Abstract

Femtosecond pump–probe reflectivity and second-harmonic spectroscopy experiments are used to investigate the optical tuning of leaky modes in a two-dimensional GaAs photonic-crystal waveguide. For above bandgap excitation with 270 fs, 800 nm pulses with a pump fluence of 100μJcm2, a blueshift of 16±2nm is measured for a 1900 nm leaky mode, as observed from the shift of the resonantly enhanced second-harmonic pulse. Theoretical calculations of carrier-induced changes in the refractive index from band filling, bandgap shrinkage, and Drude contributions are in good agreement with the results. Recovery occurs within 2 ps and is attributed to recombination via deep-centered defects. For below bandgap excitation with 166 fs, 1900 nm pulses with a fluence of 800μJcm2, redshifts 1.5nm of the 1360 nm leaky mode are induced via the optical Kerr effect during the early part of the pump pulse, but thereafter the mode is blueshifted, owing likely to free carriers injected into or from deep-centered defects.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B  66, 161102(R) (2002).
    [CrossRef]
  2. D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett.  91, 213903 (2003).
    [CrossRef] [PubMed]
  3. A. Haché and M. Bourgeois, “Ultrafast all-optical switching in a silicon-based photonic crystal,” Appl. Phys. Lett.  77, 4089–4091 (2000).
    [CrossRef]
  4. A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skoinick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of A1GaAs two-dimensional photonic crystal waveguides,” Appl. Phys. Lett.  83, 851–853 (2003).
    [CrossRef]
  5. H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, “Nonlinear tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B  70, 205110 (2004).
    [CrossRef]
  6. X. Hu, Q. Zhang, Y. Liu, B. Cheng, and D. Zhang, “Ultrafast three-dimensional tunable photonic crystal,” Appl. Phys. Lett.  83, 2518–2520 (2003).
    [CrossRef]
  7. H. Inouye and Y. Kanemitsu, “Direct observation of nonlinear effects in a one-dimensional photonic crystal,” Appl. Phys. Lett.  82, 1155–1157 (2003).
    [CrossRef]
  8. M. Shimizu and T. Ishihara, “Subpicosecond transmission change in semiconductor-embedded photonic crystal slab: toward ultrafast optical switching,” Appl. Phys. Lett.  80, 2836–2838 (2002).
    [CrossRef]
  9. J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, “Enhanced second-harmonic generation from planar photonic crystal,” Opt. Lett.  28, 2500–2502 (2003).
    [CrossRef] [PubMed]
  10. A. R. Cowan and J. F. Young, “Mode matching for second-harmonic in photonic crystal waveguides,” Phys. Rev. B  65, 085105 (2002).
    [CrossRef]
  11. B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.  26, 113–122 (1990).
    [CrossRef]
  12. M. G. Banaee, A. R. Cowan, and J. F Young, “Third-order nonlinear influence on the specular reflectivity of two-dimensional waveguide-based photonic crystals,” J. Opt. Soc. Am. B  19, 2224–2231 (2002).
    [CrossRef]
  13. A. R. Cowan, P. Paddon, V. Pacradouni, and J. F. Young, “Resonant scattering and mode coupling in two-dimensional textured planar waveguides,” J. Opt. Soc. Am. A  18, 1160–1170 (2001).
    [CrossRef]
  14. F. Sfigakis, P. Paddon, V. Pacradouni, M. Adamcyk, C. Nicoll, A. R. Cowan, T. Tiedje, and J. F. Young, “Near-infrared refractive index of thick, laterally oxidized AlGaAs cladding layers,” J. Lightwave Technol.  18, 199–202 (2000).
    [CrossRef]
  15. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  16. M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum Electron.  30, 249–255 (1994).
    [CrossRef]
  17. G. I. Stegeman, M. Sheik-Bahae, E. Van Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett.  18, 13–15 (1993).
    [CrossRef] [PubMed]
  18. J. Talghader and J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett.  66, 335–337 (1995).
    [CrossRef]
  19. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multi-layer photonic structures,” Phys. Rev. B  60, 2610–2618 (1999).
    [CrossRef]
  20. T. S. Sosnowski, T. B. Norris, H. H. Wang, P. Grenier, J. F. Whitaker, and C. Y. Sung, “High-carrier-density electron dynamics in low-temperature-grown GaAs,” Appl. Phys. Lett.  70, 3245–3247 (1997).
    [CrossRef]
  21. C. Aversa, J. E. Sipe, M. Sheik-Bahae, and E. W. V. Stryland, “Third-order optical nonlinearities in semiconductors: the two-band model,” Phys. Rev. B  50, 18073–18082 (1994).
    [CrossRef]
  22. H. W. Tan, J. E. Sipe, H. M. van Driel, S. L. Schweizer, J. Schilling, and R. B. Wehrspohn, “Influence of mode characteristics on optical tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B (submitted for publication).

2004 (1)

H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, “Nonlinear tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B  70, 205110 (2004).
[CrossRef]

2003 (5)

X. Hu, Q. Zhang, Y. Liu, B. Cheng, and D. Zhang, “Ultrafast three-dimensional tunable photonic crystal,” Appl. Phys. Lett.  83, 2518–2520 (2003).
[CrossRef]

H. Inouye and Y. Kanemitsu, “Direct observation of nonlinear effects in a one-dimensional photonic crystal,” Appl. Phys. Lett.  82, 1155–1157 (2003).
[CrossRef]

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett.  91, 213903 (2003).
[CrossRef] [PubMed]

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skoinick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of A1GaAs two-dimensional photonic crystal waveguides,” Appl. Phys. Lett.  83, 851–853 (2003).
[CrossRef]

J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, “Enhanced second-harmonic generation from planar photonic crystal,” Opt. Lett.  28, 2500–2502 (2003).
[CrossRef] [PubMed]

2002 (4)

A. R. Cowan and J. F. Young, “Mode matching for second-harmonic in photonic crystal waveguides,” Phys. Rev. B  65, 085105 (2002).
[CrossRef]

M. G. Banaee, A. R. Cowan, and J. F Young, “Third-order nonlinear influence on the specular reflectivity of two-dimensional waveguide-based photonic crystals,” J. Opt. Soc. Am. B  19, 2224–2231 (2002).
[CrossRef]

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B  66, 161102(R) (2002).
[CrossRef]

M. Shimizu and T. Ishihara, “Subpicosecond transmission change in semiconductor-embedded photonic crystal slab: toward ultrafast optical switching,” Appl. Phys. Lett.  80, 2836–2838 (2002).
[CrossRef]

2001 (1)

2000 (2)

1999 (1)

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multi-layer photonic structures,” Phys. Rev. B  60, 2610–2618 (1999).
[CrossRef]

1997 (1)

T. S. Sosnowski, T. B. Norris, H. H. Wang, P. Grenier, J. F. Whitaker, and C. Y. Sung, “High-carrier-density electron dynamics in low-temperature-grown GaAs,” Appl. Phys. Lett.  70, 3245–3247 (1997).
[CrossRef]

1995 (1)

J. Talghader and J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett.  66, 335–337 (1995).
[CrossRef]

1994 (2)

C. Aversa, J. E. Sipe, M. Sheik-Bahae, and E. W. V. Stryland, “Third-order optical nonlinearities in semiconductors: the two-band model,” Phys. Rev. B  50, 18073–18082 (1994).
[CrossRef]

M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum Electron.  30, 249–255 (1994).
[CrossRef]

1993 (1)

1990 (1)

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.  26, 113–122 (1990).
[CrossRef]

Adamcyk, M.

Akimov, A. V.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett.  91, 213903 (2003).
[CrossRef] [PubMed]

Alamo, J. A.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.  26, 113–122 (1990).
[CrossRef]

Assanto, G.

Aversa, C.

C. Aversa, J. E. Sipe, M. Sheik-Bahae, and E. W. V. Stryland, “Third-order optical nonlinearities in semiconductors: the two-band model,” Phys. Rev. B  50, 18073–18082 (1994).
[CrossRef]

Banaee, M. G.

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.  26, 113–122 (1990).
[CrossRef]

Bourgeois, M.

A. Haché and M. Bourgeois, “Ultrafast all-optical switching in a silicon-based photonic crystal,” Appl. Phys. Lett.  77, 4089–4091 (2000).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Bristow, A. D.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skoinick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of A1GaAs two-dimensional photonic crystal waveguides,” Appl. Phys. Lett.  83, 851–853 (2003).
[CrossRef]

Cheng, B.

X. Hu, Q. Zhang, Y. Liu, B. Cheng, and D. Zhang, “Ultrafast three-dimensional tunable photonic crystal,” Appl. Phys. Lett.  83, 2518–2520 (2003).
[CrossRef]

Cowan, A. R.

Culshaw, I. S.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multi-layer photonic structures,” Phys. Rev. B  60, 2610–2618 (1999).
[CrossRef]

Dijkhuis, J. I.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett.  91, 213903 (2003).
[CrossRef] [PubMed]

Fan, W. H.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skoinick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of A1GaAs two-dimensional photonic crystal waveguides,” Appl. Phys. Lett.  83, 851–853 (2003).
[CrossRef]

Fox, A. M.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skoinick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of A1GaAs two-dimensional photonic crystal waveguides,” Appl. Phys. Lett.  83, 851–853 (2003).
[CrossRef]

Golubev, V. G.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett.  91, 213903 (2003).
[CrossRef] [PubMed]

Gösele, U.

H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, “Nonlinear tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B  70, 205110 (2004).
[CrossRef]

Grenier, P.

T. S. Sosnowski, T. B. Norris, H. H. Wang, P. Grenier, J. F. Whitaker, and C. Y. Sung, “High-carrier-density electron dynamics in low-temperature-grown GaAs,” Appl. Phys. Lett.  70, 3245–3247 (1997).
[CrossRef]

Haché, A.

A. Haché and M. Bourgeois, “Ultrafast all-optical switching in a silicon-based photonic crystal,” Appl. Phys. Lett.  77, 4089–4091 (2000).
[CrossRef]

Hu, X.

X. Hu, Q. Zhang, Y. Liu, B. Cheng, and D. Zhang, “Ultrafast three-dimensional tunable photonic crystal,” Appl. Phys. Lett.  83, 2518–2520 (2003).
[CrossRef]

Inouye, H.

H. Inouye and Y. Kanemitsu, “Direct observation of nonlinear effects in a one-dimensional photonic crystal,” Appl. Phys. Lett.  82, 1155–1157 (2003).
[CrossRef]

Ishihara, T.

M. Shimizu and T. Ishihara, “Subpicosecond transmission change in semiconductor-embedded photonic crystal slab: toward ultrafast optical switching,” Appl. Phys. Lett.  80, 2836–2838 (2002).
[CrossRef]

Jiang, W.

Kanemitsu, Y.

H. Inouye and Y. Kanemitsu, “Direct observation of nonlinear effects in a one-dimensional photonic crystal,” Appl. Phys. Lett.  82, 1155–1157 (2003).
[CrossRef]

Kerst, R.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett.  91, 213903 (2003).
[CrossRef] [PubMed]

Krauss, T. F.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skoinick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of A1GaAs two-dimensional photonic crystal waveguides,” Appl. Phys. Lett.  83, 851–853 (2003).
[CrossRef]

Kurdyukov, D. A.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett.  91, 213903 (2003).
[CrossRef] [PubMed]

Leonard, S. W.

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B  66, 161102(R) (2002).
[CrossRef]

Liu, Y.

X. Hu, Q. Zhang, Y. Liu, B. Cheng, and D. Zhang, “Ultrafast three-dimensional tunable photonic crystal,” Appl. Phys. Lett.  83, 2518–2520 (2003).
[CrossRef]

Mazurenko, D. A.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett.  91, 213903 (2003).
[CrossRef] [PubMed]

Mondia, J. P.

Nicoll, C.

Norris, T. B.

T. S. Sosnowski, T. B. Norris, H. H. Wang, P. Grenier, J. F. Whitaker, and C. Y. Sung, “High-carrier-density electron dynamics in low-temperature-grown GaAs,” Appl. Phys. Lett.  70, 3245–3247 (1997).
[CrossRef]

Pacradouni, V.

Paddon, P.

Pevtsov, A. B.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett.  91, 213903 (2003).
[CrossRef] [PubMed]

Roberts, J. S.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skoinick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of A1GaAs two-dimensional photonic crystal waveguides,” Appl. Phys. Lett.  83, 851–853 (2003).
[CrossRef]

Schilling, J.

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B  66, 161102(R) (2002).
[CrossRef]

H. W. Tan, J. E. Sipe, H. M. van Driel, S. L. Schweizer, J. Schilling, and R. B. Wehrspohn, “Influence of mode characteristics on optical tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B (submitted for publication).

Schweizer, S. L.

H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, “Nonlinear tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B  70, 205110 (2004).
[CrossRef]

H. W. Tan, J. E. Sipe, H. M. van Driel, S. L. Schweizer, J. Schilling, and R. B. Wehrspohn, “Influence of mode characteristics on optical tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B (submitted for publication).

Sel’kin, A. V.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett.  91, 213903 (2003).
[CrossRef] [PubMed]

Sfigakis, F.

Sheik-Bahae, M.

M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum Electron.  30, 249–255 (1994).
[CrossRef]

C. Aversa, J. E. Sipe, M. Sheik-Bahae, and E. W. V. Stryland, “Third-order optical nonlinearities in semiconductors: the two-band model,” Phys. Rev. B  50, 18073–18082 (1994).
[CrossRef]

G. I. Stegeman, M. Sheik-Bahae, E. Van Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett.  18, 13–15 (1993).
[CrossRef] [PubMed]

Shimizu, M.

M. Shimizu and T. Ishihara, “Subpicosecond transmission change in semiconductor-embedded photonic crystal slab: toward ultrafast optical switching,” Appl. Phys. Lett.  80, 2836–2838 (2002).
[CrossRef]

Sipe, J. E.

C. Aversa, J. E. Sipe, M. Sheik-Bahae, and E. W. V. Stryland, “Third-order optical nonlinearities in semiconductors: the two-band model,” Phys. Rev. B  50, 18073–18082 (1994).
[CrossRef]

H. W. Tan, J. E. Sipe, H. M. van Driel, S. L. Schweizer, J. Schilling, and R. B. Wehrspohn, “Influence of mode characteristics on optical tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B (submitted for publication).

Skoinick, M. S.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skoinick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of A1GaAs two-dimensional photonic crystal waveguides,” Appl. Phys. Lett.  83, 851–853 (2003).
[CrossRef]

Smith, J. S.

J. Talghader and J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett.  66, 335–337 (1995).
[CrossRef]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.  26, 113–122 (1990).
[CrossRef]

Sosnowski, T. S.

T. S. Sosnowski, T. B. Norris, H. H. Wang, P. Grenier, J. F. Whitaker, and C. Y. Sung, “High-carrier-density electron dynamics in low-temperature-grown GaAs,” Appl. Phys. Lett.  70, 3245–3247 (1997).
[CrossRef]

Stegeman, G. I.

Stryland, E. W.

C. Aversa, J. E. Sipe, M. Sheik-Bahae, and E. W. V. Stryland, “Third-order optical nonlinearities in semiconductors: the two-band model,” Phys. Rev. B  50, 18073–18082 (1994).
[CrossRef]

Sung, C. Y.

T. S. Sosnowski, T. B. Norris, H. H. Wang, P. Grenier, J. F. Whitaker, and C. Y. Sung, “High-carrier-density electron dynamics in low-temperature-grown GaAs,” Appl. Phys. Lett.  70, 3245–3247 (1997).
[CrossRef]

Tahraoui, A.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skoinick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of A1GaAs two-dimensional photonic crystal waveguides,” Appl. Phys. Lett.  83, 851–853 (2003).
[CrossRef]

Talghader, J.

J. Talghader and J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett.  66, 335–337 (1995).
[CrossRef]

Tan, H. W.

H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, “Nonlinear tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B  70, 205110 (2004).
[CrossRef]

H. W. Tan, J. E. Sipe, H. M. van Driel, S. L. Schweizer, J. Schilling, and R. B. Wehrspohn, “Influence of mode characteristics on optical tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B (submitted for publication).

Tiedje, T.

van Driel, H. M.

H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, “Nonlinear tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B  70, 205110 (2004).
[CrossRef]

J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, “Enhanced second-harmonic generation from planar photonic crystal,” Opt. Lett.  28, 2500–2502 (2003).
[CrossRef] [PubMed]

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B  66, 161102(R) (2002).
[CrossRef]

H. W. Tan, J. E. Sipe, H. M. van Driel, S. L. Schweizer, J. Schilling, and R. B. Wehrspohn, “Influence of mode characteristics on optical tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B (submitted for publication).

Van Stryland, E.

Van Stryland, E. W.

M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum Electron.  30, 249–255 (1994).
[CrossRef]

Wang, H. H.

T. S. Sosnowski, T. B. Norris, H. H. Wang, P. Grenier, J. F. Whitaker, and C. Y. Sung, “High-carrier-density electron dynamics in low-temperature-grown GaAs,” Appl. Phys. Lett.  70, 3245–3247 (1997).
[CrossRef]

Wang, J.

M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum Electron.  30, 249–255 (1994).
[CrossRef]

Wehrspohn, R. B.

H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, “Nonlinear tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B  70, 205110 (2004).
[CrossRef]

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B  66, 161102(R) (2002).
[CrossRef]

H. W. Tan, J. E. Sipe, H. M. van Driel, S. L. Schweizer, J. Schilling, and R. B. Wehrspohn, “Influence of mode characteristics on optical tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B (submitted for publication).

Wells, J.-P. R.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skoinick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of A1GaAs two-dimensional photonic crystal waveguides,” Appl. Phys. Lett.  83, 851–853 (2003).
[CrossRef]

Whitaker, J. F.

T. S. Sosnowski, T. B. Norris, H. H. Wang, P. Grenier, J. F. Whitaker, and C. Y. Sung, “High-carrier-density electron dynamics in low-temperature-grown GaAs,” Appl. Phys. Lett.  70, 3245–3247 (1997).
[CrossRef]

Whittaker, D. M.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skoinick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of A1GaAs two-dimensional photonic crystal waveguides,” Appl. Phys. Lett.  83, 851–853 (2003).
[CrossRef]

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multi-layer photonic structures,” Phys. Rev. B  60, 2610–2618 (1999).
[CrossRef]

Young, J. F

Young, J. F.

Zhang, D.

X. Hu, Q. Zhang, Y. Liu, B. Cheng, and D. Zhang, “Ultrafast three-dimensional tunable photonic crystal,” Appl. Phys. Lett.  83, 2518–2520 (2003).
[CrossRef]

Zhang, Q.

X. Hu, Q. Zhang, Y. Liu, B. Cheng, and D. Zhang, “Ultrafast three-dimensional tunable photonic crystal,” Appl. Phys. Lett.  83, 2518–2520 (2003).
[CrossRef]

Appl. Phys. Lett. (7)

A. Haché and M. Bourgeois, “Ultrafast all-optical switching in a silicon-based photonic crystal,” Appl. Phys. Lett.  77, 4089–4091 (2000).
[CrossRef]

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skoinick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of A1GaAs two-dimensional photonic crystal waveguides,” Appl. Phys. Lett.  83, 851–853 (2003).
[CrossRef]

X. Hu, Q. Zhang, Y. Liu, B. Cheng, and D. Zhang, “Ultrafast three-dimensional tunable photonic crystal,” Appl. Phys. Lett.  83, 2518–2520 (2003).
[CrossRef]

H. Inouye and Y. Kanemitsu, “Direct observation of nonlinear effects in a one-dimensional photonic crystal,” Appl. Phys. Lett.  82, 1155–1157 (2003).
[CrossRef]

M. Shimizu and T. Ishihara, “Subpicosecond transmission change in semiconductor-embedded photonic crystal slab: toward ultrafast optical switching,” Appl. Phys. Lett.  80, 2836–2838 (2002).
[CrossRef]

T. S. Sosnowski, T. B. Norris, H. H. Wang, P. Grenier, J. F. Whitaker, and C. Y. Sung, “High-carrier-density electron dynamics in low-temperature-grown GaAs,” Appl. Phys. Lett.  70, 3245–3247 (1997).
[CrossRef]

J. Talghader and J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett.  66, 335–337 (1995).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Sheik-Bahae, J. Wang, and E. W. Van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum Electron.  30, 249–255 (1994).
[CrossRef]

B. R. Bennett, R. A. Soref, and J. A. D. Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.  26, 113–122 (1990).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Phys. Rev. B (5)

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multi-layer photonic structures,” Phys. Rev. B  60, 2610–2618 (1999).
[CrossRef]

C. Aversa, J. E. Sipe, M. Sheik-Bahae, and E. W. V. Stryland, “Third-order optical nonlinearities in semiconductors: the two-band model,” Phys. Rev. B  50, 18073–18082 (1994).
[CrossRef]

A. R. Cowan and J. F. Young, “Mode matching for second-harmonic in photonic crystal waveguides,” Phys. Rev. B  65, 085105 (2002).
[CrossRef]

H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, “Nonlinear tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B  70, 205110 (2004).
[CrossRef]

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, “Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection,” Phys. Rev. B  66, 161102(R) (2002).
[CrossRef]

Phys. Rev. Lett. (1)

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett.  91, 213903 (2003).
[CrossRef] [PubMed]

Other (2)

H. W. Tan, J. E. Sipe, H. M. van Driel, S. L. Schweizer, J. Schilling, and R. B. Wehrspohn, “Influence of mode characteristics on optical tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B (submitted for publication).

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the planar photonic-crystal waveguide. The diameter of the air pores in the GaAs are 320 nm, and the distance between adjacent pores is 770 nm. The Γ X and Γ M directions of the photonic crystal are illustrated with arrows. Also illustrated is the beam geometry used to monitor changes to either the reflectivity or the SH spectra for a collinear pump beam at frequency Ω.

Fig. 2
Fig. 2

PPCW dispersion curves for the leaky modes used in the SH studies; the in-plane wavevector is represented by the angle of incidence θ. The solid curve represents the lowest order s-polarized photonic band (to which a fundamental beam is coupled), and the dashed curve shows the p-polarized photonic band to which a SH beam can couple. To illustrate where phase matching can occur, the s-polarized band is plotted at twice its frequency and twice its wavevector. Circles represent locations of peak SH enhancement related to a double-resonance condition.

Fig. 3
Fig. 3

Calculated changes in the index of refraction induced by electron-hole pairs in GaAs as a function of probe-photon energy; contributions from bandgap shrinkage, Drude, and band-filling mechanisms are illustrated for an electron-hole density N = 1 × 10 18 cm 3 . The vertical dashed lines represent the boundaries of the energy regime experimentally probed.

Fig. 4
Fig. 4

(a) Reflectivity spectrum of a 1900 nm s-polarized pulse at θ = 34 ° ; (b) p-polarized SH spectra at θ = 34 ° for different 800 nm pump pulse fluences. Also shown is the square of the 1900 nm pump spectrum plotted at half its wavelength.

Fig. 5
Fig. 5

(a) Peak spectral position associated with the incoming 1900 nm pulses resonantly coupled to a mode of the PPCW for different θ and 800 nm pump fluences. The lines of best fit represent the SH photonic bands for different pump fluences. (b) The dependence of the SH blueshift on carrier density (pump fluence) for leaky modes associated with the incoming fundamental beam and the outgoing SH beam resonant with different leaky modes of the PPCW. Each data point represents the average shift over all measured θ. The solid curves are calculated shifts incorporating band-filling effects, bandgap shrinkage effects, and Drude contributions.

Fig. 6
Fig. 6

Transient response of the 1900 nm leaky mode for a 800 nm pump fluence of 100 μ J cm 2 and incident angle θ = 28 ° . The inset represents the same data on a semilog plot. Similar measurements were made for other angles, yielding an average decay time of approximately 2 ps.

Fig. 7
Fig. 7

(a) Transient response traces of the 1360 nm leaky mode for different 1900 nm pump fluences when both pump and probe beams are collinear and incident at θ = 28 ° . Inset, spectrum of the 1360 nm probe reflectivity in the absence of the pump beam. (b) Simulations of the experimental results for an incident pump fluence of 400 μ J cm 2 using a Gaussian and two exponential functions.

Fig. 8
Fig. 8

Power dependence of Δ R for region 2 in Fig. 6. The data was fit to two straight lines with slope = 1 and slope = 1.9 . Inset, decay time of data for region 2 as a function of 1900 nm pump fluence. Solid curve is best fit to the data.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ n = e 2 N 2 n ϵ 0 m * ω 2 ,
Δ α bf ( ω , N ) = i α 0 i [ f e  i ( ω , N ) + f h  i ( ω , N ) ] ,
α 0 i = C i ω ( ω E g ) 1 2 ,
Δ E g ( N ) κ n 2 N 1 3 ,
Δ α br ( ω , N ) = C hh + C lh ω { [ ω E g Δ E g ( N ) ] 1 2 ( ω E g ) 1 2 } ,
Δ n bf , br ( ω , N ) = c π P 0 Δ α bf , br ( ω , N ) ω 2 ω 2 d ω ,
Δ n ( ω ) = 2 Re [ χ ( 3 ) ( ω ; ω , Ω , Ω ) E ( Ω ) E * ( Ω ) ] 2 n = 2 n 2 I Ω ,
Δ R = f 1 exp ( t 2 τ 1 2 ) + f 2 exp ( t τ 2 ) + f 3 exp ( t τ 3 ) .
Δ R = d λ d n d R d λ Δ n ,

Metrics