Abstract

Sub-Doppler signals of the hyperfine Cs[62P32(Fe)62S12(Fg)] transition lines in a diode laser-induced retro- fluorescence spectrum at the interface between glass and Cs vapor are, for the first time to our knowledge, experimentally identified and phenomenologically investigated. We propose a qualitative explanation of the origin of the sub-Doppler hyperfine line, based on kinematic effects of the population of the excited 62P32(Fe) atoms of the laser-pumped velocity classes confined in the near-field region of the interface. The role played by different relaxation processes contributing to the retrofluorescent atomic linewidth has been characterized. The effective decay rate of the atomic hyperfine level 62P32(Fe=5) near a metallic thin film has been measured by using both sub-Doppler retrofluorescence and frequency-modulated selective reflection spectroscopies. For a saturated Cs vapor in a glass cell at a temperature of 130°C, the effective nonradiative relaxation rate of the 62P32(Fe=5) energy hyperfine level due to the coupling with a metallic film is estimated to be AFe=5Fg=4nf3.108s1.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Zhao, Z. Wu, and H. M. Lai, "Optical determination of alkali metal vapor number density in the vicinity(∼10−5 cm) of cell surfaces," J. Opt. Soc. Am. B 18, 1904-1910 (2001).
    [CrossRef]
  2. V. G. Bordo, J. Loerke, L. Jozefowski, and H.-G. Rubahn, "Two-photon laser spectroscopy of the gas boundary layer in crossed evanescent and volume waves," Phys. Rev. A 64, 012903/1-11 (2001).
    [CrossRef]
  3. K. Le Bris, J.-M. Gagné, F. Babin, and M.-C. Gagné, "Characterization of the retrofluorescence inhibition at the interface between glass and optically thick Cs vapor," J. Opt. Soc. Am. B 18, 1701-1710 (2001).
    [CrossRef]
  4. J.-M. Gagné, K. Le Bris, and M.-C. Gagné, "Laser energy-pooling processes in an optically thick Cs vapor near a dissipative surface," J. Opt. Soc. Am. B 19, 2852-2862 (2002).
    [CrossRef]
  5. A. M. Akul'shin, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. V. Sautenkov, E. K. Yurkin, and N. V. Senkov, "Collisional broadening of intra-Doppler resonances of selective reflection on the D2 line of cesium," Sov. Phys. JETP 36, 303-307 (1982).
  6. V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, "Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy," Opt. Commun. 99, 185-190 (1993).
    [CrossRef]
  7. J. Huennekens, R. K. Namiotka, J. Sagle, Z. J. Jabbour, and M. Allegrini, "Thermalization of velocity-selected excited-state populations by resonance exchange collisions and radiation trapping," Phys. Rev. A 51, 4472-4482 (1995).
    [CrossRef] [PubMed]
  8. S. G. Rautian and A. M. Shalagin, Kinetic Problems of Non-Linear Spectroscopy (Elsevier Science, 1991).
  9. I. I. Sobel'man, Introduction to the Theory of Atomic Spectra, Vol. 40 of International Series of Monographs in Natural Philosophy (Pergamon, 1972), p. 297.
  10. G. Dutier, S. Saltier, D. Bloch, and M. Ducloy, "Revisiting optical spectroscopy in a thin vapor cell: mixing of reflection and transmission as a Fabry-Perot microcavity effect," J. Opt. Soc. Am. B 20, 793-800 (2003).
    [CrossRef]
  11. S. Briaudeau, D. Bloch, and M. Ducloy, "Sub-Doppler spectroscopy in a thin film of resonant vapor," Phys. Rev. A 59, 3723-3735 (1999).
    [CrossRef]
  12. P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).
  13. C. K. Carniglia, L. Mandel, and K. H. Drexhage, "Absorption and emission of evanescent photons," J. Opt. Soc. Am. 62, 479-486 (1972).
    [CrossRef]
  14. R. R. Chance, A. Prock, and R. Silbey, "Comments on the classical theory of energy transfer," J. Chem. Phys. 62, 2245-2253 (1975).
    [CrossRef]
  15. D. Sarkisyan, T. Becker, A. Papoyan, P. Thoumany, and H. Walther, "Sub-Doppler fluorescence on the atomic D2 line of a submicron rubidium-vapor layer," Appl. Phys. B 76, 625-631 (2003).
    [CrossRef]

2003 (2)

G. Dutier, S. Saltier, D. Bloch, and M. Ducloy, "Revisiting optical spectroscopy in a thin vapor cell: mixing of reflection and transmission as a Fabry-Perot microcavity effect," J. Opt. Soc. Am. B 20, 793-800 (2003).
[CrossRef]

D. Sarkisyan, T. Becker, A. Papoyan, P. Thoumany, and H. Walther, "Sub-Doppler fluorescence on the atomic D2 line of a submicron rubidium-vapor layer," Appl. Phys. B 76, 625-631 (2003).
[CrossRef]

2002 (1)

2001 (3)

1999 (1)

S. Briaudeau, D. Bloch, and M. Ducloy, "Sub-Doppler spectroscopy in a thin film of resonant vapor," Phys. Rev. A 59, 3723-3735 (1999).
[CrossRef]

1995 (1)

J. Huennekens, R. K. Namiotka, J. Sagle, Z. J. Jabbour, and M. Allegrini, "Thermalization of velocity-selected excited-state populations by resonance exchange collisions and radiation trapping," Phys. Rev. A 51, 4472-4482 (1995).
[CrossRef] [PubMed]

1993 (1)

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, "Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy," Opt. Commun. 99, 185-190 (1993).
[CrossRef]

1982 (1)

A. M. Akul'shin, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. V. Sautenkov, E. K. Yurkin, and N. V. Senkov, "Collisional broadening of intra-Doppler resonances of selective reflection on the D2 line of cesium," Sov. Phys. JETP 36, 303-307 (1982).

1975 (1)

R. R. Chance, A. Prock, and R. Silbey, "Comments on the classical theory of energy transfer," J. Chem. Phys. 62, 2245-2253 (1975).
[CrossRef]

1972 (1)

Akul'shin, A. M.

A. M. Akul'shin, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. V. Sautenkov, E. K. Yurkin, and N. V. Senkov, "Collisional broadening of intra-Doppler resonances of selective reflection on the D2 line of cesium," Sov. Phys. JETP 36, 303-307 (1982).

Allegrini, M.

J. Huennekens, R. K. Namiotka, J. Sagle, Z. J. Jabbour, and M. Allegrini, "Thermalization of velocity-selected excited-state populations by resonance exchange collisions and radiation trapping," Phys. Rev. A 51, 4472-4482 (1995).
[CrossRef] [PubMed]

Babin, F.

Becker, T.

D. Sarkisyan, T. Becker, A. Papoyan, P. Thoumany, and H. Walther, "Sub-Doppler fluorescence on the atomic D2 line of a submicron rubidium-vapor layer," Appl. Phys. B 76, 625-631 (2003).
[CrossRef]

Bloch, D.

Bordo, V. G.

V. G. Bordo, J. Loerke, L. Jozefowski, and H.-G. Rubahn, "Two-photon laser spectroscopy of the gas boundary layer in crossed evanescent and volume waves," Phys. Rev. A 64, 012903/1-11 (2001).
[CrossRef]

Briaudeau, S.

S. Briaudeau, D. Bloch, and M. Ducloy, "Sub-Doppler spectroscopy in a thin film of resonant vapor," Phys. Rev. A 59, 3723-3735 (1999).
[CrossRef]

Carniglia, C. K.

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, "Comments on the classical theory of energy transfer," J. Chem. Phys. 62, 2245-2253 (1975).
[CrossRef]

Drexhage, K. H.

Ducloy, M.

Dutier, G.

Eberly, J. H.

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

Gagné, J.-M.

Gagné, M.-C.

Hänsch, T. W.

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, "Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy," Opt. Commun. 99, 185-190 (1993).
[CrossRef]

Huennekens, J.

J. Huennekens, R. K. Namiotka, J. Sagle, Z. J. Jabbour, and M. Allegrini, "Thermalization of velocity-selected excited-state populations by resonance exchange collisions and radiation trapping," Phys. Rev. A 51, 4472-4482 (1995).
[CrossRef] [PubMed]

Jabbour, Z. J.

J. Huennekens, R. K. Namiotka, J. Sagle, Z. J. Jabbour, and M. Allegrini, "Thermalization of velocity-selected excited-state populations by resonance exchange collisions and radiation trapping," Phys. Rev. A 51, 4472-4482 (1995).
[CrossRef] [PubMed]

Jozefowski, L.

V. G. Bordo, J. Loerke, L. Jozefowski, and H.-G. Rubahn, "Two-photon laser spectroscopy of the gas boundary layer in crossed evanescent and volume waves," Phys. Rev. A 64, 012903/1-11 (2001).
[CrossRef]

Lai, H. M.

Le Bris, K.

Loerke, J.

V. G. Bordo, J. Loerke, L. Jozefowski, and H.-G. Rubahn, "Two-photon laser spectroscopy of the gas boundary layer in crossed evanescent and volume waves," Phys. Rev. A 64, 012903/1-11 (2001).
[CrossRef]

Mandel, L.

Milonni, P. W.

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

Namiotka, R. K.

J. Huennekens, R. K. Namiotka, J. Sagle, Z. J. Jabbour, and M. Allegrini, "Thermalization of velocity-selected excited-state populations by resonance exchange collisions and radiation trapping," Phys. Rev. A 51, 4472-4482 (1995).
[CrossRef] [PubMed]

Nikitin, V. V.

A. M. Akul'shin, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. V. Sautenkov, E. K. Yurkin, and N. V. Senkov, "Collisional broadening of intra-Doppler resonances of selective reflection on the D2 line of cesium," Sov. Phys. JETP 36, 303-307 (1982).

Papoyan, A.

D. Sarkisyan, T. Becker, A. Papoyan, P. Thoumany, and H. Walther, "Sub-Doppler fluorescence on the atomic D2 line of a submicron rubidium-vapor layer," Appl. Phys. B 76, 625-631 (2003).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, "Comments on the classical theory of energy transfer," J. Chem. Phys. 62, 2245-2253 (1975).
[CrossRef]

Rautian, S. G.

S. G. Rautian and A. M. Shalagin, Kinetic Problems of Non-Linear Spectroscopy (Elsevier Science, 1991).

Rubahn, H.-G.

V. G. Bordo, J. Loerke, L. Jozefowski, and H.-G. Rubahn, "Two-photon laser spectroscopy of the gas boundary layer in crossed evanescent and volume waves," Phys. Rev. A 64, 012903/1-11 (2001).
[CrossRef]

Sagle, J.

J. Huennekens, R. K. Namiotka, J. Sagle, Z. J. Jabbour, and M. Allegrini, "Thermalization of velocity-selected excited-state populations by resonance exchange collisions and radiation trapping," Phys. Rev. A 51, 4472-4482 (1995).
[CrossRef] [PubMed]

Saltier, S.

Sarkisyan, D.

D. Sarkisyan, T. Becker, A. Papoyan, P. Thoumany, and H. Walther, "Sub-Doppler fluorescence on the atomic D2 line of a submicron rubidium-vapor layer," Appl. Phys. B 76, 625-631 (2003).
[CrossRef]

Sautenkov, V. A.

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, "Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy," Opt. Commun. 99, 185-190 (1993).
[CrossRef]

Sautenkov, V. V.

A. M. Akul'shin, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. V. Sautenkov, E. K. Yurkin, and N. V. Senkov, "Collisional broadening of intra-Doppler resonances of selective reflection on the D2 line of cesium," Sov. Phys. JETP 36, 303-307 (1982).

Senkov, N. V.

A. M. Akul'shin, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. V. Sautenkov, E. K. Yurkin, and N. V. Senkov, "Collisional broadening of intra-Doppler resonances of selective reflection on the D2 line of cesium," Sov. Phys. JETP 36, 303-307 (1982).

Shalagin, A. M.

S. G. Rautian and A. M. Shalagin, Kinetic Problems of Non-Linear Spectroscopy (Elsevier Science, 1991).

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, "Comments on the classical theory of energy transfer," J. Chem. Phys. 62, 2245-2253 (1975).
[CrossRef]

Sobel'man, I. I.

I. I. Sobel'man, Introduction to the Theory of Atomic Spectra, Vol. 40 of International Series of Monographs in Natural Philosophy (Pergamon, 1972), p. 297.

Thoumany, P.

D. Sarkisyan, T. Becker, A. Papoyan, P. Thoumany, and H. Walther, "Sub-Doppler fluorescence on the atomic D2 line of a submicron rubidium-vapor layer," Appl. Phys. B 76, 625-631 (2003).
[CrossRef]

Velichanskii, V. L.

A. M. Akul'shin, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. V. Sautenkov, E. K. Yurkin, and N. V. Senkov, "Collisional broadening of intra-Doppler resonances of selective reflection on the D2 line of cesium," Sov. Phys. JETP 36, 303-307 (1982).

Vuletic, V.

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, "Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy," Opt. Commun. 99, 185-190 (1993).
[CrossRef]

Walther, H.

D. Sarkisyan, T. Becker, A. Papoyan, P. Thoumany, and H. Walther, "Sub-Doppler fluorescence on the atomic D2 line of a submicron rubidium-vapor layer," Appl. Phys. B 76, 625-631 (2003).
[CrossRef]

Wu, Z.

Yurkin, E. K.

A. M. Akul'shin, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. V. Sautenkov, E. K. Yurkin, and N. V. Senkov, "Collisional broadening of intra-Doppler resonances of selective reflection on the D2 line of cesium," Sov. Phys. JETP 36, 303-307 (1982).

Zhao, K.

Zibrov, A. S.

A. M. Akul'shin, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. V. Sautenkov, E. K. Yurkin, and N. V. Senkov, "Collisional broadening of intra-Doppler resonances of selective reflection on the D2 line of cesium," Sov. Phys. JETP 36, 303-307 (1982).

Zimmermann, C.

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, "Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy," Opt. Commun. 99, 185-190 (1993).
[CrossRef]

Appl. Phys. B (1)

D. Sarkisyan, T. Becker, A. Papoyan, P. Thoumany, and H. Walther, "Sub-Doppler fluorescence on the atomic D2 line of a submicron rubidium-vapor layer," Appl. Phys. B 76, 625-631 (2003).
[CrossRef]

J. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, "Comments on the classical theory of energy transfer," J. Chem. Phys. 62, 2245-2253 (1975).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

V. Vuletic, V. A. Sautenkov, C. Zimmermann, and T. W. Hänsch, "Measurement of cesium resonance line self-broadening and shift with Doppler-free selective reflection spectroscopy," Opt. Commun. 99, 185-190 (1993).
[CrossRef]

Phys. Rev. A (3)

J. Huennekens, R. K. Namiotka, J. Sagle, Z. J. Jabbour, and M. Allegrini, "Thermalization of velocity-selected excited-state populations by resonance exchange collisions and radiation trapping," Phys. Rev. A 51, 4472-4482 (1995).
[CrossRef] [PubMed]

V. G. Bordo, J. Loerke, L. Jozefowski, and H.-G. Rubahn, "Two-photon laser spectroscopy of the gas boundary layer in crossed evanescent and volume waves," Phys. Rev. A 64, 012903/1-11 (2001).
[CrossRef]

S. Briaudeau, D. Bloch, and M. Ducloy, "Sub-Doppler spectroscopy in a thin film of resonant vapor," Phys. Rev. A 59, 3723-3735 (1999).
[CrossRef]

Sov. Phys. JETP (1)

A. M. Akul'shin, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. V. Sautenkov, E. K. Yurkin, and N. V. Senkov, "Collisional broadening of intra-Doppler resonances of selective reflection on the D2 line of cesium," Sov. Phys. JETP 36, 303-307 (1982).

Other (3)

S. G. Rautian and A. M. Shalagin, Kinetic Problems of Non-Linear Spectroscopy (Elsevier Science, 1991).

I. I. Sobel'man, Introduction to the Theory of Atomic Spectra, Vol. 40 of International Series of Monographs in Natural Philosophy (Pergamon, 1972), p. 297.

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup. P, polarization rotator; L, lens; M, mirror; P.P., polarizing prism; P.M., photomultiplier; D, spatial filter.

Fig. 2
Fig. 2

(a) Integrated retrofluorescence spectrum at a 852.2 nm wavelength as a function of the laser detuning for a cell temperature 130 ° C and laser power 50 μ W . (b) Simultaneous recording of the FM selective reflection spectrum.

Fig. 3
Fig. 3

(a) Enlarged plot of the integrated 852.2 nm resonant retrofluorescence and (b) the FM selective reflection spectra as a function of laser detuning from the resonance center for the [ 6 2 S 1 2 ( F g = 4 ) 6 2 P 3 2 ( F e = 3 , 4 , 5 ) ] transition obtained at a temperature 130 ° C and laser power 50 μ W .

Fig. 4
Fig. 4

(a) Extraction of the hyperfine [ 6 2 P 3 2 ( F e = 5 ) 6 2 S 1 2 ( F g = 4 ) ] transition signal profile. The dashed curve represents the approached function of S T ( ν L ) ; the vertical line ( F e = 5 ) indicates the center of the hyperfine line. (b) Distribution of the points in the 100 MHz width spectral band around the ( F e = 5 F g = 4 ) transition line center, obtained after subtraction of S T ( ν L ) from the experimental data. The solid curve is a Lorentzian fit of experimental points.

Fig. 5
Fig. 5

Physical and geometric description of the characteristic regions of the glass cell window and Cs vapor interface: a, thin Cs metallic layer on the glass surface; b, proximity region of the surface ( x ¯ f λ ) called the near-field region of the interface; c, the far-field region of the interface. S T ( ν L ) designates the integrated retrofluorescence signal from the far-field region of the interface. s n ( ν L ) designates the integrated retrofluorescence sub-Doppler hyperfine signal originating from the near-field region. The objects labeled (i)–(iv) represent a Cs atom in the ground level, an atom adsorbed on the surface or on a Cs cluster, excited Cs atom undergoing a nonradiative relaxation, radiating (or fluorescent) atom, respectively.

Fig. 6
Fig. 6

Illustration of the velocity population distribution of the thermalized 6 2 S 1 2 ( F g = 4 ) ground level (G) and the nonthermalized 6 2 P 3 2 ( F e = 5 ) excited level population ( c 1 , c 2 , c 3 ) pumped by a quasi-monochromatic diode laser at frequency ν L in the near-field region of the cell window and Cs vapor interface. For more details, see the text.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

S T ( ν L ) α T ( ν L ) exp [ τ ¯ T f ( ν L ) ] Δ ν α T ( ν ) α T ( ν L ) + α T ( ν ) exp [ τ ¯ T f ( ν ) ] d ν ,
s n ( ν L ) exp = S ob ( ν L ) S T ( ν L ) S ob ( ν L ) [ a ( ν L ν 0 ) + b ] .
D ( V x , V x , Δ V x ) 1 [ 2 ( V x V x ) Δ V x ] 2 + 1 exp [ ( V x V 0 ) 2 ] ,
δ V x < δ V x max ,
δ V x max = x ¯ f τ F e = 5 F g = 4 = x ¯ f g F e = 5 , F g = 4 A J e J g ,
x ¯ f n F g = 4 σ F g = 4 F e = 5 ( ν L ν 0 ) < 1 ,
δ V x max = g F e = 5 , F g = 4 A J e J g n F g = 4 σ F g = 4 F e = 5 ( ν L ν 0 ) .
σ F g = 4 F e = 5 ( ν L ν 0 ) λ 2 8 π 2 J e + 1 2 J g + 1 g F e = 5 , F g = 4 A J e J g ( 1 + ϵ F e = 5 , F g = 4 ) ( 4 ln 2 π ) 1 2 1 γ D ,
ϵ F e = 5 , F g = 4 = A F e = 5 , F g = 4 f g F e = 5 , F g = 4 A J e = 3 2 , J g = 1 2 ,
δ V x max 8 π 0.93 λ 2 2 J g + 1 2 J e + 1 γ D ( 1 + ϵ F e = 5 , F g = 4 ) 1 n F g = 4 .
δ V x max ( m s 1 ) 165 ( 1 + ϵ F e = 5 , F g = 4 ) 1 .
Π ( V x , δ V x ) = 1 , for δ V x 2 V x + δ V x 2 = 0 , elsewhere .
s n ( V x ) + Π ( V x , δ V x ) D ( V x , V x , Δ V x ) d V x = Π ( V x , δ V x ) D ( V x , V x , Δ V x ) ,
δ V x max Δ V x , or 165 ( 1 + ϵ F e = 5 , F g = 4 ) 1 Δ V x ;
s n ( V x ) 1 ( 2 V x Δ V x ) 2 + 1 .
s n ( v L ) 1 [ 2 ( v L v 0 ) γ ] 2 + 1 .
γ RF γ n + γ coll + γ nr ,
γ RS = γ n + γ coll ,
γ nr γ RF γ RS .
γ nr ( γ RF ) measured ( γ RS ) measured 90 41 = 49 MHz .
ϵ F g = 4 x ¯ eff f λ 1 = 49 ,
ϵ F e = 3 , F g = 4 = ϵ F e = 4 , F g = 4 = ϵ F e = 5 , F g = 4 = ϵ F g = 4 .

Metrics