Abstract

The photorefractive properties of Sn2P2S6 crystals in the wavelength range from 633to1064nm are investigated. Conventional yellow and modified brown crystals with a variation of nonstoichiometric defects are examined. Brown crystals respond much faster and exhibit substantially higher photorefractive gain than yellow crystals, up to 18cm1 at 780nm and 8.5cm1 at 1064nm. Ring-cavity self-pumped phase conjugation is demonstrated using both types of crystal. The phase-conjugate response of brown Sn2P2S6 is 2 orders of magnitude faster than in yellow Sn2P2S6 or Rh-doped BaTiO3, with a grating recording time below 50ms for 30mW power at 860nm. Various thresholding effects are analyzed to determine the optimal wavelength range for the two types of crystal. We find an optimum in the range of 650950nm for yellow and in the range of 8501100nm for brown Sn2P2S6.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P.Günter and J.-P.Huignard, eds., Photorefractive Materials and their Applications I and II (Springer-Verlag, 1988).
    [CrossRef]
  2. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).
  3. G. Montemezzani, C. Medrano, M. Zgonik, and P. Günter, “The photorefractive effect in inorganic and organic materials,” in Nonlinear Optical Effects and Materials, Vol.  72 of Springer Series in Optical Science, P.Günter, ed. (Springer, 2000), pp. 301–373.
    [CrossRef]
  4. M. Ewart, R. Ryf, C. Medrano, H. Wüest, M. Zgonik, and P. Günter, “High photorefractive sensitivity at 860 nm in reduced rhodium-doped KNbO3,” Opt. Lett.  22, 781–783 (1997).
    [CrossRef] [PubMed]
  5. G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near-infrared in ‘blue’ BaTiO3,” Opt. Commun.  101, 60–64 (1993).
    [CrossRef]
  6. N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 μm,” Opt. Commun.  135, 133–137 (1997).
    [CrossRef]
  7. M. Kaczmarek, R. W. Eason, and I. Mnushkina, “The effect of doping and processing conditions on the optical performance of Rh:BaTiO3,” Appl. Phys. B  68, 813–817 (1999).
    [CrossRef]
  8. N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Characterization and optimization of a ring self-pumped phase conjugate mirror at 1.06 μm with BaTiO3:Rh,” J. Opt. Soc. Am. B  15, 1992–1999 (1998).
    [CrossRef]
  9. A. Shumelyuk, D. Barilov, S. Odoulov, and E. Krätzig, “Anisotropy of the dielectric permittivity of Sn2P2S6 measured with light-induced grating techniques,” Appl. Phys. B  76, 417–421 (2003).
    [CrossRef]
  10. A. Shumelyuk, S. Odoulov, and G. Brost, “Multiline coherent oscillation in photorefractive crystals with two species of movable carriers,” Appl. Phys. B  68, 959–966 (1999).
    [CrossRef]
  11. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, and A. A. Grabar, “Photorefractive beam coupling in tin hypothiodiphosphate in the near infrared,” Opt. Lett.  21, 752–754 (1996).
    [CrossRef] [PubMed]
  12. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoika, “Photorefraction in tin hypothiodiphosphate in the near infrared,” J. Opt. Soc. Am. B  13, 2352–2360 (1996).
    [CrossRef]
  13. A. Shumelyuk, S. Odoulov, and G. Brost, “Electric-field enhancement of beam coupling in Sn2P2S6,” Appl. Phys. B  72, 707–710 (2001).
    [CrossRef]
  14. A. Shumelyuk, S. Odoulov, and G. Brost, “Nearly degenerate two-beam coupling in photorefractive crystals with two species of movable carriers,” J. Opt. Soc. Am. B  15, 2125–2131 (1998).
    [CrossRef]
  15. A. Shumelyuk, S. Odoulov, H. Yi, E. Krätzig, and G. Brost, “Ti-sapphire laser beam coupling in Sn2P2S6,” in Conference on Laser and Electro-Optics, Vol.  6 of OSA Technical Digest Series (Optical Society of America, 1998), pp. 171–172.
  16. A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun.  188, 187–194 (2001).
    [CrossRef]
  17. M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Fast near-infrared self-pumped phase conjugation with photorefractive Sn2P2S6,” J. Opt. Soc. Am. B  20, 1241–1246 (2003).
    [CrossRef]
  18. C. D. Carpentier and R. Nitsche, “Vapor growth and crystal data of thio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals,” Mater. Res. Bull.  9, 401–410 (1974).
    [CrossRef]
  19. D. Haertle, A. Guarino, J. Hajfler, G. Montemezzani, and P. Günter, “Refractive indices of Sn2P2S6 at visible and infrared wavelengths,” Opt. Express  13, 2047–2057 (2005).
    [CrossRef] [PubMed]
  20. R. S. Cudney, R. M. Pierce, G. D. Bacher, and J. Feinberg, “Absorption gratings in photorefractive crystals with multiple levels,” J. Opt. Soc. Am. B  8, 1326–1332 (1991).
    [CrossRef]
  21. D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun.  215, 333–343 (2003).
    [CrossRef]
  22. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals 2. Beam coupling-light amplification,” Ferroelectrics  22, 961–964 (1979).
    [CrossRef]
  23. G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E  55, 1035–1047 (1997).
    [CrossRef]
  24. P. Günter and M. Zgonik, “Clamped–unclamped electro-optic coefficient dilemma in photorefractive phenomena,” Opt. Lett.  16, 1826–1828 (1991).
    [CrossRef]
  25. M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron.  QE-20, 12–30 (1984).
    [CrossRef]
  26. J. E. Millerd, E. M. Garmire, and M. B. Klein, “Investigation of photorefractive self-pumped phase-conjugate mirrors in the presence of loss and high modulation depth,” J. Opt. Soc. Am. B  9, 1499–1506 (1992).
    [CrossRef]

2005

2003

M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Fast near-infrared self-pumped phase conjugation with photorefractive Sn2P2S6,” J. Opt. Soc. Am. B  20, 1241–1246 (2003).
[CrossRef]

A. Shumelyuk, D. Barilov, S. Odoulov, and E. Krätzig, “Anisotropy of the dielectric permittivity of Sn2P2S6 measured with light-induced grating techniques,” Appl. Phys. B  76, 417–421 (2003).
[CrossRef]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun.  215, 333–343 (2003).
[CrossRef]

2001

A. Shumelyuk, S. Odoulov, and G. Brost, “Electric-field enhancement of beam coupling in Sn2P2S6,” Appl. Phys. B  72, 707–710 (2001).
[CrossRef]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun.  188, 187–194 (2001).
[CrossRef]

1999

A. Shumelyuk, S. Odoulov, and G. Brost, “Multiline coherent oscillation in photorefractive crystals with two species of movable carriers,” Appl. Phys. B  68, 959–966 (1999).
[CrossRef]

M. Kaczmarek, R. W. Eason, and I. Mnushkina, “The effect of doping and processing conditions on the optical performance of Rh:BaTiO3,” Appl. Phys. B  68, 813–817 (1999).
[CrossRef]

1998

1997

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 μm,” Opt. Commun.  135, 133–137 (1997).
[CrossRef]

M. Ewart, R. Ryf, C. Medrano, H. Wüest, M. Zgonik, and P. Günter, “High photorefractive sensitivity at 860 nm in reduced rhodium-doped KNbO3,” Opt. Lett.  22, 781–783 (1997).
[CrossRef] [PubMed]

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E  55, 1035–1047 (1997).
[CrossRef]

1996

1993

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near-infrared in ‘blue’ BaTiO3,” Opt. Commun.  101, 60–64 (1993).
[CrossRef]

1992

1991

1984

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron.  QE-20, 12–30 (1984).
[CrossRef]

1979

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals 2. Beam coupling-light amplification,” Ferroelectrics  22, 961–964 (1979).
[CrossRef]

1974

C. D. Carpentier and R. Nitsche, “Vapor growth and crystal data of thio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals,” Mater. Res. Bull.  9, 401–410 (1974).
[CrossRef]

Bacher, G. D.

Barilov, D.

A. Shumelyuk, D. Barilov, S. Odoulov, and E. Krätzig, “Anisotropy of the dielectric permittivity of Sn2P2S6 measured with light-induced grating techniques,” Appl. Phys. B  76, 417–421 (2003).
[CrossRef]

Brost, G.

A. Shumelyuk, S. Odoulov, and G. Brost, “Electric-field enhancement of beam coupling in Sn2P2S6,” Appl. Phys. B  72, 707–710 (2001).
[CrossRef]

A. Shumelyuk, S. Odoulov, and G. Brost, “Multiline coherent oscillation in photorefractive crystals with two species of movable carriers,” Appl. Phys. B  68, 959–966 (1999).
[CrossRef]

A. Shumelyuk, S. Odoulov, and G. Brost, “Nearly degenerate two-beam coupling in photorefractive crystals with two species of movable carriers,” J. Opt. Soc. Am. B  15, 2125–2131 (1998).
[CrossRef]

A. Shumelyuk, S. Odoulov, H. Yi, E. Krätzig, and G. Brost, “Ti-sapphire laser beam coupling in Sn2P2S6,” in Conference on Laser and Electro-Optics, Vol.  6 of OSA Technical Digest Series (Optical Society of America, 1998), pp. 171–172.

Caimi, G.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun.  215, 333–343 (2003).
[CrossRef]

Carpentier, C. D.

C. D. Carpentier and R. Nitsche, “Vapor growth and crystal data of thio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals,” Mater. Res. Bull.  9, 401–410 (1974).
[CrossRef]

Cronin-Golomb, M.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron.  QE-20, 12–30 (1984).
[CrossRef]

Cudney, R. S.

Eason, R. W.

M. Kaczmarek, R. W. Eason, and I. Mnushkina, “The effect of doping and processing conditions on the optical performance of Rh:BaTiO3,” Appl. Phys. B  68, 813–817 (1999).
[CrossRef]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near-infrared in ‘blue’ BaTiO3,” Opt. Commun.  101, 60–64 (1993).
[CrossRef]

Ewart, M.

Feinberg, J.

Fischer, B.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron.  QE-20, 12–30 (1984).
[CrossRef]

Garmire, E. M.

Garrett, M. H.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near-infrared in ‘blue’ BaTiO3,” Opt. Commun.  101, 60–64 (1993).
[CrossRef]

Grabar, A. A.

Guarino, A.

Günter, P.

Gurzan, M. I.

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun.  188, 187–194 (2001).
[CrossRef]

Haertle, D.

D. Haertle, A. Guarino, J. Hajfler, G. Montemezzani, and P. Günter, “Refractive indices of Sn2P2S6 at visible and infrared wavelengths,” Opt. Express  13, 2047–2057 (2005).
[CrossRef] [PubMed]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun.  215, 333–343 (2003).
[CrossRef]

Hajfler, J.

Haldi, A.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun.  215, 333–343 (2003).
[CrossRef]

Hellwig, U.

Hribek, P.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near-infrared in ‘blue’ BaTiO3,” Opt. Commun.  101, 60–64 (1993).
[CrossRef]

Huot, N.

N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Characterization and optimization of a ring self-pumped phase conjugate mirror at 1.06 μm with BaTiO3:Rh,” J. Opt. Soc. Am. B  15, 1992–1999 (1998).
[CrossRef]

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 μm,” Opt. Commun.  135, 133–137 (1997).
[CrossRef]

Jazbinšek, M.

Jonathan, J. M. C.

N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Characterization and optimization of a ring self-pumped phase conjugate mirror at 1.06 μm with BaTiO3:Rh,” J. Opt. Soc. Am. B  15, 1992–1999 (1998).
[CrossRef]

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 μm,” Opt. Commun.  135, 133–137 (1997).
[CrossRef]

Kaczmarek, M.

M. Kaczmarek, R. W. Eason, and I. Mnushkina, “The effect of doping and processing conditions on the optical performance of Rh:BaTiO3,” Appl. Phys. B  68, 813–817 (1999).
[CrossRef]

Kedyk, I. V.

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun.  188, 187–194 (2001).
[CrossRef]

Klein, M. B.

Krätzig, E.

A. Shumelyuk, D. Barilov, S. Odoulov, and E. Krätzig, “Anisotropy of the dielectric permittivity of Sn2P2S6 measured with light-induced grating techniques,” Appl. Phys. B  76, 417–421 (2003).
[CrossRef]

A. Shumelyuk, S. Odoulov, H. Yi, E. Krätzig, and G. Brost, “Ti-sapphire laser beam coupling in Sn2P2S6,” in Conference on Laser and Electro-Optics, Vol.  6 of OSA Technical Digest Series (Optical Society of America, 1998), pp. 171–172.

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals 2. Beam coupling-light amplification,” Ferroelectrics  22, 961–964 (1979).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals 2. Beam coupling-light amplification,” Ferroelectrics  22, 961–964 (1979).
[CrossRef]

Medrano, C.

M. Ewart, R. Ryf, C. Medrano, H. Wüest, M. Zgonik, and P. Günter, “High photorefractive sensitivity at 860 nm in reduced rhodium-doped KNbO3,” Opt. Lett.  22, 781–783 (1997).
[CrossRef] [PubMed]

G. Montemezzani, C. Medrano, M. Zgonik, and P. Günter, “The photorefractive effect in inorganic and organic materials,” in Nonlinear Optical Effects and Materials, Vol.  72 of Springer Series in Optical Science, P.Günter, ed. (Springer, 2000), pp. 301–373.
[CrossRef]

Millerd, J. E.

Mnushkina, I.

M. Kaczmarek, R. W. Eason, and I. Mnushkina, “The effect of doping and processing conditions on the optical performance of Rh:BaTiO3,” Appl. Phys. B  68, 813–817 (1999).
[CrossRef]

Molnar, A. A.

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun.  188, 187–194 (2001).
[CrossRef]

Montemezzani, G.

D. Haertle, A. Guarino, J. Hajfler, G. Montemezzani, and P. Günter, “Refractive indices of Sn2P2S6 at visible and infrared wavelengths,” Opt. Express  13, 2047–2057 (2005).
[CrossRef] [PubMed]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun.  215, 333–343 (2003).
[CrossRef]

M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Fast near-infrared self-pumped phase conjugation with photorefractive Sn2P2S6,” J. Opt. Soc. Am. B  20, 1241–1246 (2003).
[CrossRef]

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E  55, 1035–1047 (1997).
[CrossRef]

G. Montemezzani, C. Medrano, M. Zgonik, and P. Günter, “The photorefractive effect in inorganic and organic materials,” in Nonlinear Optical Effects and Materials, Vol.  72 of Springer Series in Optical Science, P.Günter, ed. (Springer, 2000), pp. 301–373.
[CrossRef]

Nitsche, R.

C. D. Carpentier and R. Nitsche, “Vapor growth and crystal data of thio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals,” Mater. Res. Bull.  9, 401–410 (1974).
[CrossRef]

Odoulov, S.

A. Shumelyuk, D. Barilov, S. Odoulov, and E. Krätzig, “Anisotropy of the dielectric permittivity of Sn2P2S6 measured with light-induced grating techniques,” Appl. Phys. B  76, 417–421 (2003).
[CrossRef]

A. Shumelyuk, S. Odoulov, and G. Brost, “Electric-field enhancement of beam coupling in Sn2P2S6,” Appl. Phys. B  72, 707–710 (2001).
[CrossRef]

A. Shumelyuk, S. Odoulov, and G. Brost, “Multiline coherent oscillation in photorefractive crystals with two species of movable carriers,” Appl. Phys. B  68, 959–966 (1999).
[CrossRef]

A. Shumelyuk, S. Odoulov, and G. Brost, “Nearly degenerate two-beam coupling in photorefractive crystals with two species of movable carriers,” J. Opt. Soc. Am. B  15, 2125–2131 (1998).
[CrossRef]

A. Shumelyuk, S. Odoulov, H. Yi, E. Krätzig, and G. Brost, “Ti-sapphire laser beam coupling in Sn2P2S6,” in Conference on Laser and Electro-Optics, Vol.  6 of OSA Technical Digest Series (Optical Society of America, 1998), pp. 171–172.

Odoulov, S. G.

Pauliat, G.

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 μm,” Opt. Commun.  135, 133–137 (1997).
[CrossRef]

Pierce, R. M.

Roosen, G.

N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Characterization and optimization of a ring self-pumped phase conjugate mirror at 1.06 μm with BaTiO3:Rh,” J. Opt. Soc. Am. B  15, 1992–1999 (1998).
[CrossRef]

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 μm,” Opt. Commun.  135, 133–137 (1997).
[CrossRef]

Ross, G. W.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near-infrared in ‘blue’ BaTiO3,” Opt. Commun.  101, 60–64 (1993).
[CrossRef]

Rupp, R. A.

Ryf, R.

Rytz, D.

N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Characterization and optimization of a ring self-pumped phase conjugate mirror at 1.06 μm with BaTiO3:Rh,” J. Opt. Soc. Am. B  15, 1992–1999 (1998).
[CrossRef]

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 μm,” Opt. Commun.  135, 133–137 (1997).
[CrossRef]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near-infrared in ‘blue’ BaTiO3,” Opt. Commun.  101, 60–64 (1993).
[CrossRef]

Shumelyuk, A.

A. Shumelyuk, D. Barilov, S. Odoulov, and E. Krätzig, “Anisotropy of the dielectric permittivity of Sn2P2S6 measured with light-induced grating techniques,” Appl. Phys. B  76, 417–421 (2003).
[CrossRef]

A. Shumelyuk, S. Odoulov, and G. Brost, “Electric-field enhancement of beam coupling in Sn2P2S6,” Appl. Phys. B  72, 707–710 (2001).
[CrossRef]

A. Shumelyuk, S. Odoulov, and G. Brost, “Multiline coherent oscillation in photorefractive crystals with two species of movable carriers,” Appl. Phys. B  68, 959–966 (1999).
[CrossRef]

A. Shumelyuk, S. Odoulov, and G. Brost, “Nearly degenerate two-beam coupling in photorefractive crystals with two species of movable carriers,” J. Opt. Soc. Am. B  15, 2125–2131 (1998).
[CrossRef]

A. Shumelyuk, S. Odoulov, H. Yi, E. Krätzig, and G. Brost, “Ti-sapphire laser beam coupling in Sn2P2S6,” in Conference on Laser and Electro-Optics, Vol.  6 of OSA Technical Digest Series (Optical Society of America, 1998), pp. 171–172.

Shumelyuk, A. N.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals 2. Beam coupling-light amplification,” Ferroelectrics  22, 961–964 (1979).
[CrossRef]

Stoika, I. M.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun.  215, 333–343 (2003).
[CrossRef]

M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Fast near-infrared self-pumped phase conjugation with photorefractive Sn2P2S6,” J. Opt. Soc. Am. B  20, 1241–1246 (2003).
[CrossRef]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun.  188, 187–194 (2001).
[CrossRef]

S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoika, “Photorefraction in tin hypothiodiphosphate in the near infrared,” J. Opt. Soc. Am. B  13, 2352–2360 (1996).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals 2. Beam coupling-light amplification,” Ferroelectrics  22, 961–964 (1979).
[CrossRef]

Vysochanskii, Yu. M.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun.  215, 333–343 (2003).
[CrossRef]

M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Fast near-infrared self-pumped phase conjugation with photorefractive Sn2P2S6,” J. Opt. Soc. Am. B  20, 1241–1246 (2003).
[CrossRef]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun.  188, 187–194 (2001).
[CrossRef]

White, J. O.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron.  QE-20, 12–30 (1984).
[CrossRef]

Wüest, H.

Yariv, A.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron.  QE-20, 12–30 (1984).
[CrossRef]

Yeh, P.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

Yi, H.

A. Shumelyuk, S. Odoulov, H. Yi, E. Krätzig, and G. Brost, “Ti-sapphire laser beam coupling in Sn2P2S6,” in Conference on Laser and Electro-Optics, Vol.  6 of OSA Technical Digest Series (Optical Society of America, 1998), pp. 171–172.

Zgonik, M.

M. Ewart, R. Ryf, C. Medrano, H. Wüest, M. Zgonik, and P. Günter, “High photorefractive sensitivity at 860 nm in reduced rhodium-doped KNbO3,” Opt. Lett.  22, 781–783 (1997).
[CrossRef] [PubMed]

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E  55, 1035–1047 (1997).
[CrossRef]

P. Günter and M. Zgonik, “Clamped–unclamped electro-optic coefficient dilemma in photorefractive phenomena,” Opt. Lett.  16, 1826–1828 (1991).
[CrossRef]

G. Montemezzani, C. Medrano, M. Zgonik, and P. Günter, “The photorefractive effect in inorganic and organic materials,” in Nonlinear Optical Effects and Materials, Vol.  72 of Springer Series in Optical Science, P.Günter, ed. (Springer, 2000), pp. 301–373.
[CrossRef]

Appl. Phys. B

M. Kaczmarek, R. W. Eason, and I. Mnushkina, “The effect of doping and processing conditions on the optical performance of Rh:BaTiO3,” Appl. Phys. B  68, 813–817 (1999).
[CrossRef]

A. Shumelyuk, D. Barilov, S. Odoulov, and E. Krätzig, “Anisotropy of the dielectric permittivity of Sn2P2S6 measured with light-induced grating techniques,” Appl. Phys. B  76, 417–421 (2003).
[CrossRef]

A. Shumelyuk, S. Odoulov, and G. Brost, “Multiline coherent oscillation in photorefractive crystals with two species of movable carriers,” Appl. Phys. B  68, 959–966 (1999).
[CrossRef]

A. Shumelyuk, S. Odoulov, and G. Brost, “Electric-field enhancement of beam coupling in Sn2P2S6,” Appl. Phys. B  72, 707–710 (2001).
[CrossRef]

Ferroelectrics

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals 2. Beam coupling-light amplification,” Ferroelectrics  22, 961–964 (1979).
[CrossRef]

IEEE J. Quantum Electron.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron.  QE-20, 12–30 (1984).
[CrossRef]

J. Opt. Soc. Am. B

Mater. Res. Bull.

C. D. Carpentier and R. Nitsche, “Vapor growth and crystal data of thio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals,” Mater. Res. Bull.  9, 401–410 (1974).
[CrossRef]

Opt. Commun.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun.  215, 333–343 (2003).
[CrossRef]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near-infrared in ‘blue’ BaTiO3,” Opt. Commun.  101, 60–64 (1993).
[CrossRef]

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 μm,” Opt. Commun.  135, 133–137 (1997).
[CrossRef]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun.  188, 187–194 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E  55, 1035–1047 (1997).
[CrossRef]

Other

P.Günter and J.-P.Huignard, eds., Photorefractive Materials and their Applications I and II (Springer-Verlag, 1988).
[CrossRef]

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

G. Montemezzani, C. Medrano, M. Zgonik, and P. Günter, “The photorefractive effect in inorganic and organic materials,” in Nonlinear Optical Effects and Materials, Vol.  72 of Springer Series in Optical Science, P.Günter, ed. (Springer, 2000), pp. 301–373.
[CrossRef]

A. Shumelyuk, S. Odoulov, H. Yi, E. Krätzig, and G. Brost, “Ti-sapphire laser beam coupling in Sn2P2S6,” in Conference on Laser and Electro-Optics, Vol.  6 of OSA Technical Digest Series (Optical Society of America, 1998), pp. 171–172.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Scheme of the vapor transport growth of Sn 2 P 2 S 6 .[18] High-purity stoichiometric amounts of the constituting elements are sealed into an evacuated quartz tube together with a transport gas. The tube is placed in a horizontal furnace with the temperature gradient between hot evaporation ( T 1 ) and cold crystallization ( T 2 ) zones. A transport gas replacement leads to variations in the growth speed and crystallization conditions due to the difference in the transport dynamics and the decomposition energy, and hence the crystal stoichiometry. This is usually manifested in the sample color varying from light yellow to orange or even a light-brown tone.

Fig. 2
Fig. 2

Absorption spectra of yellow and brown Sn 2 P 2 S 6 crystals for light polarized along the x and y axes.

Fig. 3
Fig. 3

Fringe spacing Λ dependence of two-beam coupling gain coefficient Γ at light wavelengths 780 nm with total input intensity I = 0.2 W cm 2 and 1064 nm with I = 3.6 W cm 2 in (a) brown Sn 2 P 2 S 6 and (b) yellow Sn 2 P 2 S 6 . The solid curves are theoretical curves according to Eq. (1).

Fig. 4
Fig. 4

Experimental setup for the ring-cavity self-pumped phase conjugation with Sn 2 P 2 S 6 . Without the external loop, input beam 3 was fanned toward the + x direction. All beams are polarized in the plane of the loop. The transmission grating is written by beam 3 with its self-diffracted beam 4 and by beams 1 and 2 counterpropagating in the loop.

Fig. 5
Fig. 5

Time evolution of the phase-conjugate reflectivity R after input beam 3 was turned on using (a) brown Sn 2 P 2 S 6 of 2.4 nm thickness and (b) yellow Sn 2 P 2 S 6 of 9.7 mm thickness. The input beam is at λ = 860 nm and has a diameter of 1.2 mm and powers of (a) 30 mW and (b) 90 mW .

Fig. 6
Fig. 6

Measured saturated phase-conjugate reflectivity R as a function of loop transmission T using (a) brown Sn 2 P 2 S 6 of 2.4 mm thickness and (b) yellow Sn 2 P 2 S 6 of 9.7 mm thickness. The solid curves are calculated from Eq. (3) with parameters listed in Table 2, where input beam intensities I 0 for this experiment are also given.

Fig. 7
Fig. 7

Measured saturated phase-conjugate reflectivity R as a function of the incident intensity I 3 using (a) brown Sn 2 P 2 S 6 and (b) yellow Sn 2 P 2 S 6 . The solid curves are calculated from Eq. (3) considering additional uniform charge generation included in Eq. (8) with parameters Γ L and T 0 as in Fig. 6 and I β parameters that correspond best to the measured values (see Table 2).

Fig. 8
Fig. 8

Photorefractive gain Γ as a function of the light wavelength λ in (a) brown Sn 2 P 2 S 6 and (b) yellow Sn 2 P 2 S 6 . The dashed lines correspond to the coupling strength threshold Γ L = 2 for the brown sample with L = 2.4 mm and the yellow sample with L = 9.7 mm . The dotted lines present approximations of the dependences Γ ( λ ) used to estimate the theoretical limits of the phase-conjugate reflectivities.

Fig. 9
Fig. 9

Theoretical dependences of saturated reflectivity R on the coupling strength for loop transmissions T 0 obtained at different wavelengths (Table 2): 633 nm (dashed–dotted curve), 780 nm (dotted curve), 860 nm (solid curve), 980 nm (dashed curve). Experimental points for (a) brown Sn 2 P 2 S 6 and (b) yellow Sn 2 P 2 S 6 are also included. Note that since the losses at the mirrors inside the cavity were higher at 980 nm but the absorption losses were lower at 980 nm , the curves for brown Sn 2 P 2 S 6 at 980 and 860 nm almost coincide.

Fig. 10
Fig. 10

Theoretical dependences of saturated reflectivity R on the crystal length for loop transmissions T 0 , photorefractive gains Γ, and absorption constants α obtained at different wavelengths (Table 2): 633 nm (dashed–dotted curve), 780 nm (dotted curve), 860 nm (solid curve), 980 nm (dashed curve). Experimental points for (a) brown Sn 2 P 2 S 6 and (b) yellow Sn 2 P 2 S 6 are also included with the dotted vertical lines corresponding to the investigated crystal thicknesses.

Fig. 11
Fig. 11

Optimized phase-conjugate reflectivity R (left scale) as a function of the light wavelength λ for (a) brown Sn 2 P 2 S 6 and (b) yellow Sn 2 P 2 S 6 crystal of the optimal thickness L (right scale).

Tables (2)

Tables Icon

Table 1 Effective Electro-Optic Coefficients r eff and Effective Concentration of Traps N eff That Correspond to the Theoretical Curves of Fig. 3

Tables Icon

Table 2 Characteristic Parameters for Phase Conjugation with Brown and Yellow Sn 2 P 2 S 6 Crystals a

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Γ = 2 π λ n S n P 2 cos β P e ̂ S e ̂ P cos θ S r eff E SC ,
E SC = E D E q E D + E q ,
t 0 2 tanh κ L s + σ tanh κ L = s I 0 tanh κ L ( σ I 0 s 2 ) tanh κ L + ( I 0 σ ) s ,
σ = I 0 t 0 2 1 t 0 2 + 1 ,
s = σ 2 + ( I 0 σ ) 2 ρ 2 ,
κ = s Γ * 4 I 0 ,
ρ 2 = A 2 ( L ) A 3 * ( L ) 2 .
κ = s Γ * 4 ( I 0 + I β ) .

Metrics