Abstract

Dynamic regimes of high-peak-power erbium–ytterbium (Er3+Yb3+) codoped fiber amplifiers are analyzed for nanosecond-to-microsecond pulses. High-energy pulse generation requires a large-core fiber amplifier to increase energy storage and the threshold of nonlinear effects. A numerical model of large-core Er3+Yb3+ fiber amplifiers is described. Dynamics of peak powers, amplified spontaneous emission, and population inversion are presented. Influence of radial dependence and reflections at the extremities are studied. Modeling and experimental results are compared for simple-pass and double-pass amplifier configurations. The role of parasitic reflections is highlighted. A semianalytical model is derived for low and high repetition rates.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Nilsson, J. K. Sahu, Y. J. Jeong, W. A. Clarkson, R. Selvas, A. Grudinin, and S. Alam, “High power fiber lasers: new developments,” in Advances in Fiber Lasers, L.N.Durvasula, ed., Proc. SPIE 4974, 50–60 (2003).
  2. A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke, S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, and A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2004), postdeadline paper CPPD2
  3. A. Tünnermann, H. Zellmer, W. Schöne, A. Giesen, and K. Contag, “New concepts for diode-pumped solid-state lasers,” in High-Power Diode Lasers, Topics in Applied Physics., R.Diehl, ed. (Springer-Verlag, 2000), Vol.  78, pp. 369–408.
    [Crossref]
  4. V. Philippov, J. K. Sahu, C. Codemard, W. A. Clarkson, J.-N. Jang, J. Nilsson, and G. N. Pearson, “All-fiber 1.15 mJ pulsed eye-safe optical source” in Fiber Lasers: Technology, Systems, and Applications, L.N.Durvasula, ed., Proc. SPIE 5335, 1–7 (2004).
  5. M.-Y. Chen, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changakakoti, and P. Gatchell, “27-mJ nanosecond pulses in M2=6.5 beam from a coiled highly multimode Yb-doped fiber amplifier,” in Conference on Laser and Electro Optics (Optical Society of America, 2004), paper CTuS4.
  6. G. Tastevin, S. Grot, E. Courtade, S. Bordais, and P.-J. Nacher, “A broadband ytterbium-doped tunable fiber laser for 3He optical pumping at 1083 nm,” Appl. Phys. B  78, 145–156 (2004).
    [Crossref]
  7. T. Yanagisawa, K. Asaka, K. Hamazu, and Y. Hirano, “11-mJ, 15-Hz single-frequency diode-pumped Q-switched Er, Yb phosphate glass laser,” Opt. Lett.  26, 1262–1265 (2001).
    [Crossref]
  8. E. Yahel and A. Hardy, “Efficiency optimization of high power, Er3+–Yb3+-codoped fiber amplifiers for wavelength-division-multiplexing applications,” J. Opt. Soc. Am. B  20, 1189–1197 (2003).
    [Crossref]
  9. M. Achtenhagen, R. J. Beeson, F. Pan, B. Nyman, and A. Hardy, “Gain and noise in ytterbium-sensitized erbium-doped fiber amplifiers: measurements and simulations,” J. Lightwave Technol.  19, 1521–1526 (2001).
    [Crossref]
  10. G. Agrawal, Nonlinear Fiber Optics (Academic, 1989).
  11. G. Kulscar, Y. Jaouën, E. Olmedo, and M. Le Flohic, “40 kW sub-picosecond pulse generation using cladding-pumped Er3+∕Yb3+ fibers,” in European Conference on Optical Communications (IEEE, 2001), paper We.L.3.4.
  12. Y. Wang and H. Po, “Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification,” J. Lightwave Technol.  21, 2262–2270 (2003).
    [Crossref]
  13. D. Kouznetsov and J. V. Moloney, “Efficiency of pump absorption in double-clad fiber amplifiers. I. Fiber with circular symmetry,” J. Opt. Soc. Am. B  18, 743–749 (2001).
    [Crossref]
  14. C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol.  9, 271–283 (1991).
    [Crossref]
  15. J. Koplow, D. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett.  25, 442–444 (2000).
    [Crossref]
  16. C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber lasers,” J. Quantum Electron.  37, 801–803 (2001).
  17. J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” Photon. Technol. Lett.  6, 383–385 (1994).
    [Crossref]
  18. A. A. Hardy and R. Oron, “Amplified spontaneous emission and Rayleigh backscattering in strongly pumped fiber amplifiers,” J. Lightwave Technol.  16, 1865–1873 (1998).
    [Crossref]
  19. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1976).
    [Crossref]
  20. A. E. Siegman, Lasers (University Science Books, 1986).
  21. A. Bononi and L. Barbieri, “Design of gain-clamped doped fiber amplifiers for optimal dynamic performance,” J. Lightwave Technol.  17, 1229–1240 (1999).
    [Crossref]
  22. N. A. Brilliant, “Stimulated Brillouin scattering in a dual-clad fiber amplifier,” J. Opt. Soc. Am. B  19, 2551–2557 (2002).
    [Crossref]
  23. G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double cladding Er3+–Yb3+ codoped fiber amplifier,” Photon. Technol. Lett.  15, 801–803 (2003).
    [Crossref]

2004 (1)

G. Tastevin, S. Grot, E. Courtade, S. Bordais, and P.-J. Nacher, “A broadband ytterbium-doped tunable fiber laser for 3He optical pumping at 1083 nm,” Appl. Phys. B  78, 145–156 (2004).
[Crossref]

2003 (3)

2002 (1)

2001 (4)

2000 (1)

1999 (1)

1998 (1)

1994 (1)

J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” Photon. Technol. Lett.  6, 383–385 (1994).
[Crossref]

1991 (1)

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol.  9, 271–283 (1991).
[Crossref]

Achtenhagen, M.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic, 1989).

Alam, S.

J. Nilsson, J. K. Sahu, Y. J. Jeong, W. A. Clarkson, R. Selvas, A. Grudinin, and S. Alam, “High power fiber lasers: new developments,” in Advances in Fiber Lasers, L.N.Durvasula, ed., Proc. SPIE 4974, 50–60 (2003).

Alvarez-Chavez, J. A.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber lasers,” J. Quantum Electron.  37, 801–803 (2001).

Asaka, K.

Barbieri, L.

Beeson, R. J.

Bononi, A.

Bordais, S.

G. Tastevin, S. Grot, E. Courtade, S. Bordais, and P.-J. Nacher, “A broadband ytterbium-doped tunable fiber laser for 3He optical pumping at 1083 nm,” Appl. Phys. B  78, 145–156 (2004).
[Crossref]

Brilliant, N. A.

Canat, G.

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double cladding Er3+–Yb3+ codoped fiber amplifier,” Photon. Technol. Lett.  15, 801–803 (2003).
[Crossref]

Chang, Y.-C.

M.-Y. Chen, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changakakoti, and P. Gatchell, “27-mJ nanosecond pulses in M2=6.5 beam from a coiled highly multimode Yb-doped fiber amplifier,” in Conference on Laser and Electro Optics (Optical Society of America, 2004), paper CTuS4.

Changakakoti, R.

M.-Y. Chen, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changakakoti, and P. Gatchell, “27-mJ nanosecond pulses in M2=6.5 beam from a coiled highly multimode Yb-doped fiber amplifier,” in Conference on Laser and Electro Optics (Optical Society of America, 2004), paper CTuS4.

Chen, M.-Y.

M.-Y. Chen, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changakakoti, and P. Gatchell, “27-mJ nanosecond pulses in M2=6.5 beam from a coiled highly multimode Yb-doped fiber amplifier,” in Conference on Laser and Electro Optics (Optical Society of America, 2004), paper CTuS4.

Clarkson, W. A.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber lasers,” J. Quantum Electron.  37, 801–803 (2001).

V. Philippov, J. K. Sahu, C. Codemard, W. A. Clarkson, J.-N. Jang, J. Nilsson, and G. N. Pearson, “All-fiber 1.15 mJ pulsed eye-safe optical source” in Fiber Lasers: Technology, Systems, and Applications, L.N.Durvasula, ed., Proc. SPIE 5335, 1–7 (2004).

J. Nilsson, J. K. Sahu, Y. J. Jeong, W. A. Clarkson, R. Selvas, A. Grudinin, and S. Alam, “High power fiber lasers: new developments,” in Advances in Fiber Lasers, L.N.Durvasula, ed., Proc. SPIE 4974, 50–60 (2003).

Codemard, C.

V. Philippov, J. K. Sahu, C. Codemard, W. A. Clarkson, J.-N. Jang, J. Nilsson, and G. N. Pearson, “All-fiber 1.15 mJ pulsed eye-safe optical source” in Fiber Lasers: Technology, Systems, and Applications, L.N.Durvasula, ed., Proc. SPIE 5335, 1–7 (2004).

Contag, K.

A. Tünnermann, H. Zellmer, W. Schöne, A. Giesen, and K. Contag, “New concepts for diode-pumped solid-state lasers,” in High-Power Diode Lasers, Topics in Applied Physics., R.Diehl, ed. (Springer-Verlag, 2000), Vol.  78, pp. 369–408.
[Crossref]

Courtade, E.

G. Tastevin, S. Grot, E. Courtade, S. Bordais, and P.-J. Nacher, “A broadband ytterbium-doped tunable fiber laser for 3He optical pumping at 1083 nm,” Appl. Phys. B  78, 145–156 (2004).
[Crossref]

Debarge, G.

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double cladding Er3+–Yb3+ codoped fiber amplifier,” Photon. Technol. Lett.  15, 801–803 (2003).
[Crossref]

Desurvire, E.

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol.  9, 271–283 (1991).
[Crossref]

Galvanauskas, A.

M.-Y. Chen, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changakakoti, and P. Gatchell, “27-mJ nanosecond pulses in M2=6.5 beam from a coiled highly multimode Yb-doped fiber amplifier,” in Conference on Laser and Electro Optics (Optical Society of America, 2004), paper CTuS4.

Gatchell, P.

M.-Y. Chen, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changakakoti, and P. Gatchell, “27-mJ nanosecond pulses in M2=6.5 beam from a coiled highly multimode Yb-doped fiber amplifier,” in Conference on Laser and Electro Optics (Optical Society of America, 2004), paper CTuS4.

Giesen, A.

A. Tünnermann, H. Zellmer, W. Schöne, A. Giesen, and K. Contag, “New concepts for diode-pumped solid-state lasers,” in High-Power Diode Lasers, Topics in Applied Physics., R.Diehl, ed. (Springer-Verlag, 2000), Vol.  78, pp. 369–408.
[Crossref]

Giles, C. R.

C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol.  9, 271–283 (1991).
[Crossref]

Goldberg, L.

Grot, S.

G. Tastevin, S. Grot, E. Courtade, S. Bordais, and P.-J. Nacher, “A broadband ytterbium-doped tunable fiber laser for 3He optical pumping at 1083 nm,” Appl. Phys. B  78, 145–156 (2004).
[Crossref]

Grudinin, A.

J. Nilsson, J. K. Sahu, Y. J. Jeong, W. A. Clarkson, R. Selvas, A. Grudinin, and S. Alam, “High power fiber lasers: new developments,” in Advances in Fiber Lasers, L.N.Durvasula, ed., Proc. SPIE 4974, 50–60 (2003).

Grudinin, A. B.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber lasers,” J. Quantum Electron.  37, 801–803 (2001).

Hamazu, K.

Hardy, A.

Hardy, A. A.

Harschak, A.

A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke, S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, and A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2004), postdeadline paper CPPD2

Hirano, Y.

Jang, J.-N.

V. Philippov, J. K. Sahu, C. Codemard, W. A. Clarkson, J.-N. Jang, J. Nilsson, and G. N. Pearson, “All-fiber 1.15 mJ pulsed eye-safe optical source” in Fiber Lasers: Technology, Systems, and Applications, L.N.Durvasula, ed., Proc. SPIE 5335, 1–7 (2004).

Jaouen, Y.

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double cladding Er3+–Yb3+ codoped fiber amplifier,” Photon. Technol. Lett.  15, 801–803 (2003).
[Crossref]

Jaouën, Y.

G. Kulscar, Y. Jaouën, E. Olmedo, and M. Le Flohic, “40 kW sub-picosecond pulse generation using cladding-pumped Er3+∕Yb3+ fibers,” in European Conference on Optical Communications (IEEE, 2001), paper We.L.3.4.

Jaskorzynska, B.

J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” Photon. Technol. Lett.  6, 383–385 (1994).
[Crossref]

Jeong, Y. J.

J. Nilsson, J. K. Sahu, Y. J. Jeong, W. A. Clarkson, R. Selvas, A. Grudinin, and S. Alam, “High power fiber lasers: new developments,” in Advances in Fiber Lasers, L.N.Durvasula, ed., Proc. SPIE 4974, 50–60 (2003).

Jetschke, S.

A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke, S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, and A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2004), postdeadline paper CPPD2

Kirchhof, J.

A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke, S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, and A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2004), postdeadline paper CPPD2

Kliner, D.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1976).
[Crossref]

Koplow, J.

Kouznetsov, D.

Kulcsar, G.

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double cladding Er3+–Yb3+ codoped fiber amplifier,” Photon. Technol. Lett.  15, 801–803 (2003).
[Crossref]

Kulscar, G.

G. Kulscar, Y. Jaouën, E. Olmedo, and M. Le Flohic, “40 kW sub-picosecond pulse generation using cladding-pumped Er3+∕Yb3+ fibers,” in European Conference on Optical Communications (IEEE, 2001), paper We.L.3.4.

Le Flohic, M.

G. Kulscar, Y. Jaouën, E. Olmedo, and M. Le Flohic, “40 kW sub-picosecond pulse generation using cladding-pumped Er3+∕Yb3+ fibers,” in European Conference on Optical Communications (IEEE, 2001), paper We.L.3.4.

Liem, A.

A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke, S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, and A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2004), postdeadline paper CPPD2

Limpert, J.

A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke, S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, and A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2004), postdeadline paper CPPD2

Mamidipudi, P.

M.-Y. Chen, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changakakoti, and P. Gatchell, “27-mJ nanosecond pulses in M2=6.5 beam from a coiled highly multimode Yb-doped fiber amplifier,” in Conference on Laser and Electro Optics (Optical Society of America, 2004), paper CTuS4.

Moloney, J. V.

Mörl, K.

A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke, S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, and A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2004), postdeadline paper CPPD2

Müller, H.-R.

A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke, S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, and A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2004), postdeadline paper CPPD2

Nacher, P.-J.

G. Tastevin, S. Grot, E. Courtade, S. Bordais, and P.-J. Nacher, “A broadband ytterbium-doped tunable fiber laser for 3He optical pumping at 1083 nm,” Appl. Phys. B  78, 145–156 (2004).
[Crossref]

Nilsson, J.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber lasers,” J. Quantum Electron.  37, 801–803 (2001).

J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” Photon. Technol. Lett.  6, 383–385 (1994).
[Crossref]

J. Nilsson, J. K. Sahu, Y. J. Jeong, W. A. Clarkson, R. Selvas, A. Grudinin, and S. Alam, “High power fiber lasers: new developments,” in Advances in Fiber Lasers, L.N.Durvasula, ed., Proc. SPIE 4974, 50–60 (2003).

V. Philippov, J. K. Sahu, C. Codemard, W. A. Clarkson, J.-N. Jang, J. Nilsson, and G. N. Pearson, “All-fiber 1.15 mJ pulsed eye-safe optical source” in Fiber Lasers: Technology, Systems, and Applications, L.N.Durvasula, ed., Proc. SPIE 5335, 1–7 (2004).

Nyman, B.

Offerhaus, H. L.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber lasers,” J. Quantum Electron.  37, 801–803 (2001).

Olmedo, E.

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double cladding Er3+–Yb3+ codoped fiber amplifier,” Photon. Technol. Lett.  15, 801–803 (2003).
[Crossref]

G. Kulscar, Y. Jaouën, E. Olmedo, and M. Le Flohic, “40 kW sub-picosecond pulse generation using cladding-pumped Er3+∕Yb3+ fibers,” in European Conference on Optical Communications (IEEE, 2001), paper We.L.3.4.

Oron, R.

Pan, F.

Pearson, G. N.

V. Philippov, J. K. Sahu, C. Codemard, W. A. Clarkson, J.-N. Jang, J. Nilsson, and G. N. Pearson, “All-fiber 1.15 mJ pulsed eye-safe optical source” in Fiber Lasers: Technology, Systems, and Applications, L.N.Durvasula, ed., Proc. SPIE 5335, 1–7 (2004).

Philippov, V.

V. Philippov, J. K. Sahu, C. Codemard, W. A. Clarkson, J.-N. Jang, J. Nilsson, and G. N. Pearson, “All-fiber 1.15 mJ pulsed eye-safe optical source” in Fiber Lasers: Technology, Systems, and Applications, L.N.Durvasula, ed., Proc. SPIE 5335, 1–7 (2004).

Po, H.

Reichel, V.

A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke, S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, and A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2004), postdeadline paper CPPD2

Renaud, C. C.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber lasers,” J. Quantum Electron.  37, 801–803 (2001).

Richardson, D. J.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber lasers,” J. Quantum Electron.  37, 801–803 (2001).

Sahu, J. K.

J. Nilsson, J. K. Sahu, Y. J. Jeong, W. A. Clarkson, R. Selvas, A. Grudinin, and S. Alam, “High power fiber lasers: new developments,” in Advances in Fiber Lasers, L.N.Durvasula, ed., Proc. SPIE 4974, 50–60 (2003).

V. Philippov, J. K. Sahu, C. Codemard, W. A. Clarkson, J.-N. Jang, J. Nilsson, and G. N. Pearson, “All-fiber 1.15 mJ pulsed eye-safe optical source” in Fiber Lasers: Technology, Systems, and Applications, L.N.Durvasula, ed., Proc. SPIE 5335, 1–7 (2004).

Sandrock, T.

A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke, S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, and A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2004), postdeadline paper CPPD2

Scheer, P.

J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” Photon. Technol. Lett.  6, 383–385 (1994).
[Crossref]

Schöne, W.

A. Tünnermann, H. Zellmer, W. Schöne, A. Giesen, and K. Contag, “New concepts for diode-pumped solid-state lasers,” in High-Power Diode Lasers, Topics in Applied Physics., R.Diehl, ed. (Springer-Verlag, 2000), Vol.  78, pp. 369–408.
[Crossref]

Selvas, R.

J. Nilsson, J. K. Sahu, Y. J. Jeong, W. A. Clarkson, R. Selvas, A. Grudinin, and S. Alam, “High power fiber lasers: new developments,” in Advances in Fiber Lasers, L.N.Durvasula, ed., Proc. SPIE 4974, 50–60 (2003).

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Tastevin, G.

G. Tastevin, S. Grot, E. Courtade, S. Bordais, and P.-J. Nacher, “A broadband ytterbium-doped tunable fiber laser for 3He optical pumping at 1083 nm,” Appl. Phys. B  78, 145–156 (2004).
[Crossref]

Tünnermann, A.

A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke, S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, and A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2004), postdeadline paper CPPD2

A. Tünnermann, H. Zellmer, W. Schöne, A. Giesen, and K. Contag, “New concepts for diode-pumped solid-state lasers,” in High-Power Diode Lasers, Topics in Applied Physics., R.Diehl, ed. (Springer-Verlag, 2000), Vol.  78, pp. 369–408.
[Crossref]

Turner, P. W.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber lasers,” J. Quantum Electron.  37, 801–803 (2001).

Unger, S.

A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke, S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, and A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2004), postdeadline paper CPPD2

Wang, Y.

Yahel, E.

Yanagisawa, T.

Zellmer, H.

A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke, S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, and A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2004), postdeadline paper CPPD2

A. Tünnermann, H. Zellmer, W. Schöne, A. Giesen, and K. Contag, “New concepts for diode-pumped solid-state lasers,” in High-Power Diode Lasers, Topics in Applied Physics., R.Diehl, ed. (Springer-Verlag, 2000), Vol.  78, pp. 369–408.
[Crossref]

Appl. Phys. B (1)

G. Tastevin, S. Grot, E. Courtade, S. Bordais, and P.-J. Nacher, “A broadband ytterbium-doped tunable fiber laser for 3He optical pumping at 1083 nm,” Appl. Phys. B  78, 145–156 (2004).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. B (3)

J. Quantum Electron. (1)

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber lasers,” J. Quantum Electron.  37, 801–803 (2001).

Opt. Lett. (2)

Photon. Technol. Lett. (2)

J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” Photon. Technol. Lett.  6, 383–385 (1994).
[Crossref]

G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double cladding Er3+–Yb3+ codoped fiber amplifier,” Photon. Technol. Lett.  15, 801–803 (2003).
[Crossref]

Other (9)

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1976).
[Crossref]

A. E. Siegman, Lasers (University Science Books, 1986).

G. Agrawal, Nonlinear Fiber Optics (Academic, 1989).

G. Kulscar, Y. Jaouën, E. Olmedo, and M. Le Flohic, “40 kW sub-picosecond pulse generation using cladding-pumped Er3+∕Yb3+ fibers,” in European Conference on Optical Communications (IEEE, 2001), paper We.L.3.4.

J. Nilsson, J. K. Sahu, Y. J. Jeong, W. A. Clarkson, R. Selvas, A. Grudinin, and S. Alam, “High power fiber lasers: new developments,” in Advances in Fiber Lasers, L.N.Durvasula, ed., Proc. SPIE 4974, 50–60 (2003).

A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, V. Reichel, K. Mörl, S. Jetschke, S. Unger, H.-R. Müller, J. Kirchhof, T. Sandrock, and A. Harschak, “1.3 kW Yb-doped fiber laser with excellent beam quality,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2004), postdeadline paper CPPD2

A. Tünnermann, H. Zellmer, W. Schöne, A. Giesen, and K. Contag, “New concepts for diode-pumped solid-state lasers,” in High-Power Diode Lasers, Topics in Applied Physics., R.Diehl, ed. (Springer-Verlag, 2000), Vol.  78, pp. 369–408.
[Crossref]

V. Philippov, J. K. Sahu, C. Codemard, W. A. Clarkson, J.-N. Jang, J. Nilsson, and G. N. Pearson, “All-fiber 1.15 mJ pulsed eye-safe optical source” in Fiber Lasers: Technology, Systems, and Applications, L.N.Durvasula, ed., Proc. SPIE 5335, 1–7 (2004).

M.-Y. Chen, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changakakoti, and P. Gatchell, “27-mJ nanosecond pulses in M2=6.5 beam from a coiled highly multimode Yb-doped fiber amplifier,” in Conference on Laser and Electro Optics (Optical Society of America, 2004), paper CTuS4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Energy diagram of the erbium–ytterbium system.

Fig. 2
Fig. 2

Erbium absorption (solid curve) and emission (dotted curve) cross sections used for calculations.

Fig. 3
Fig. 3

Variation of the erbium fractional population n 2 with the radial position at both ends of a 3 m long 24 μ m ( 250 μ m cladding) fiber (NA 0.15) pumped by 8 W and amplifying 1 W 100 ns pulses at 1 kHz .

Fig. 4
Fig. 4

Comparison between the R model (dashed curves) and the SCD model (solid curves) for the amplification of 100 ns pulses in a (a) 30 μ m core fiber pumped with 20 W and with 10 W input peak power and (b) 6 μ m core pumped with 10 W and with 1 W peak power.

Fig. 5
Fig. 5

Amplifier design in (a) simple-pass geometry and (b) double-pass geometry. C, circulator; P, pump diode; DC, double-clad fiber; BP, bandpass filter; and R, reflector.

Fig. 6
Fig. 6

Comparison between measurements (solid curves) and modeling without reflections at the extremities (dotted curves) or with reflection at the extremities (dashed curves) on the 6 kW peak power amplifier in simple-pass geometry at pulse-repetition frequency F = (a) 20 kHz and (b) 1 kHz , assuming a super-Gaussian input-pulse shape.

Fig. 7
Fig. 7

Output peak power of the double-pass amplifier at 3 kHz repetition rate. The parasitic reflection on the circulator clamps the gain at high pump power.

Fig. 8
Fig. 8

Relaxation oscillations between two successive pulses out of the double-pass amplifier at P pump = 4 , 5 W at a 3 kHz repetition rate. (a) Measurements and (b) modeling, assuming 50 dB parasitic reflexions on the circulator.

Fig. 9
Fig. 9

Fractional population n 2 and n 7 along the simple pass amplifier before (upper curves) and after (lower curves) pulse amplification. Repetition rates are 20 kHz (1, solid curve); 10 kHz (2, dashed curves); and 1 kHz (3, dashed–dotted curves); pump power is 2.3 W .

Fig. 10
Fig. 10

Dynamic of the fractional excited erbium population at different positions along the amplifier between two successive pulses. Pulse repetition rate is 1 kHz , with 50 dB of reflections (a) at the fiber extremities and (b) without reflections.

Fig. 11
Fig. 11

Dynamic of the fractional excited erbium population at different positions along the amplifier between two successive pulses. Pulse repetition rate is 5 kHz , with 50 dB of reflections (a) at the fiber extremities and (b) without reflections.

Fig. 12
Fig. 12

Numerical modeling of the variation of peak power and average power as a function of pulse repetition frequency for the simple pass amplifier with (solid curves) and without (dashed curves) reflections at extremities. The output power of an amplifier in cw regime with the same average input power as the pulsed amplifier is shown by triangles. The same average output power is generated at high and low repetition rates.

Fig. 13
Fig. 13

Comparison between the semianalytical model [Eq. (25)] (dashed curves) and the numeric SCD model (solid curves) for amplification of 0.5 W peak power pulses in the 11 μ m Er - Yb fiber (Table 3) at (a) 1 kHz , (b) 20 kHz , and (c) 70 kHz . E sat = 25.5 μ J .

Fig. 14
Fig. 14

Perspective of energy extraction using the Franz–Novdik equation from a 3 m long erbium–ytterbium amplifier (see Table 4).

Tables (4)

Tables Icon

Table 1 Main Parameters Used in Modeling

Tables Icon

Table 2 Fiber Characteristics for the Simple- and Double-Pass Amplifier

Tables Icon

Table 3 Parameter Values for the Simulation in Fig. 13

Tables Icon

Table 4 Parameter Values for the Simulation in Fig. 14

Equations (44)

Equations on this page are rendered with MathJax. Learn more.

n 7 ( r , z , t ) t = n 7 τ Yb + W 67 W 76 R 71 , Yb ,
n 6 + n 7 = 1 ,
n 2 ( r , z , t ) t = n 2 τ Er + W 12 W 21 + R 71 , Er C n 2 2 ,
n 1 + n 2 = 1.
W i j ( r , z , t ) = σ i j ( λ s ) S + ( λ s , z , t ) + S ( λ s , z , t ) h c λ s n i ( r , z , t ) ψ 0 ( r , λ s ) + 0 σ i j ( λ ) k S Er + ( λ , z , t , k ) + S Er ( λ , z , t , k ) h c λ n i ( r , z , t ) ψ k ( r , λ ) d λ .
W i j ( r , z , t ) = 0 σ i j ( λ ) P + ( λ , z , t ) + P ( λ , z , t ) h c λ n i ( r , z , t ) ψ cl ( r , λ ) d λ + 0 σ i j ( λ ) k S Yb + ( λ , z , t , k ) + S Yb ( λ , z , t , k ) h c λ n i ( r , z , t ) ψ k ( r , λ ) d λ ,
R 71 , Er = K tr ρ Yb n 3 n 6 ,
R 71 , Yb = K tr ρ Er n 7 n 1 .
n 7 ( r , z , t ) t = n 7 τ Yb 1 τ Yb k n 7 σ 67 , k σ 67 , k + σ 76 , k U Yb , k sat [ ψ cl , k ( r ) ( P k + + P k ) + ψ k ( r ) ( S Yb , k + + S Yb , k ) ] K tr ρ Er ( r ) n 7 ( 1 n 2 ) ,
U Yb , k sat = h c λ k 1 [ σ 67 ( λ k ) + σ 76 ( λ k ) ] τ Yb ;
n 2 ( r , z , t ) t = n 2 τ Er 1 τ Er [ ( n 2 σ 12 , s σ 12 , s + σ 21 , s ) U Er , s sat ψ s ( r ) ( S + + S ) + k ( n 2 σ 12 , k σ 12 , k + σ 21 , k ) U Er , s sat ψ k ( r ) ( S Er , k + + S Er , k ) ] + K tr ρ Yb ( r ) n 7 ( 1 n 2 ) C up ρ E r ( r ) n 2 2 ,
U Er , k sat = h c λ k 1 [ σ 12 ( λ k ) + σ 21 ( λ k ) ] τ Er .
N Er = 0 a ρ Er ( r ) 2 π r d r π a 2 ,
n i ( z , t ) = 0 a n i ( r , z , t ) ρ Er ( r ) 2 π r d r N Er π a 2 ,
Γ i , k = 0 a n i ( r , z ) ρ Er ( r ) ψ k ( r ) 2 π r d r N E r π a 2 n i ( z , t ) .
n 7 t = n 7 τ Yb 1 τ Yb k P k + + P k P Cl , k sat ( n 7 σ 67 , k σ 67 , k + σ 76 , k ) + S Yb , k + + S Yb , k P Yb , k sat ( n 7 σ 67 , k σ 67 , k + σ 76 , k ) K tr N Er n 7 ( 1 n 2 ) ,
n 2 t = n 2 τ Er 1 τ Er [ S + + S P Er , s sat ( n 2 σ 12 , s σ 12 , s + σ 21 , s ) + k S Er , k + + S Er , k P Er , k sat ( n 2 σ 12 , k σ 12 , k + σ 21 , k ) ] + K tr N Yb n 7 ( 1 n 2 ) C up N Er n 2 2 ,
P Er , s sat = U Er , s sat π a 2 Γ ( λ s ) P Er , k sat = U Er , k sat π a 2 Γ ( λ k ) ,
P Yb , k sat = U Yb , k sat π a 2 Γ ( λ k ) P c l , k sat = U Yb , k sat π a 2 Γ cl .
± P k ± z + 1 v g P k t = [ 0 a ( σ 76 , k n 7 σ 67 , k n 6 ) ρ Yb ( r ) ψ c l ( r ) 2 π r d r Γ cl α bg ] P k ± ,
± S k , Y b ± z + 1 v g S k , Y b ± t = [ 0 a ( σ 76 , k n 7 σ 67 , k n 6 ) ρ Yb ( r ) ψ k ( r ) 2 π r d r Γ k α bg ] S k , Y b ± + α k RBS S k , Y b + 2 m p h υ k Δ υ k σ 76 N Y b n 7 ,
± S k ± z + 1 v g S k ± t = [ 0 a ( σ 21 , k n 2 σ 12 , k n 1 ) ρ Er ( r ) ψ k ( r ) 2 π r d r Γ k α bg ] S k ± + α k RBS S k ,
± S k , Er ± z + 1 v g S k , E r ± t = [ 0 a ( σ 21 , k n 2 σ 12 , k n 1 ) ρ E r ( r ) ψ k ( r ) 2 π r d r Γ k α bg ] S k , E r ± + α k RBS S k , E r ± + 2 m s h υ k Δ υ k σ 21 N E r n 2 ,
S k , + ( z = 0 , t ) = R ( z = 0 , λ k ) S k , ( z = 0 , t ) ,
S k , ( z = L , t ) = R ( z = L , λ k ) S k , + ( z = L , t ) .
G ( t ) = G o G o + ( 1 G o ) exp E in ( t ) E sat s ,
E out = E sat ln [ 1 + ( G o 1 ) exp E in E sat ] .
δ n 2 ( t ) = ( n Er 0 σ 12 σ 12 + σ 21 ) P p T p P sat s τ 2 { Ψ 1 ( t ) ( 1 T p T ) [ Ψ 2 ( t ) + Ψ 3 ( t ) ] 1 T ( 1 T p T ) } .
δ P s ( t ) = k 0 δ ( t + k T ) ( P p P ) T p H ( t + k T ) P ( 1 T p T )
δ n 2 ( s ) = ( n E r 0 σ 12 σ 12 + σ 21 ) δ P s ( s ) P sat s τ 2 s + ω Yb + ω Tr , Yb ( s + ω Yb + ω T r , Yb ) ( s + ω E r + ω Tr , E r ) ,
ω Yb = 1 τ Yb ( 1 + P p P Yb sat G p 1 ln G p ) ,
ω Er = 1 τ Er ( 1 + k P k P Er , k sat G k 1 ln G k ) ,
ω Tr , Yb = K tr N Er n 1 ,
ω Tr , Er = K T r N Yb n 7 ,
δ n 2 ( t ) = ( n E r 0 σ 12 σ 12 + σ 21 ) P p T p P sat s τ 2 { Ψ 1 ( t ) ( 1 T p T ) [ Ψ 2 ( t ) + Ψ 3 ( t ) ] 1 T ( 1 T p T ) } .
Ψ 1 ( t ) = 0 f 1 ( t k T ) ,
f 1 ( t ) = 1 2 ( exp ω 1 t 1 exp ω 1 T + exp ω 2 t 1 exp ω 2 T ) + γ α 2 i β ( exp ω 1 t 1 exp ω 1 T exp ω 2 t 1 exp ω 2 T )
for 0 t T and f 1 ( t ) = 0 otherwise .
Ψ 2 ( t ) = exp ω 2 t exp ω 1 t ω 1 ω 2 ,
Ψ 3 ( t ) = 1 ω 1 ω 2 ( 1 + ω 2 exp ω 1 t ω 1 exp ω 2 t ω 1 ω 2 ) .
α = ( ω Yb + ω Er + ω Tr , Yb + ω Er ) 2 ,
β = [ ( ω Yb + ω Tr , Yb ) ( ω Er + ω Er , Tr ) + ω Tr , Yb ω Tr , Er α 2 ] 1 2 ,
ω 1 = α + i β ,
ω 2 = ω 1 * = α i β .

Metrics