Abstract

We study numerically all-optical slow-light delays in room-temperature single-mode optical fibers induced by stimulated Brillouin scattering. We consider the propagation of a pulse through a cw-pumped Brillouin fiber amplifier, where the carrier frequency of the pulse is tuned near the Stokes resonance. Pulse delay and broadening of the Stokes pulse are studied in the small-signal and gain-saturation regimes. Pulse delay is shown to be limited by saturation of the Brillouin amplifier. In the small-signal regime, both time delay and pulse broadening increase with increasing gain. In the gain-saturation regime, both time delay and broadening decrease with increasing gain, and the pulse even achieves advancement. Time delay of more than one pulse-width is observed with modest pulse distortion, and over one pulse-width advancement can be obtained with larger pulse distortion in the gain-saturation regime.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘fast’ light,” in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol.  43, Chap. 6, pp. 497–530.
    [CrossRef]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature  397, 594–598 (1999).
    [CrossRef]
  3. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett.  82, 5229–5232 (1999).
    [CrossRef]
  4. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.  88, 023602 (2002).
    [CrossRef] [PubMed]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.  90, 113903 (2003).
    [CrossRef] [PubMed]
  6. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science  301, 200–202 (2003).
    [CrossRef] [PubMed]
  7. K. Lee and N. M. Lawandy, “Optically induced pulse delay in a solid-state Raman amplifier,” Appl. Phys. Lett.  78, 703–705 (2001).
    [CrossRef]
  8. F. L. Kien, J. Q. Liang, and K. Hakuta, “Slow light produced by far-off-resonance Raman scattering,” IEEE J. Sel. Top. Quantum Electron.  9, 93–101 (2003).
    [CrossRef]
  9. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
    [CrossRef] [PubMed]
  10. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express  13, 82–88 (2005).
    [CrossRef] [PubMed]
  11. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  12. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  13. M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering (IOP, 2003).
    [CrossRef]
  14. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A  71, 023801 (2005).
    [CrossRef]
  15. C. M. de Sterke, K. R. Jackson, and B. D. Robert, “Nonlinear coupled-mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am. B  8, 403–412 (1991).
    [CrossRef]
  16. N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, “Propagation velocity of an intense light pulse in a medium with inverted population,” Sov. Phys. Dokl.  10, 1039–1040 (1966).
  17. D. Hunter, M. Chia, and I. Andonovic, “Buffering in optical packet switches,” J. Lightwave Technol.  16, 2081–2095 (1998).
    [CrossRef]
  18. S. Hamilton and B. Robinson, “40-Gb∕s all-optical packet synchronization and address comparison for OTDM networks,” IEEE Photonics Technol. Lett.  14, 209–211 (2002).
    [CrossRef]
  19. H. Bulow, F. Buchali, W. Baumert, R. Ballentin, and T. Wehren, “PMD mitigation at 10Gbits∕s using linear and nonlinear integrated electronic equaliser circuits,” Electron. Lett.  36, 163–164 (2000).
    [CrossRef]
  20. R. Minasian and K. Alameh, “Optical-fiber grating-based beamforming network for microwave phased arrays,” IEEE Trans. Microwave Theory Tech.  45, 1513–1519 (1997).
    [CrossRef]
  21. A. Rader and B. Anderson, “Demonstration of a linear optical true-time delay device by use of a microelectromechanical mirror array,” Appl. Opt.  42, 1409–1417 (2003).
    [CrossRef] [PubMed]

2005 (3)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A  71, 023801 (2005).
[CrossRef]

K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express  13, 82–88 (2005).
[CrossRef] [PubMed]

2003 (4)

A. Rader and B. Anderson, “Demonstration of a linear optical true-time delay device by use of a microelectromechanical mirror array,” Appl. Opt.  42, 1409–1417 (2003).
[CrossRef] [PubMed]

F. L. Kien, J. Q. Liang, and K. Hakuta, “Slow light produced by far-off-resonance Raman scattering,” IEEE J. Sel. Top. Quantum Electron.  9, 93–101 (2003).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.  90, 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science  301, 200–202 (2003).
[CrossRef] [PubMed]

2002 (2)

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.  88, 023602 (2002).
[CrossRef] [PubMed]

S. Hamilton and B. Robinson, “40-Gb∕s all-optical packet synchronization and address comparison for OTDM networks,” IEEE Photonics Technol. Lett.  14, 209–211 (2002).
[CrossRef]

2001 (1)

K. Lee and N. M. Lawandy, “Optically induced pulse delay in a solid-state Raman amplifier,” Appl. Phys. Lett.  78, 703–705 (2001).
[CrossRef]

2000 (1)

H. Bulow, F. Buchali, W. Baumert, R. Ballentin, and T. Wehren, “PMD mitigation at 10Gbits∕s using linear and nonlinear integrated electronic equaliser circuits,” Electron. Lett.  36, 163–164 (2000).
[CrossRef]

1999 (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature  397, 594–598 (1999).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett.  82, 5229–5232 (1999).
[CrossRef]

1998 (1)

1997 (1)

R. Minasian and K. Alameh, “Optical-fiber grating-based beamforming network for microwave phased arrays,” IEEE Trans. Microwave Theory Tech.  45, 1513–1519 (1997).
[CrossRef]

1991 (1)

1966 (1)

N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, “Propagation velocity of an intense light pulse in a medium with inverted population,” Sov. Phys. Dokl.  10, 1039–1040 (1966).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Alameh, K.

R. Minasian and K. Alameh, “Optical-fiber grating-based beamforming network for microwave phased arrays,” IEEE Trans. Microwave Theory Tech.  45, 1513–1519 (1997).
[CrossRef]

Ambartsumyan, R. V.

N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, “Propagation velocity of an intense light pulse in a medium with inverted population,” Sov. Phys. Dokl.  10, 1039–1040 (1966).

Anderson, B.

Andonovic, I.

Babin, V.

M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering (IOP, 2003).
[CrossRef]

Ballentin, R.

H. Bulow, F. Buchali, W. Baumert, R. Ballentin, and T. Wehren, “PMD mitigation at 10Gbits∕s using linear and nonlinear integrated electronic equaliser circuits,” Electron. Lett.  36, 163–164 (2000).
[CrossRef]

Basov, N. G.

N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, “Propagation velocity of an intense light pulse in a medium with inverted population,” Sov. Phys. Dokl.  10, 1039–1040 (1966).

Baumert, W.

H. Bulow, F. Buchali, W. Baumert, R. Ballentin, and T. Wehren, “PMD mitigation at 10Gbits∕s using linear and nonlinear integrated electronic equaliser circuits,” Electron. Lett.  36, 163–164 (2000).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature  397, 594–598 (1999).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.  90, 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science  301, 200–202 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A  71, 023801 (2005).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.  90, 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science  301, 200–202 (2003).
[CrossRef] [PubMed]

R. W. Boyd, Nonlinear Optics (Academic, 1992).

R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘fast’ light,” in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol.  43, Chap. 6, pp. 497–530.
[CrossRef]

Buchali, F.

H. Bulow, F. Buchali, W. Baumert, R. Ballentin, and T. Wehren, “PMD mitigation at 10Gbits∕s using linear and nonlinear integrated electronic equaliser circuits,” Electron. Lett.  36, 163–164 (2000).
[CrossRef]

Bulow, H.

H. Bulow, F. Buchali, W. Baumert, R. Ballentin, and T. Wehren, “PMD mitigation at 10Gbits∕s using linear and nonlinear integrated electronic equaliser circuits,” Electron. Lett.  36, 163–164 (2000).
[CrossRef]

Chia, M.

Damzen, M. J.

M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering (IOP, 2003).
[CrossRef]

de Sterke, C. M.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature  397, 594–598 (1999).
[CrossRef]

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett.  82, 5229–5232 (1999).
[CrossRef]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A  71, 023801 (2005).
[CrossRef]

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A  71, 023801 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[CrossRef] [PubMed]

R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘fast’ light,” in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol.  43, Chap. 6, pp. 497–530.
[CrossRef]

Hakuta, K.

F. L. Kien, J. Q. Liang, and K. Hakuta, “Slow light produced by far-off-resonance Raman scattering,” IEEE J. Sel. Top. Quantum Electron.  9, 93–101 (2003).
[CrossRef]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.  88, 023602 (2002).
[CrossRef] [PubMed]

Hamilton, S.

S. Hamilton and B. Robinson, “40-Gb∕s all-optical packet synchronization and address comparison for OTDM networks,” IEEE Photonics Technol. Lett.  14, 209–211 (2002).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature  397, 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature  397, 594–598 (1999).
[CrossRef]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.  88, 023602 (2002).
[CrossRef] [PubMed]

Herráez, M. G.

Hollberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett.  82, 5229–5232 (1999).
[CrossRef]

Hunter, D.

Jackson, K. R.

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett.  82, 5229–5232 (1999).
[CrossRef]

Kien, F. L.

F. L. Kien, J. Q. Liang, and K. Hakuta, “Slow light produced by far-off-resonance Raman scattering,” IEEE J. Sel. Top. Quantum Electron.  9, 93–101 (2003).
[CrossRef]

Kryukov, P. G.

N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, “Propagation velocity of an intense light pulse in a medium with inverted population,” Sov. Phys. Dokl.  10, 1039–1040 (1966).

Lawandy, N. M.

K. Lee and N. M. Lawandy, “Optically induced pulse delay in a solid-state Raman amplifier,” Appl. Phys. Lett.  78, 703–705 (2001).
[CrossRef]

Lee, K.

K. Lee and N. M. Lawandy, “Optically induced pulse delay in a solid-state Raman amplifier,” Appl. Phys. Lett.  78, 703–705 (2001).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.  90, 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science  301, 200–202 (2003).
[CrossRef] [PubMed]

Letokhov, V. S.

N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, “Propagation velocity of an intense light pulse in a medium with inverted population,” Sov. Phys. Dokl.  10, 1039–1040 (1966).

Liang, J. Q.

F. L. Kien, J. Q. Liang, and K. Hakuta, “Slow light produced by far-off-resonance Raman scattering,” IEEE J. Sel. Top. Quantum Electron.  9, 93–101 (2003).
[CrossRef]

Lukin, M. D.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett.  82, 5229–5232 (1999).
[CrossRef]

Minasian, R.

R. Minasian and K. Alameh, “Optical-fiber grating-based beamforming network for microwave phased arrays,” IEEE Trans. Microwave Theory Tech.  45, 1513–1519 (1997).
[CrossRef]

Mocofanescu, A.

M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering (IOP, 2003).
[CrossRef]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.  88, 023602 (2002).
[CrossRef] [PubMed]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[CrossRef] [PubMed]

Rader, A.

Robert, B. D.

Robinson, B.

S. Hamilton and B. Robinson, “40-Gb∕s all-optical packet synchronization and address comparison for OTDM networks,” IEEE Photonics Technol. Lett.  14, 209–211 (2002).
[CrossRef]

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett.  82, 5229–5232 (1999).
[CrossRef]

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett.  82, 5229–5232 (1999).
[CrossRef]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[CrossRef] [PubMed]

Scully, M. O.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett.  82, 5229–5232 (1999).
[CrossRef]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.  88, 023602 (2002).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[CrossRef] [PubMed]

Song, K. Y.

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.  88, 023602 (2002).
[CrossRef] [PubMed]

Thévenaz, L.

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.  88, 023602 (2002).
[CrossRef] [PubMed]

Vlad, V. I.

M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering (IOP, 2003).
[CrossRef]

Wehren, T.

H. Bulow, F. Buchali, W. Baumert, R. Ballentin, and T. Wehren, “PMD mitigation at 10Gbits∕s using linear and nonlinear integrated electronic equaliser circuits,” Electron. Lett.  36, 163–164 (2000).
[CrossRef]

Welch, G. R.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett.  82, 5229–5232 (1999).
[CrossRef]

Willner, A. E.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A  71, 023801 (2005).
[CrossRef]

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[CrossRef] [PubMed]

Zibrov, A. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett.  82, 5229–5232 (1999).
[CrossRef]

Zuev, V. S.

N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, “Propagation velocity of an intense light pulse in a medium with inverted population,” Sov. Phys. Dokl.  10, 1039–1040 (1966).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Lee and N. M. Lawandy, “Optically induced pulse delay in a solid-state Raman amplifier,” Appl. Phys. Lett.  78, 703–705 (2001).
[CrossRef]

Electron. Lett. (1)

H. Bulow, F. Buchali, W. Baumert, R. Ballentin, and T. Wehren, “PMD mitigation at 10Gbits∕s using linear and nonlinear integrated electronic equaliser circuits,” Electron. Lett.  36, 163–164 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F. L. Kien, J. Q. Liang, and K. Hakuta, “Slow light produced by far-off-resonance Raman scattering,” IEEE J. Sel. Top. Quantum Electron.  9, 93–101 (2003).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

S. Hamilton and B. Robinson, “40-Gb∕s all-optical packet synchronization and address comparison for OTDM networks,” IEEE Photonics Technol. Lett.  14, 209–211 (2002).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

R. Minasian and K. Alameh, “Optical-fiber grating-based beamforming network for microwave phased arrays,” IEEE Trans. Microwave Theory Tech.  45, 1513–1519 (1997).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature  397, 594–598 (1999).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (1)

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A  71, 023801 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett.  82, 5229–5232 (1999).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.  88, 023602 (2002).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.  90, 113903 (2003).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.  94, 153902 (2005).
[CrossRef] [PubMed]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science  301, 200–202 (2003).
[CrossRef] [PubMed]

Sov. Phys. Dokl. (1)

N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, “Propagation velocity of an intense light pulse in a medium with inverted population,” Sov. Phys. Dokl.  10, 1039–1040 (1966).

Other (4)

R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘fast’ light,” in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol.  43, Chap. 6, pp. 497–530.
[CrossRef]

R. W. Boyd, Nonlinear Optics (Academic, 1992).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering (IOP, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Large dispersion of the SBS resonance. (a) Gain (dashed curve) and refractive index (solid curve) of the resonance. (b) Group index of the resonance.

Fig. 2
Fig. 2

(a) Pulse delay versus gain. (b) Pulse broadening factor versus gain. (c) Normalized output pulses at G = 0 , 12, and 25 (the output peak powers are 9.98 × 10 8 W , 1.30 × 10 2 W and 0.88 W, respectively). The input Stokes pulse has a peak power of 0.1 μ W and a FWHM width of 120 ns. The dashed curves in (a) and (b) are obtained from Eqs. (9, 10), respectively.

Fig. 3
Fig. 3

(a) Time delay versus gain. (b) Broadening factor versus gain. (c) Normalized output pulse powers at G = 0 and 16 (the output peak powers are 9.98 × 10 8 W and 9.99 × 10 2 W , respectively). The input Stokes pulse has a peak power of 0.1 μ W and a FWHM width of 20 ns. The dashed curves in (a) and (b) are obtained from Eqs. (9, 10), respectively.

Fig. 4
Fig. 4

(a) Pulse delay versus input peak power and (b) pulse-broadening factor versus input peak power for different input pulse widths. The gain parameter G is fixed at 10. The FWHM width of the input pulse is labeled in (a).

Fig. 5
Fig. 5

(a) Pulse delay versus input pulse width and (b) pulse-broadening factor versus input pulse width for different input peak powers. The gain parameter G is fixed at 10. The peak power of the input pulse is labeled in (a).

Fig. 6
Fig. 6

(a) Pulse delay versus gain and (b) pulse-broadening factor versus gain. The input pulse energy is fixed at 1 × 10 5 nJ . The FWHM width of the input pulse is labeled in (a).

Fig. 7
Fig. 7

Relative time delay and pulse broadening versus input pulse width at G = 10 . A maximum relative time delay of about 1.4 is obtained using 22 ns pulses if the pulse broadening factor of 2 is required.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E p z + n f g c E p t = α 2 E p + i g 2 E s ρ ,
E s z + n f g c E s t = α 2 E s + i g 2 E p ρ * ,
ρ t + ( Γ B 2 i Δ ω ) ρ = i g 1 η E p E s * .
E s z + n f g c E s t = i g 2 E p ρ * ,
ρ * t + ( Γ B 2 + i Δ ω ) ρ * = i g 1 η E p * E s ,
E ̃ s z i ( ω ω s 0 ) n f g c E ̃ s = i g 2 E p ρ ̃ * ,
[ 1 2 Γ B i ( ω ω p 0 + Ω B ) ] ρ ̃ * = i g 1 η E p * E ̃ s ,
E ̃ s z = i ( ω ω s 0 ) n f g c E ̃ s + 1 2 g 0 I p 1 i 2 δ ω Γ B E ̃ s ,
k s ( ω ) = n f ω c i 1 2 g 0 I p 1 i 2 δ ω Γ B ω c n ̃ s .
n ̃ s = n f i c 2 ω g 0 I p 1 i 2 δ ω Γ B .
g s ( ω ) = g 0 I p 1 + 4 δ ω 2 Γ B 2 ,
n s ( ω ) = n f + c g 0 I p ω δ ω Γ B 1 + 4 δ ω 2 Γ B 2 ,
n g ( ω ) = n f g + c g 0 I p Γ B 1 4 δ ω 2 Γ B 2 ( 1 + 4 δ ω 2 Γ B 2 ) 2 ,
Δ T d L c ( n g n f g ) = G Γ B 1 4 δ ω 2 Γ B 2 ( 1 + 4 δ ω 2 Γ B 2 ) 2 G Γ B ( 1 12 δ ω 2 Γ B 2 ) when 4 δ ω 2 Γ B 2 1 ,
Δ T d = G Γ B .
B τ out τ in = ( 1 + 16 ln 2 τ in 2 Γ B 2 G ) 1 2 .
Δ T d τ in = ( B 2 1 16 ln 2 G ) 1 2 .

Metrics