, Y. Nozawa, and T. Kobayashi, "Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers," Opt. Lett. 16, 1955-1957 (1991).
[CrossRef] [PubMed]

Tal, A.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, "885 nm high-power diodes end-pumped Nd:YAG laser," Opt. Commun. 195, 427-430 (2001).
[CrossRef]

Tashiro, H.

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Waba, and H. Tashiro, "Highly doped Nd:YAG crystal used for microchip lasers," Opt. Commun. 197, 413-418 (2001).
[CrossRef]

Thomas, R.

L. Johnson and R. Thomas, "Maser oscillations at 0.9 and 1.35 microns in CaWO4:Nd3+," Phys. Rev. 131, 2038-2040 (1963).
[CrossRef]

Tucker, A.

M. Birnbaum, A. Tucker, and C. Fincher, "cw room temperature laser operation of Nd:CAMGAR at 0.941 and 1.059 µm," J. Appl. Phys. 49, 2984-2985 (1978).
[CrossRef]

Tucker, A. W.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erier, "Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4," J. Appl. Phys. 48, 4907-4911 (1977).
[CrossRef]

Tulloch, W.

Tzuk, Y.

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, "885 nm high-power diodes end-pumped Nd:YAG laser," Opt. Commun. 195, 427-430 (2001).
[CrossRef]

Urata, Y.

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Waba, and H. Tashiro, "Highly doped Nd:YAG crystal used for microchip lasers," Opt. Commun. 197, 413-418 (2001).
[CrossRef]

Waba, S.

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Waba, and H. Tashiro, "Highly doped Nd:YAG crystal used for microchip lasers," Opt. Commun. 197, 413-418 (2001).
[CrossRef]

Yaney, P.

Yoshida, K.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, "Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics," Appl. Phys. Lett. 77, 939-941 (2000).
[CrossRef]

Zhao, T.

T. Zhao, Z. Luo, Y. Huang, M. Qiu, and G. Chen, "Experimental study of laser-diode end-pumped Nd:YAl3(BO3)4 laser at 1.06 µm," Opt. Commun. 109, 115-118 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

Z. Luo, Y. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminum borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Highly efficient continuous-wave 946 nm Nd:YAG laser emission under direct 885-nm pumping," Appl. Phys. Lett. 81, 2677-2679 (2002).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, "Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics," Appl. Phys. Lett. 77, 939-941 (2000).
[CrossRef]

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, "Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Y. Fan and R. L. Byer, "Modeling and cw operation of a quasi-three level 946 nm Nd:YAG lasers," IEEE J. Quantum Electron. QE-23, 605-612 (1987).

V. Lupei, N. Pavel, and T. Taira, "Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level," IEEE J. Quantum Electron. 38, 240-245 (2002).
[CrossRef]

J. Appl. Phys. (2)

M. Birnbaum, A. Tucker, and C. Fincher, "cw room temperature laser operation of Nd:CAMGAR at 0.941 and 1.059 µm," J. Appl. Phys. 49, 2984-2985 (1978).
[CrossRef]

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erier, "Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4," J. Appl. Phys. 48, 4907-4911 (1977).
[CrossRef]

J. Chem. Phys. (1)

D. L. Dexter and J. H. Schulman, "Theory of concentration quenching in inorganic phosphors," J. Chem. Phys. 22, 1063-1070 (1954).
[CrossRef]

J. Lumin. (1)

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, "The interplay of self-trapping and self-quenching for resonant transitions in solids: role of a cavity," J. Lumin. 94-95, 293-297 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (5)

A. Brenier, "Numerical investigation of the cw end-pumped NYAB and LiNbO3:MgO:Nd self-doubling lasers," Opt. Commun. 129, 57-61 (1996).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Highly efficient laser emission in concentrated Nd:YVO4 components under direct pumping into the emitting level," Opt. Commun. 201, 431-435 (2002).
[CrossRef]

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Waba, and H. Tashiro, "Highly doped Nd:YAG crystal used for microchip lasers," Opt. Commun. 197, 413-418 (2001).
[CrossRef]

R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, and S. Goldring, "885 nm high-power diodes end-pumped Nd:YAG laser," Opt. Commun. 195, 427-430 (2001).
[CrossRef]

T. Zhao, Z. Luo, Y. Huang, M. Qiu, and G. Chen, "Experimental study of laser-diode end-pumped Nd:YAl3(BO3)4 laser at 1.06 µm," Opt. Commun. 109, 115-118 (1994).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (2)

L. Johnson and R. Thomas, "Maser oscillations at 0.9 and 1.35 microns in CaWO4:Nd3+," Phys. Rev. 131, 2038-2040 (1963).
[CrossRef]

J. K. Neeland and V. Evtuhov, "Measurement of the laser transition cross section for Nd3+ in yttrium aluminum garnet," Phys. Rev. 156, 244-246 (1967).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

3D plots of the calculated slope efficiencies for incident pumping power versus Nd 3 + concentration and Nd 3 + : YAG crystal length under indirect and direct pumping.

Fig. 2
Fig. 2

3D plots of the calculated slope efficiencies for incident pumping power versus Nd 3 + concentration and Nd 3 + : Y V O 4 crystal length under both pumping ways.

Fig. 3
Fig. 3

Relations between Nd 3 + concentration and crystal length when the slope efficiencies for incident pumping power under indirect and direct pumping are equal. The approximately derived X = N 0 L are compared as well.

Fig. 4
Fig. 4

3D plots of the calculated incident pumping thresholds versus Nd 3 + concentration and Nd 3 + : YAG crystal length under indirect and direct pumping.

Fig. 5
Fig. 5

3D plots of the calculated incident pumping thresholds versus Nd 3 + concentration and Nd 3 + : Y V O 4 crystal length under indirect and direct pumping.

Tables (2)

Tables Icon

Table 1 Spectroscopic Parameters of Nd 3 + Ions in Nd 3 + : YAG and Nd 3 + : Y V O 4

Tables Icon

Table 2 Calculated and Experimental Laser Parameters for Nd 3 + : YAG Crystal a

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d N ( r , z ) d t = σ p I p ( r , z ) [ N 0 N ( r , z ) ] h ν p σ e I e ( r , z ) × N ( r , z ) h ν e N ( r , z ) τ f ( N 0 ) = 0 ,
N ( r , z ) = N 0 σ p I p ( r , z ) h ν p σ p I p ( r , z ) h ν p + σ e I e ( r , z ) h ν e + 1 τ f ( N 0 ) .
I p ( r , z ) = 2 P p 0 exp [ 2 r 2 w p 2 ( z ) ] { exp ( α p z ) + R p exp [ α p ( 2 L z ) ] } π w p 2 ( z ) ,
I e ± ( r , z ) = 2 P e ± ( z ) exp [ 2 r 2 w e 2 ( z ) ] π w e 2 ( z ) ,
I e ( r , z ) = I e + ( r , z ) + I e ( r , z ) ,
N ( r , z ) = N 0 ( 2 σ p P p 0 exp [ 2 r 2 w p 2 ( z ) ] { exp ( α p z ) + exp [ α p ( 2 L z ) ] } [ π w p 2 ( z ) h ν p ] ) ( 2 σ p P p 0 exp [ 2 r 2 w p 2 ( z ) ] { exp ( α p z ) + exp [ α p ( 2 L z ) ] } π w p 2 ( z ) h ν p + ( 4 2 T ) σ e P e + exp [ 2 r 2 w e 2 ( z ) ] π w e 2 ( z ) h ν e + 1 τ f ( N 0 ) ) .
σ e N 0 0 L 0 1 ( 2 σ p P p 0 π w p 2 ( z ) h ν p y a ( z ) { exp ( α p z ) + exp [ α p ( 2 L z ) ] } ) 2 σ p P p 0 π w p 2 ( z ) h ν p y σ ( z ) { exp ( α p z ) + exp [ α p ( 2 L z ) ] } + ( 4 2 T ) σ e P e + π w e 2 ( z ) h ν e y + 1 τ f ( N 0 ) d y d z = δ L ln 1 T ,
P o = P p 0 λ p T [ 1 exp ( 2 σ p N 0 L ) ] λ e ( 2 T ) ( δ L ln 1 T ) .
η in = λ p T [ 1 exp ( 2 σ p N 0 L ) ] λ e ( 2 T ) ( δ L ln 1 T ) .
η abs = η in 1 exp ( 2 σ p N 0 L ) = λ p T λ e ( 2 T ) ( δ L ln 1 T ) .
P th = π h c ( δ L ln 1 T ) [ w p 2 ( 0 ) + w e 2 ( 0 ) ] σ e λ p τ f ( N 0 ) [ 1 exp ( 2 σ p N 0 L ) ] .
P th = P th [ 1 exp ( 2 σ p N 0 L ) ] = π h c ( δ L ln 1 T ) [ w p 2 ( 0 ) + w e 2 ( 0 ) ] σ e λ p τ f ( N 0 ) .

Metrics