Abstract

We have studied electromagnetically induced transparency (EIT) in the 5S125P325D52 ladder-type system of Rb. We observed relative changing magnitude of EIT hyperfine structures depending on not only the polarizations of the lasers but also the intensity of the coupling laser. The coupling-intensity effects are attributed to the nonlinear increase of the EIT signal to the coupling intensity. EIT signals nonlinear on the coupling intensity are analyzed by considering coherent interaction between atom and laser fields.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Double resonance optical pumping effects in electromagnetically induced transparency

H. S. Moon, L. Lee, and J. B. Kim
Opt. Express 16(16) 12163-12170 (2008)

Relationship between two- and three-photon coherence in a ladder-type atomic system

Yoon-Seok Lee, Heung-Ryoul Noh, and Han Seb Moon
Opt. Express 23(3) 2999-3009 (2015)

Electromagnetically induced transparency in cold rubidium atoms

Min Yan, Edward G. Rickey, and Yifu Zhu
J. Opt. Soc. Am. B 18(8) 1057-1062 (2001)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription