Abstract

Measurements of the effective third-order susceptibility χeff(3)(ω,ω,ω,ω) of a colloid consisting of silver nanoparticles (NPs) in liquid carbon disulfide (CS2) are reported for excitation at 532nm. Changes in χeff(3)(ω,ω,ω,ω) were controlled varying the NP filling factor f. Cancellation and sign reversal of the nonlinear (NL) index of refraction and the NL absorption coefficient of the colloid were observed owing to competing contributions from the NP and the CS2 molecules. The Reχeff(3)(ω,ω,ω,ω) and Imχeff(3)(ω,ω,ω,ω) change linearly when f assumes values from 0.4×105 to 4.0×105. An analysis of the results is provided using a generalized Maxwell Garnett model that allowed evaluation of the NL susceptibility of the NP.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Ricard, Ph. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett.  10, 511–513 (1985).
    [CrossRef] [PubMed]
  2. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B  3, 1647–1655 (1986).
    [CrossRef]
  3. See, for example, M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge U. Press, 2000).
    [CrossRef]
  4. V. M. Shalaev, Nonlinear Optics of Random Media (Springer, 2000).
  5. M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues Jr., C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B  70, 161401 (2004).
    [CrossRef]
  6. H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett.  83, 4625–4627 (2003).
    [CrossRef]
  7. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B  107, 668–677 (2003).
    [CrossRef]
  8. Z. S. Pillai and P. V. Kamat, “What factors control the size and shape of silver nanoparticles in the citrate ion reduction method,” J. Phys. Chem. B  108, 945–951 (2004).
    [CrossRef]
  9. C. Voisin, D. Chistofilos, N. Del Fatti, F. Valée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-dependent electron–electron interactions in metal nanoparticles,” Phys. Rev. Lett.  85, 2200–2203 (2000).
    [CrossRef] [PubMed]
  10. N. Del Fatti, F. Vallée, C. Flytzanis, Y. Hamanaka, and A. Nakamura, “Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles,” Chem. Phys.  251, 215–226 (2000).
    [CrossRef]
  11. Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, “Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites,” J. Opt. Soc. Am. B  20, 1227–1232 (2003).
    [CrossRef]
  12. V. P. Drachev, E. N. Khaliullin, W. Kim, F. Alzoubi, S. G. Rautian, V. P. Safonov, R. L. Armstrong, and V. M. Shalaev, “Quantum size effect in two-photon excited luminescence from silver nanoparticles,” Phys. Rev. B  69, 035318 (2004).
    [CrossRef]
  13. R. A. Gannev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and K. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun.  240, 437–448 (2004).
    [CrossRef]
  14. I. Antonov, F. Bass, Yu. Kaganovskii, M. Rosenbluh, and A. A. Lipovskii, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys.  93, 2343–2348 (2003).
    [CrossRef]
  15. J. Qiu, X. Jiang, C. Zhu, H. Inouye, J. Si, and K. Hirao, “Optical properties of structurally modified glasses doped with gold ions,” Opt. Lett.  29, 370–372 (2004).
    [CrossRef] [PubMed]
  16. J. W. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A  46, 1614–1629 (1992).
    [CrossRef] [PubMed]
  17. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system,” J. Chem. Soc. Chem. Commun.  7, 801–802 (1994).
    [CrossRef]
  18. M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, and C. Kiely, “Synthesis and reactions of functionalised gold nanoparticles,” J. Chem. Soc. Chem. Commun.  16, 1655–1656 (1995).
    [CrossRef]
  19. M. M. Oliveira, D. Ugarte, D. Zanchet, and A. J. G. Zarbin, “Influence of synthetic parameters on the size, structure and stability of dodecanethiol-stabilized silver nanoparticles,” J. Colloid Interface Sci., submitted for publication.
  20. U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys.  224, 307–323 (1969).
    [CrossRef]
  21. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.  QE-26, 760–769 (1990).
    [CrossRef]
  22. H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett.  59, 2666–2668 (1991).
    [CrossRef]
  23. X. Liu, S. Guo, H. Wang, N. Ming, and L. Hou, “Investigation of the influence of finite aperture size on the Z-scan transmittance curve,” J. Nonlinear Opt. Phys. Mater.  10, 431–439 (2001).
    [CrossRef]
  24. D. D. Smith, G. Fisher, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B  14, 1625–1631 (1997).
    [CrossRef]
  25. E. L. Falcão-Filho, C. A. C. Bosco, G. S. Maciel, L. H. Acioli, C. B. de Araújo, A. A. Lipovskii, and D. K. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B  69, 134204 (2004).
    [CrossRef]

2004 (6)

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues Jr., C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B  70, 161401 (2004).
[CrossRef]

Z. S. Pillai and P. V. Kamat, “What factors control the size and shape of silver nanoparticles in the citrate ion reduction method,” J. Phys. Chem. B  108, 945–951 (2004).
[CrossRef]

V. P. Drachev, E. N. Khaliullin, W. Kim, F. Alzoubi, S. G. Rautian, V. P. Safonov, R. L. Armstrong, and V. M. Shalaev, “Quantum size effect in two-photon excited luminescence from silver nanoparticles,” Phys. Rev. B  69, 035318 (2004).
[CrossRef]

R. A. Gannev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and K. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun.  240, 437–448 (2004).
[CrossRef]

J. Qiu, X. Jiang, C. Zhu, H. Inouye, J. Si, and K. Hirao, “Optical properties of structurally modified glasses doped with gold ions,” Opt. Lett.  29, 370–372 (2004).
[CrossRef] [PubMed]

E. L. Falcão-Filho, C. A. C. Bosco, G. S. Maciel, L. H. Acioli, C. B. de Araújo, A. A. Lipovskii, and D. K. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B  69, 134204 (2004).
[CrossRef]

2003 (4)

Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, “Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites,” J. Opt. Soc. Am. B  20, 1227–1232 (2003).
[CrossRef]

I. Antonov, F. Bass, Yu. Kaganovskii, M. Rosenbluh, and A. A. Lipovskii, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys.  93, 2343–2348 (2003).
[CrossRef]

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett.  83, 4625–4627 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B  107, 668–677 (2003).
[CrossRef]

2001 (1)

X. Liu, S. Guo, H. Wang, N. Ming, and L. Hou, “Investigation of the influence of finite aperture size on the Z-scan transmittance curve,” J. Nonlinear Opt. Phys. Mater.  10, 431–439 (2001).
[CrossRef]

2000 (2)

C. Voisin, D. Chistofilos, N. Del Fatti, F. Valée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-dependent electron–electron interactions in metal nanoparticles,” Phys. Rev. Lett.  85, 2200–2203 (2000).
[CrossRef] [PubMed]

N. Del Fatti, F. Vallée, C. Flytzanis, Y. Hamanaka, and A. Nakamura, “Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles,” Chem. Phys.  251, 215–226 (2000).
[CrossRef]

1997 (1)

1995 (1)

M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, and C. Kiely, “Synthesis and reactions of functionalised gold nanoparticles,” J. Chem. Soc. Chem. Commun.  16, 1655–1656 (1995).
[CrossRef]

1994 (1)

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system,” J. Chem. Soc. Chem. Commun.  7, 801–802 (1994).
[CrossRef]

1992 (1)

J. W. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A  46, 1614–1629 (1992).
[CrossRef] [PubMed]

1991 (1)

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett.  59, 2666–2668 (1991).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.  QE-26, 760–769 (1990).
[CrossRef]

1986 (1)

1985 (1)

1969 (1)

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys.  224, 307–323 (1969).
[CrossRef]

Acioli, L. H.

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues Jr., C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B  70, 161401 (2004).
[CrossRef]

E. L. Falcão-Filho, C. A. C. Bosco, G. S. Maciel, L. H. Acioli, C. B. de Araújo, A. A. Lipovskii, and D. K. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B  69, 134204 (2004).
[CrossRef]

Alzoubi, F.

V. P. Drachev, E. N. Khaliullin, W. Kim, F. Alzoubi, S. G. Rautian, V. P. Safonov, R. L. Armstrong, and V. M. Shalaev, “Quantum size effect in two-photon excited luminescence from silver nanoparticles,” Phys. Rev. B  69, 035318 (2004).
[CrossRef]

Antonov, I.

I. Antonov, F. Bass, Yu. Kaganovskii, M. Rosenbluh, and A. A. Lipovskii, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys.  93, 2343–2348 (2003).
[CrossRef]

Armstrong, R. L.

V. P. Drachev, E. N. Khaliullin, W. Kim, F. Alzoubi, S. G. Rautian, V. P. Safonov, R. L. Armstrong, and V. M. Shalaev, “Quantum size effect in two-photon excited luminescence from silver nanoparticles,” Phys. Rev. B  69, 035318 (2004).
[CrossRef]

Asahara, Y.

See, for example, M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge U. Press, 2000).
[CrossRef]

Baba, M.

R. A. Gannev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and K. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun.  240, 437–448 (2004).
[CrossRef]

Bass, F.

I. Antonov, F. Bass, Yu. Kaganovskii, M. Rosenbluh, and A. A. Lipovskii, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys.  93, 2343–2348 (2003).
[CrossRef]

Bethell, D.

M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, and C. Kiely, “Synthesis and reactions of functionalised gold nanoparticles,” J. Chem. Soc. Chem. Commun.  16, 1655–1656 (1995).
[CrossRef]

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system,” J. Chem. Soc. Chem. Commun.  7, 801–802 (1994).
[CrossRef]

Bosco, C. A. C.

E. L. Falcão-Filho, C. A. C. Bosco, G. S. Maciel, L. H. Acioli, C. B. de Araújo, A. A. Lipovskii, and D. K. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B  69, 134204 (2004).
[CrossRef]

Boyd, R. W.

Broyer, M.

C. Voisin, D. Chistofilos, N. Del Fatti, F. Valée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-dependent electron–electron interactions in metal nanoparticles,” Phys. Rev. Lett.  85, 2200–2203 (2000).
[CrossRef] [PubMed]

Brust, M.

M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, and C. Kiely, “Synthesis and reactions of functionalised gold nanoparticles,” J. Chem. Soc. Chem. Commun.  16, 1655–1656 (1995).
[CrossRef]

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system,” J. Chem. Soc. Chem. Commun.  7, 801–802 (1994).
[CrossRef]

Chistofilos, D.

C. Voisin, D. Chistofilos, N. Del Fatti, F. Valée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-dependent electron–electron interactions in metal nanoparticles,” Phys. Rev. Lett.  85, 2200–2203 (2000).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B  107, 668–677 (2003).
[CrossRef]

Cottancin, E.

C. Voisin, D. Chistofilos, N. Del Fatti, F. Valée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-dependent electron–electron interactions in metal nanoparticles,” Phys. Rev. Lett.  85, 2200–2203 (2000).
[CrossRef] [PubMed]

de Araújo, C. B.

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues Jr., C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B  70, 161401 (2004).
[CrossRef]

E. L. Falcão-Filho, C. A. C. Bosco, G. S. Maciel, L. H. Acioli, C. B. de Araújo, A. A. Lipovskii, and D. K. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B  69, 134204 (2004).
[CrossRef]

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett.  59, 2666–2668 (1991).
[CrossRef]

Del Fatti, N.

N. Del Fatti, F. Vallée, C. Flytzanis, Y. Hamanaka, and A. Nakamura, “Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles,” Chem. Phys.  251, 215–226 (2000).
[CrossRef]

C. Voisin, D. Chistofilos, N. Del Fatti, F. Valée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-dependent electron–electron interactions in metal nanoparticles,” Phys. Rev. Lett.  85, 2200–2203 (2000).
[CrossRef] [PubMed]

Drachev, V. P.

V. P. Drachev, E. N. Khaliullin, W. Kim, F. Alzoubi, S. G. Rautian, V. P. Safonov, R. L. Armstrong, and V. M. Shalaev, “Quantum size effect in two-photon excited luminescence from silver nanoparticles,” Phys. Rev. B  69, 035318 (2004).
[CrossRef]

Esumi, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett.  83, 4625–4627 (2003).
[CrossRef]

Falcão-Filho, E. L.

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues Jr., C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B  70, 161401 (2004).
[CrossRef]

E. L. Falcão-Filho, C. A. C. Bosco, G. S. Maciel, L. H. Acioli, C. B. de Araújo, A. A. Lipovskii, and D. K. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B  69, 134204 (2004).
[CrossRef]

Fink, J.

M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, and C. Kiely, “Synthesis and reactions of functionalised gold nanoparticles,” J. Chem. Soc. Chem. Commun.  16, 1655–1656 (1995).
[CrossRef]

Fisher, G.

Flytzanis, C.

Fragstein, C. V.

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys.  224, 307–323 (1969).
[CrossRef]

Gannev, R. A.

R. A. Gannev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and K. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun.  240, 437–448 (2004).
[CrossRef]

Gomes, A. S. L.

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett.  59, 2666–2668 (1991).
[CrossRef]

Gregory, D. A.

Guo, S.

X. Liu, S. Guo, H. Wang, N. Ming, and L. Hou, “Investigation of the influence of finite aperture size on the Z-scan transmittance curve,” J. Nonlinear Opt. Phys. Mater.  10, 431–439 (2001).
[CrossRef]

Hache, F.

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.  QE-26, 760–769 (1990).
[CrossRef]

Hamanaka, Y.

Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, “Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites,” J. Opt. Soc. Am. B  20, 1227–1232 (2003).
[CrossRef]

N. Del Fatti, F. Vallée, C. Flytzanis, Y. Hamanaka, and A. Nakamura, “Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles,” Chem. Phys.  251, 215–226 (2000).
[CrossRef]

Hayashi, N.

Hirao, K.

Hou, L.

X. Liu, S. Guo, H. Wang, N. Ming, and L. Hou, “Investigation of the influence of finite aperture size on the Z-scan transmittance curve,” J. Nonlinear Opt. Phys. Mater.  10, 431–439 (2001).
[CrossRef]

Inouye, H.

Jiang, X.

Kaganovskii, Yu.

I. Antonov, F. Bass, Yu. Kaganovskii, M. Rosenbluh, and A. A. Lipovskii, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys.  93, 2343–2348 (2003).
[CrossRef]

Kamat, P. V.

Z. S. Pillai and P. V. Kamat, “What factors control the size and shape of silver nanoparticles in the citrate ion reduction method,” J. Phys. Chem. B  108, 945–951 (2004).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B  107, 668–677 (2003).
[CrossRef]

Khaliullin, E. N.

V. P. Drachev, E. N. Khaliullin, W. Kim, F. Alzoubi, S. G. Rautian, V. P. Safonov, R. L. Armstrong, and V. M. Shalaev, “Quantum size effect in two-photon excited luminescence from silver nanoparticles,” Phys. Rev. B  69, 035318 (2004).
[CrossRef]

Kiely, C.

M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, and C. Kiely, “Synthesis and reactions of functionalised gold nanoparticles,” J. Chem. Soc. Chem. Commun.  16, 1655–1656 (1995).
[CrossRef]

Kim, W.

V. P. Drachev, E. N. Khaliullin, W. Kim, F. Alzoubi, S. G. Rautian, V. P. Safonov, R. L. Armstrong, and V. M. Shalaev, “Quantum size effect in two-photon excited luminescence from silver nanoparticles,” Phys. Rev. B  69, 035318 (2004).
[CrossRef]

Kreibig, U.

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys.  224, 307–323 (1969).
[CrossRef]

Kuroda, K.

R. A. Gannev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and K. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun.  240, 437–448 (2004).
[CrossRef]

Kuwata, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett.  83, 4625–4627 (2003).
[CrossRef]

Lermé, J.

C. Voisin, D. Chistofilos, N. Del Fatti, F. Valée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-dependent electron–electron interactions in metal nanoparticles,” Phys. Rev. Lett.  85, 2200–2203 (2000).
[CrossRef] [PubMed]

Lipovskii, A. A.

E. L. Falcão-Filho, C. A. C. Bosco, G. S. Maciel, L. H. Acioli, C. B. de Araújo, A. A. Lipovskii, and D. K. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B  69, 134204 (2004).
[CrossRef]

I. Antonov, F. Bass, Yu. Kaganovskii, M. Rosenbluh, and A. A. Lipovskii, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys.  93, 2343–2348 (2003).
[CrossRef]

Liu, X.

X. Liu, S. Guo, H. Wang, N. Ming, and L. Hou, “Investigation of the influence of finite aperture size on the Z-scan transmittance curve,” J. Nonlinear Opt. Phys. Mater.  10, 431–439 (2001).
[CrossRef]

Ma, H.

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett.  59, 2666–2668 (1991).
[CrossRef]

Maciel, G. S.

E. L. Falcão-Filho, C. A. C. Bosco, G. S. Maciel, L. H. Acioli, C. B. de Araújo, A. A. Lipovskii, and D. K. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B  69, 134204 (2004).
[CrossRef]

Ming, N.

X. Liu, S. Guo, H. Wang, N. Ming, and L. Hou, “Investigation of the influence of finite aperture size on the Z-scan transmittance curve,” J. Nonlinear Opt. Phys. Mater.  10, 431–439 (2001).
[CrossRef]

Miranda, M. H. G.

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues Jr., C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B  70, 161401 (2004).
[CrossRef]

Miyano, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett.  83, 4625–4627 (2003).
[CrossRef]

Nakamura, A.

Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, “Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites,” J. Opt. Soc. Am. B  20, 1227–1232 (2003).
[CrossRef]

N. Del Fatti, F. Vallée, C. Flytzanis, Y. Hamanaka, and A. Nakamura, “Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles,” Chem. Phys.  251, 215–226 (2000).
[CrossRef]

Oliveira, M. M.

M. M. Oliveira, D. Ugarte, D. Zanchet, and A. J. G. Zarbin, “Influence of synthetic parameters on the size, structure and stability of dodecanethiol-stabilized silver nanoparticles,” J. Colloid Interface Sci., submitted for publication.

Omi, S.

Pellarin, M.

C. Voisin, D. Chistofilos, N. Del Fatti, F. Valée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-dependent electron–electron interactions in metal nanoparticles,” Phys. Rev. Lett.  85, 2200–2203 (2000).
[CrossRef] [PubMed]

Pillai, Z. S.

Z. S. Pillai and P. V. Kamat, “What factors control the size and shape of silver nanoparticles in the citrate ion reduction method,” J. Phys. Chem. B  108, 945–951 (2004).
[CrossRef]

Prével, B.

C. Voisin, D. Chistofilos, N. Del Fatti, F. Valée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-dependent electron–electron interactions in metal nanoparticles,” Phys. Rev. Lett.  85, 2200–2203 (2000).
[CrossRef] [PubMed]

Qiu, J.

Rautian, S. G.

V. P. Drachev, E. N. Khaliullin, W. Kim, F. Alzoubi, S. G. Rautian, V. P. Safonov, R. L. Armstrong, and V. M. Shalaev, “Quantum size effect in two-photon excited luminescence from silver nanoparticles,” Phys. Rev. B  69, 035318 (2004).
[CrossRef]

Ricard, D.

Rodrigues, J. J.

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues Jr., C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B  70, 161401 (2004).
[CrossRef]

Rosenbluh, M.

I. Antonov, F. Bass, Yu. Kaganovskii, M. Rosenbluh, and A. A. Lipovskii, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys.  93, 2343–2348 (2003).
[CrossRef]

Roussignol, Ph.

Ryasnyansky, A. I.

R. A. Gannev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and K. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun.  240, 437–448 (2004).
[CrossRef]

Safonov, V. P.

V. P. Drachev, E. N. Khaliullin, W. Kim, F. Alzoubi, S. G. Rautian, V. P. Safonov, R. L. Armstrong, and V. M. Shalaev, “Quantum size effect in two-photon excited luminescence from silver nanoparticles,” Phys. Rev. B  69, 035318 (2004).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.  QE-26, 760–769 (1990).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B  107, 668–677 (2003).
[CrossRef]

Schiffrin, D. J.

M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, and C. Kiely, “Synthesis and reactions of functionalised gold nanoparticles,” J. Chem. Soc. Chem. Commun.  16, 1655–1656 (1995).
[CrossRef]

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system,” J. Chem. Soc. Chem. Commun.  7, 801–802 (1994).
[CrossRef]

Shalaev, V. M.

V. P. Drachev, E. N. Khaliullin, W. Kim, F. Alzoubi, S. G. Rautian, V. P. Safonov, R. L. Armstrong, and V. M. Shalaev, “Quantum size effect in two-photon excited luminescence from silver nanoparticles,” Phys. Rev. B  69, 035318 (2004).
[CrossRef]

V. M. Shalaev, Nonlinear Optics of Random Media (Springer, 2000).

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.  QE-26, 760–769 (1990).
[CrossRef]

Si, J.

Sipe, J. W.

J. W. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A  46, 1614–1629 (1992).
[CrossRef] [PubMed]

Smith, D. D.

Suzuki, M.

R. A. Gannev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and K. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun.  240, 437–448 (2004).
[CrossRef]

Tagantsev, D. K.

E. L. Falcão-Filho, C. A. C. Bosco, G. S. Maciel, L. H. Acioli, C. B. de Araújo, A. A. Lipovskii, and D. K. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B  69, 134204 (2004).
[CrossRef]

Tamaru, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett.  83, 4625–4627 (2003).
[CrossRef]

Ugarte, D.

M. M. Oliveira, D. Ugarte, D. Zanchet, and A. J. G. Zarbin, “Influence of synthetic parameters on the size, structure and stability of dodecanethiol-stabilized silver nanoparticles,” J. Colloid Interface Sci., submitted for publication.

Valée, F.

C. Voisin, D. Chistofilos, N. Del Fatti, F. Valée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-dependent electron–electron interactions in metal nanoparticles,” Phys. Rev. Lett.  85, 2200–2203 (2000).
[CrossRef] [PubMed]

Vallée, F.

N. Del Fatti, F. Vallée, C. Flytzanis, Y. Hamanaka, and A. Nakamura, “Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles,” Chem. Phys.  251, 215–226 (2000).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.  QE-26, 760–769 (1990).
[CrossRef]

Voisin, C.

C. Voisin, D. Chistofilos, N. Del Fatti, F. Valée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-dependent electron–electron interactions in metal nanoparticles,” Phys. Rev. Lett.  85, 2200–2203 (2000).
[CrossRef] [PubMed]

Walker, M.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system,” J. Chem. Soc. Chem. Commun.  7, 801–802 (1994).
[CrossRef]

Wang, H.

X. Liu, S. Guo, H. Wang, N. Ming, and L. Hou, “Investigation of the influence of finite aperture size on the Z-scan transmittance curve,” J. Nonlinear Opt. Phys. Mater.  10, 431–439 (2001).
[CrossRef]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.  QE-26, 760–769 (1990).
[CrossRef]

Whyman, R.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system,” J. Chem. Soc. Chem. Commun.  7, 801–802 (1994).
[CrossRef]

Yamane, M.

See, for example, M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge U. Press, 2000).
[CrossRef]

Zanchet, D.

M. M. Oliveira, D. Ugarte, D. Zanchet, and A. J. G. Zarbin, “Influence of synthetic parameters on the size, structure and stability of dodecanethiol-stabilized silver nanoparticles,” J. Colloid Interface Sci., submitted for publication.

Zarbin, A. J. G.

M. M. Oliveira, D. Ugarte, D. Zanchet, and A. J. G. Zarbin, “Influence of synthetic parameters on the size, structure and stability of dodecanethiol-stabilized silver nanoparticles,” J. Colloid Interface Sci., submitted for publication.

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B  107, 668–677 (2003).
[CrossRef]

Zhu, C.

Appl. Phys. Lett. (2)

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett.  83, 4625–4627 (2003).
[CrossRef]

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett.  59, 2666–2668 (1991).
[CrossRef]

Chem. Phys. (1)

N. Del Fatti, F. Vallée, C. Flytzanis, Y. Hamanaka, and A. Nakamura, “Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles,” Chem. Phys.  251, 215–226 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.  QE-26, 760–769 (1990).
[CrossRef]

J. Appl. Phys. (1)

I. Antonov, F. Bass, Yu. Kaganovskii, M. Rosenbluh, and A. A. Lipovskii, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys.  93, 2343–2348 (2003).
[CrossRef]

J. Chem. Soc. Chem. Commun. (2)

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system,” J. Chem. Soc. Chem. Commun.  7, 801–802 (1994).
[CrossRef]

M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, and C. Kiely, “Synthesis and reactions of functionalised gold nanoparticles,” J. Chem. Soc. Chem. Commun.  16, 1655–1656 (1995).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

X. Liu, S. Guo, H. Wang, N. Ming, and L. Hou, “Investigation of the influence of finite aperture size on the Z-scan transmittance curve,” J. Nonlinear Opt. Phys. Mater.  10, 431–439 (2001).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. B (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B  107, 668–677 (2003).
[CrossRef]

Z. S. Pillai and P. V. Kamat, “What factors control the size and shape of silver nanoparticles in the citrate ion reduction method,” J. Phys. Chem. B  108, 945–951 (2004).
[CrossRef]

Opt. Commun. (1)

R. A. Gannev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and K. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun.  240, 437–448 (2004).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

J. W. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A  46, 1614–1629 (1992).
[CrossRef] [PubMed]

Phys. Rev. B (3)

V. P. Drachev, E. N. Khaliullin, W. Kim, F. Alzoubi, S. G. Rautian, V. P. Safonov, R. L. Armstrong, and V. M. Shalaev, “Quantum size effect in two-photon excited luminescence from silver nanoparticles,” Phys. Rev. B  69, 035318 (2004).
[CrossRef]

M. H. G. Miranda, E. L. Falcão-Filho, J. J. Rodrigues Jr., C. B. de Araújo, and L. H. Acioli, “Ultrafast light-induced dichroism in silver nanoparticles,” Phys. Rev. B  70, 161401 (2004).
[CrossRef]

E. L. Falcão-Filho, C. A. C. Bosco, G. S. Maciel, L. H. Acioli, C. B. de Araújo, A. A. Lipovskii, and D. K. Tagantsev, “Third-order optical nonlinearity of a transparent glass ceramic containing sodium niobate nanocrystals,” Phys. Rev. B  69, 134204 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

C. Voisin, D. Chistofilos, N. Del Fatti, F. Valée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, “Size-dependent electron–electron interactions in metal nanoparticles,” Phys. Rev. Lett.  85, 2200–2203 (2000).
[CrossRef] [PubMed]

Z. Phys. (1)

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys.  224, 307–323 (1969).
[CrossRef]

Other (3)

M. M. Oliveira, D. Ugarte, D. Zanchet, and A. J. G. Zarbin, “Influence of synthetic parameters on the size, structure and stability of dodecanethiol-stabilized silver nanoparticles,” J. Colloid Interface Sci., submitted for publication.

See, for example, M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge U. Press, 2000).
[CrossRef]

V. M. Shalaev, Nonlinear Optics of Random Media (Springer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) and (b) TEM images of spherical silver nanoparticles. (c) Size distribution of NPs as determined by counting 1000 particles (average diameter, 3.8 ± 0.3 nm ).

Fig. 2
Fig. 2

(a) Absorbance of silver NPs in C S 2 (cell thickness, 5 mm ) for different filling factors: f = 4.0 × 10 5 (solid curve); f = 3.0 × 10 5 (dashed curve); f = 1.9 × 10 5 (dash-dot-dotted curve); f = 9.9 × 10 6 (short-dashed curve); f = 4.1 × 10 6 (dotted curve); and f = 0 (short-dash-dotted curve). After subtraction of the host contribution: (b) absorbance of silver NP in C S 2 ( f = 2.5 × 10 5 ) , (c) absorbance of silver NP in toluene ( f = 1.7 × 10 5 ) .

Fig. 3
Fig. 3

Typical closed-aperture Z-scan traces obtained at 532 nm for different filling factors f (laser peak intensity, 2.3 × 10 8 W cm 2 ). From bottom to top, the curves correspond to f = 0 , f = 6.8 × 10 6 , f = 1.4 × 10 5 , f = 2.3 × 10 5 , f = 3.0 × 10 5 , and f = 4.0 × 10 5 . All the data were normalized to unity and a small shift in the baseline was introduced to prevent overlap among the curves.

Fig. 4
Fig. 4

Open aperture Z-scan traces for different filling factors f (laser peak intensity, 2.3 × 10 8 W cm 2 ). From bottom to top, the curves correspond to f = 0 , f = 9.9 × 10 6 , f = 2.5 × 10 5 , and f = 3.5 × 10 5 . All the data were normalized to unity, and a small shift in the baseline was introduced to prevent overlap among the curves.

Fig. 5
Fig. 5

(a) Nonlinear refractive index and (b) nonlinear absorption coefficient as a function of the filling factor. α 2 = 0.09 cm GW for pure C S 2 ( f = 0 ) .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε eff = ε h ( 1 + 3 β f 1 β f ) ,
β = ε NP ε h ε NP + 2 ε h ,
χ eff ( 3 ) = f χ NP ( 3 ) P 2 P 2 + χ h ( 3 ) ( 1 f { 1 0.4 [ 4 β 2 β 2 + ( 3 β 2 β + β 3 ) + 9 ( β 2 + β 2 ) ] } ) 1 β f 2 ( 1 β f ) 2 ,
P = ( 1 β f ) ( ε NP + 2 ε h ) 3 ε h ,
χ eff ( 3 ) f ( a + i b ) χ NP ( 3 ) + χ h ( 3 ) ,
n 2 = 3 4 n 0 Re χ eff ( 3 ) = 3 4 n 0 { f [ a Re χ NP ( 3 ) b Im χ NP ( 3 ) ] + Re χ h ( 3 ) } ,
α 2 = 3 ω 2 c n 0 Im χ eff ( 3 ) = 3 ω 2 c n 0 { f [ a Im χ NP ( 3 ) + b Re χ NP ( 3 ) ] + Im χ h ( 3 ) } ,

Metrics