Abstract

We extend the application of the Z-scan technique to the investigation of refractive index change associated with the photoisomerization of azobenzene polymers. The performing of a Z scan is simplified, because only a cw laser is needed in the experiments. On the basis of an angular hole-burning model, a formula on the refractive index change is deduced. Measurements are also carried out on a poly(methyl methacrylate) film doped with disperse red 13 by the use of a Z-scan, and polarization effects in the refractive index change are revealed by employing a single beam. Both theoretical and experimental results show that the refractive index change effect associated with linearly polarized light is stronger than that associated with unpolarized light.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Sekkat, D. Morichere, and M. Dumont, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys.  71, 1543–1545 (1992).
    [CrossRef]
  2. S. Muto, T. Kubo, Y. Kurokawa, and K. Suzuki, “Third-order nonlinear optical properties of Disperse Red 1 and Au nanometer-size particle-doped alumina films prepared by the sol-gel method,” Thin Solid Films  322, 233–237 (1998).
    [CrossRef]
  3. A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. (Washington, D.C.)  102, 4139–4175 (2002).
    [CrossRef]
  4. T. Buffeteau, F. Lagugne Labarthet, M. Pezolet, and C. Sourisseau, “Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies,” Macromolecules  34, 7514–7521 (2001).
    [CrossRef]
  5. V. M. Churikov, J. T. Lin, H. H. Wu, J. H. Lin, T. H. Huang, and C. C. Hsu, “One-and two-photon induced molecular conformation change and reorientation and related third-order nonlinearities in phenylamine azo-dye polymer thin films,” Opt. Commun.  209, 451–460 (2002).
    [CrossRef]
  6. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.  26, 760–769 (1990).
    [CrossRef]
  7. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High sensitivity single beam n2 measurement,” Opt. Lett.  14, 955–957 (1989).
    [CrossRef] [PubMed]
  8. L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys. Part 1  35, 2649–2652 (1996).
    [CrossRef]
  9. L. Demenicis, A. S. L. Gomes, D. V. Petrov, C. B. de Araujo, C. P. de Melo, and C. G. dos Santos, “Saturation effects in the nonlinear-optical susceptibility of poly(3-hexadecylthiophene),” J. Opt. Soc. Am. B  14, 609–604 (1997).
    [CrossRef]
  10. S. Bian and J. Frejlich, “Z-scan measurements of photorefractive nonlinearities for a SBN:Ce crystal,” Appl. Phys. B  64, 539–546 (1997).
    [CrossRef]
  11. S. Bian, “Estimation of photovoltaic field in LiNbO3 crystal by Z-scan,” Opt. Commun.  141, 292–297 (1997).
    [CrossRef]
  12. Z. Sekkat and M. Dumont, “Polarization effects in photoisomerization of azo dyes in polymeric films,” Appl. Phys. B  53, 121–123 (1991).
    [CrossRef]
  13. F. Dall’Agnol, J. R. Silva, S. C. Zilio, O. N. Oliveira, Jr., and J. A. Giacometti, “Temperature dependence of photoinduced birefringence in polystyrene doped with disperse red-1,” Macromol. Rapid Commun.  23, 948–951 (2002).
    [CrossRef]

2002 (3)

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. (Washington, D.C.)  102, 4139–4175 (2002).
[CrossRef]

V. M. Churikov, J. T. Lin, H. H. Wu, J. H. Lin, T. H. Huang, and C. C. Hsu, “One-and two-photon induced molecular conformation change and reorientation and related third-order nonlinearities in phenylamine azo-dye polymer thin films,” Opt. Commun.  209, 451–460 (2002).
[CrossRef]

F. Dall’Agnol, J. R. Silva, S. C. Zilio, O. N. Oliveira, Jr., and J. A. Giacometti, “Temperature dependence of photoinduced birefringence in polystyrene doped with disperse red-1,” Macromol. Rapid Commun.  23, 948–951 (2002).
[CrossRef]

2001 (1)

T. Buffeteau, F. Lagugne Labarthet, M. Pezolet, and C. Sourisseau, “Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies,” Macromolecules  34, 7514–7521 (2001).
[CrossRef]

1998 (1)

S. Muto, T. Kubo, Y. Kurokawa, and K. Suzuki, “Third-order nonlinear optical properties of Disperse Red 1 and Au nanometer-size particle-doped alumina films prepared by the sol-gel method,” Thin Solid Films  322, 233–237 (1998).
[CrossRef]

1997 (3)

L. Demenicis, A. S. L. Gomes, D. V. Petrov, C. B. de Araujo, C. P. de Melo, and C. G. dos Santos, “Saturation effects in the nonlinear-optical susceptibility of poly(3-hexadecylthiophene),” J. Opt. Soc. Am. B  14, 609–604 (1997).
[CrossRef]

S. Bian and J. Frejlich, “Z-scan measurements of photorefractive nonlinearities for a SBN:Ce crystal,” Appl. Phys. B  64, 539–546 (1997).
[CrossRef]

S. Bian, “Estimation of photovoltaic field in LiNbO3 crystal by Z-scan,” Opt. Commun.  141, 292–297 (1997).
[CrossRef]

1996 (1)

L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys. Part 1  35, 2649–2652 (1996).
[CrossRef]

1992 (1)

Z. Sekkat, D. Morichere, and M. Dumont, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys.  71, 1543–1545 (1992).
[CrossRef]

1991 (1)

Z. Sekkat and M. Dumont, “Polarization effects in photoisomerization of azo dyes in polymeric films,” Appl. Phys. B  53, 121–123 (1991).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.  26, 760–769 (1990).
[CrossRef]

1989 (1)

Bian, S.

S. Bian and J. Frejlich, “Z-scan measurements of photorefractive nonlinearities for a SBN:Ce crystal,” Appl. Phys. B  64, 539–546 (1997).
[CrossRef]

S. Bian, “Estimation of photovoltaic field in LiNbO3 crystal by Z-scan,” Opt. Commun.  141, 292–297 (1997).
[CrossRef]

Buffeteau, T.

T. Buffeteau, F. Lagugne Labarthet, M. Pezolet, and C. Sourisseau, “Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies,” Macromolecules  34, 7514–7521 (2001).
[CrossRef]

Catunda, T.

L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys. Part 1  35, 2649–2652 (1996).
[CrossRef]

Churikov, V. M.

V. M. Churikov, J. T. Lin, H. H. Wu, J. H. Lin, T. H. Huang, and C. C. Hsu, “One-and two-photon induced molecular conformation change and reorientation and related third-order nonlinearities in phenylamine azo-dye polymer thin films,” Opt. Commun.  209, 451–460 (2002).
[CrossRef]

Dall’Agnol, F.

F. Dall’Agnol, J. R. Silva, S. C. Zilio, O. N. Oliveira, Jr., and J. A. Giacometti, “Temperature dependence of photoinduced birefringence in polystyrene doped with disperse red-1,” Macromol. Rapid Commun.  23, 948–951 (2002).
[CrossRef]

de Araujo, C. B.

de Melo, C. P.

Demenicis, L.

dos Santos, C. G.

Dumont, M.

Z. Sekkat, D. Morichere, and M. Dumont, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys.  71, 1543–1545 (1992).
[CrossRef]

Z. Sekkat and M. Dumont, “Polarization effects in photoisomerization of azo dyes in polymeric films,” Appl. Phys. B  53, 121–123 (1991).
[CrossRef]

Frejlich, J.

S. Bian and J. Frejlich, “Z-scan measurements of photorefractive nonlinearities for a SBN:Ce crystal,” Appl. Phys. B  64, 539–546 (1997).
[CrossRef]

Giacometti, J. A.

F. Dall’Agnol, J. R. Silva, S. C. Zilio, O. N. Oliveira, Jr., and J. A. Giacometti, “Temperature dependence of photoinduced birefringence in polystyrene doped with disperse red-1,” Macromol. Rapid Commun.  23, 948–951 (2002).
[CrossRef]

Gomes, A. S. L.

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.  26, 760–769 (1990).
[CrossRef]

Hsu, C. C.

V. M. Churikov, J. T. Lin, H. H. Wu, J. H. Lin, T. H. Huang, and C. C. Hsu, “One-and two-photon induced molecular conformation change and reorientation and related third-order nonlinearities in phenylamine azo-dye polymer thin films,” Opt. Commun.  209, 451–460 (2002).
[CrossRef]

Huang, T. H.

V. M. Churikov, J. T. Lin, H. H. Wu, J. H. Lin, T. H. Huang, and C. C. Hsu, “One-and two-photon induced molecular conformation change and reorientation and related third-order nonlinearities in phenylamine azo-dye polymer thin films,” Opt. Commun.  209, 451–460 (2002).
[CrossRef]

Kubo, T.

S. Muto, T. Kubo, Y. Kurokawa, and K. Suzuki, “Third-order nonlinear optical properties of Disperse Red 1 and Au nanometer-size particle-doped alumina films prepared by the sol-gel method,” Thin Solid Films  322, 233–237 (1998).
[CrossRef]

Kurokawa, Y.

S. Muto, T. Kubo, Y. Kurokawa, and K. Suzuki, “Third-order nonlinear optical properties of Disperse Red 1 and Au nanometer-size particle-doped alumina films prepared by the sol-gel method,” Thin Solid Films  322, 233–237 (1998).
[CrossRef]

Lagugne Labarthet, F.

T. Buffeteau, F. Lagugne Labarthet, M. Pezolet, and C. Sourisseau, “Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies,” Macromolecules  34, 7514–7521 (2001).
[CrossRef]

Lin, J. H.

V. M. Churikov, J. T. Lin, H. H. Wu, J. H. Lin, T. H. Huang, and C. C. Hsu, “One-and two-photon induced molecular conformation change and reorientation and related third-order nonlinearities in phenylamine azo-dye polymer thin films,” Opt. Commun.  209, 451–460 (2002).
[CrossRef]

Lin, J. T.

V. M. Churikov, J. T. Lin, H. H. Wu, J. H. Lin, T. H. Huang, and C. C. Hsu, “One-and two-photon induced molecular conformation change and reorientation and related third-order nonlinearities in phenylamine azo-dye polymer thin films,” Opt. Commun.  209, 451–460 (2002).
[CrossRef]

Morichere, D.

Z. Sekkat, D. Morichere, and M. Dumont, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys.  71, 1543–1545 (1992).
[CrossRef]

Muto, S.

S. Muto, T. Kubo, Y. Kurokawa, and K. Suzuki, “Third-order nonlinear optical properties of Disperse Red 1 and Au nanometer-size particle-doped alumina films prepared by the sol-gel method,” Thin Solid Films  322, 233–237 (1998).
[CrossRef]

Natansohn, A.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. (Washington, D.C.)  102, 4139–4175 (2002).
[CrossRef]

Oliveira, L. C.

L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys. Part 1  35, 2649–2652 (1996).
[CrossRef]

Oliveira, O. N.

F. Dall’Agnol, J. R. Silva, S. C. Zilio, O. N. Oliveira, Jr., and J. A. Giacometti, “Temperature dependence of photoinduced birefringence in polystyrene doped with disperse red-1,” Macromol. Rapid Commun.  23, 948–951 (2002).
[CrossRef]

Petrov, D. V.

Pezolet, M.

T. Buffeteau, F. Lagugne Labarthet, M. Pezolet, and C. Sourisseau, “Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies,” Macromolecules  34, 7514–7521 (2001).
[CrossRef]

Rochon, P.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. (Washington, D.C.)  102, 4139–4175 (2002).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.  26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High sensitivity single beam n2 measurement,” Opt. Lett.  14, 955–957 (1989).
[CrossRef] [PubMed]

Sekkat, Z.

Z. Sekkat, D. Morichere, and M. Dumont, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys.  71, 1543–1545 (1992).
[CrossRef]

Z. Sekkat and M. Dumont, “Polarization effects in photoisomerization of azo dyes in polymeric films,” Appl. Phys. B  53, 121–123 (1991).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.  26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High sensitivity single beam n2 measurement,” Opt. Lett.  14, 955–957 (1989).
[CrossRef] [PubMed]

Silva, J. R.

F. Dall’Agnol, J. R. Silva, S. C. Zilio, O. N. Oliveira, Jr., and J. A. Giacometti, “Temperature dependence of photoinduced birefringence in polystyrene doped with disperse red-1,” Macromol. Rapid Commun.  23, 948–951 (2002).
[CrossRef]

Sourisseau, C.

T. Buffeteau, F. Lagugne Labarthet, M. Pezolet, and C. Sourisseau, “Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies,” Macromolecules  34, 7514–7521 (2001).
[CrossRef]

Stryland, E. W. V.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.  26, 760–769 (1990).
[CrossRef]

Suzuki, K.

S. Muto, T. Kubo, Y. Kurokawa, and K. Suzuki, “Third-order nonlinear optical properties of Disperse Red 1 and Au nanometer-size particle-doped alumina films prepared by the sol-gel method,” Thin Solid Films  322, 233–237 (1998).
[CrossRef]

Van Stryland, E. W.

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.  26, 760–769 (1990).
[CrossRef]

Wu, H. H.

V. M. Churikov, J. T. Lin, H. H. Wu, J. H. Lin, T. H. Huang, and C. C. Hsu, “One-and two-photon induced molecular conformation change and reorientation and related third-order nonlinearities in phenylamine azo-dye polymer thin films,” Opt. Commun.  209, 451–460 (2002).
[CrossRef]

Zilio, S. C.

F. Dall’Agnol, J. R. Silva, S. C. Zilio, O. N. Oliveira, Jr., and J. A. Giacometti, “Temperature dependence of photoinduced birefringence in polystyrene doped with disperse red-1,” Macromol. Rapid Commun.  23, 948–951 (2002).
[CrossRef]

L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys. Part 1  35, 2649–2652 (1996).
[CrossRef]

Appl. Phys. B (2)

S. Bian and J. Frejlich, “Z-scan measurements of photorefractive nonlinearities for a SBN:Ce crystal,” Appl. Phys. B  64, 539–546 (1997).
[CrossRef]

Z. Sekkat and M. Dumont, “Polarization effects in photoisomerization of azo dyes in polymeric films,” Appl. Phys. B  53, 121–123 (1991).
[CrossRef]

Chem. Rev. (Washington, D.C.) (1)

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. (Washington, D.C.)  102, 4139–4175 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.  26, 760–769 (1990).
[CrossRef]

J. Appl. Phys. (1)

Z. Sekkat, D. Morichere, and M. Dumont, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys.  71, 1543–1545 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. Part 1 (1)

L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys. Part 1  35, 2649–2652 (1996).
[CrossRef]

Macromol. Rapid Commun. (1)

F. Dall’Agnol, J. R. Silva, S. C. Zilio, O. N. Oliveira, Jr., and J. A. Giacometti, “Temperature dependence of photoinduced birefringence in polystyrene doped with disperse red-1,” Macromol. Rapid Commun.  23, 948–951 (2002).
[CrossRef]

Macromolecules (1)

T. Buffeteau, F. Lagugne Labarthet, M. Pezolet, and C. Sourisseau, “Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies,” Macromolecules  34, 7514–7521 (2001).
[CrossRef]

Opt. Commun. (2)

V. M. Churikov, J. T. Lin, H. H. Wu, J. H. Lin, T. H. Huang, and C. C. Hsu, “One-and two-photon induced molecular conformation change and reorientation and related third-order nonlinearities in phenylamine azo-dye polymer thin films,” Opt. Commun.  209, 451–460 (2002).
[CrossRef]

S. Bian, “Estimation of photovoltaic field in LiNbO3 crystal by Z-scan,” Opt. Commun.  141, 292–297 (1997).
[CrossRef]

Opt. Lett. (1)

Thin Solid Films (1)

S. Muto, T. Kubo, Y. Kurokawa, and K. Suzuki, “Third-order nonlinear optical properties of Disperse Red 1 and Au nanometer-size particle-doped alumina films prepared by the sol-gel method,” Thin Solid Films  322, 233–237 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Definition of angles α and ψ characterizing the orientation of the trans molecule OM with respect to the wave vector k that is chosen as the z axis of the spherical coordinates and the instantaneous electric field vector E of the unpolarized light; θ is the angle between the trans molecule and the plane where E is located.

Fig. 2
Fig. 2

Absorption spectrum of the DR13 in a PMMA matrix. The excitation wavelength is 632.8 nm .

Fig. 3
Fig. 3

Z-scan transmittance at I 0 = 0.51 W cm 2 for (a) a linearly polarized laser and (b) an unpolarized laser.

Fig. 4
Fig. 4

Dependence of the peak–valley difference Δ T p v of the Z-scan curve on the beam intensity I 0 .

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d N T ( θ ) d t = m N T ( θ ) Φ 1 I σ 1 cos 2 θ + N C ( θ ) Φ 2 I σ 2 + γ N C ( θ ) ,
N = N T ( θ ) + N C ( θ ) ,
N T ( θ ) = N ( 1 + m I σ 1 Φ 1 cos 2 θ I σ 2 Φ 2 + γ ) 1 .
m I σ 1 Φ 1 cos 2 θ I σ 2 Φ 2 + γ 1 .
N T ( θ ) N ( 1 m I σ 1 Φ 1 I σ 2 Φ 2 + γ cos 2 θ ) .
Δ n = c [ N T ( θ ) N ] cos 2 ψ d Ω ,
Δ n = n 2 I s I ( I s + I )
n 2 = 4 π c N σ 1 Φ 1 5 γ , I s = γ ( σ 2 Φ 2 ) ,
Δ n = n 2 I s I ( I s + I ) ,
n 2 = 8 π c N σ 1 Φ 1 ( 15 γ ) , I s = γ ( σ 2 Φ 2 ) .
T ( z ) = ( 1 + a 0 + z 2 z 0 2 ) 4 [ ( 1 + a 0 + z 2 z 0 2 ) 2 + 2 a 0 Δ Φ 0 z z 0 ] 2 + 4 a 0 2 ( Δ Φ 0 ) 2 ,
a 0 = I 0 I s , Δ Φ 0 = k n 2 I s l ,

Metrics