Abstract

Fixing experiments have been carried out in undoped α-phase proton-exchanged LiNbO3 waveguides at room temperature and 110°C. Above room temperature, the recording kinetics of the diffraction efficiency exhibits a maximum ηmax and then decays to zero. Upon raising the temperature, ηmax decreases and the associated rise and decay times become progressively shorter. After fixing at 90°C and subsequent optical developing at room temperature, the developed value rises up to ηdev2.5ηmax, showing a lifetime of a few hours in the dark and a few days under homogeneous illumination. Time constants for recording, dark decay, and developing have been measured as a function of temperature. Experimental dependences are reasonably simulated by using the standard model for fixing with the same parameters as with bulk LiNbO3, except the electron thermal ionization rate and the proton concentration, which are much greater in α-phase guides.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hukriede, D. Kip, and E. Krätzig, "Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides," Appl. Phys. B 66, 333-338 (1998).
    [CrossRef]
  2. J. Hukriede, I. Nee, D. Kip, and E. Krätzig, "Thermally fixed reflection gratings for infrared light in LiNbO3:Ti:Fe channel waveguides," Opt. Lett. 23, 1405-1407 (1998).
    [CrossRef]
  3. Ch. Becker, A. Greiner, Th. Oesselke, A. Pape, W. Sohler, and H. Suche, "Integrated optical Ti:Er:LiNbO3 distributed Bragg reflector laser with a fixed photorefractive grating," Opt. Lett. 23, 1194-1196 (1998).
    [CrossRef]
  4. B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
    [CrossRef]
  5. A. Méndez, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Photorefractive charge compensation in alpha-phase proton-exchanged LiNbO3 waveguides," J. Opt. Soc. Am. B 17, 1412-1419 (2000).
    [CrossRef]
  6. A. Méndez, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Dark developing of photorefractive proton-exchanged LiNbO3 waveguides," Opt. Mater. 18, 111-114 (2001)
    [CrossRef]
  7. G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Superlinear photovoltaic currents in proton-exchanged LiNbO3 waveguides," Appl. Phys. B 76, 555-559 (2003).
    [CrossRef]
  8. G. del Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "High temperature photorefractive effects in alpha-phase PE:LiNbO3 waveguides," in Photorefractive Effects, Materials and Devices, P.Delaye, C.Denz, L.Mager, and G.Montemezzani, eds., Vol. 87 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 172-176.
  9. J. J. Amodei and D. L. Staebler, "Holographic recording in lithium niobate," RCA Rev. 33, 71-93 (1972).
  10. M. Carrascosa, J. M. Cabrera, and F. Agulló-López, "Long-lifetime photorefractive holographic devices via thermal fixing methods," in Infrared Holography for Optical Communications, Vol. 86 of Topics in Applied Physics, P.Boffi, D.Piccinin, and M.C.Ubaldi, eds. (Springer Verlag, 2003), pp. 91-110.
    [CrossRef]
  11. M. Carrascosa, L. Arizmendi, and J. M. Cabrera, "Thermal fixing of photoinduced gratings," in Photorefractive Materials and Their Applications: Volume 1, P.Günter, and J.P.Huignard, eds. (Springer-Verlag, to be published).
  12. H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, "Hydrogen as origin of thermal fixing in LiNbO3:Fe," Solid State Commun. 40, 543-545 (1981).
    [CrossRef]
  13. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals", Phys. Rev. B 56, 1225-1235 (1997).
    [CrossRef]
  14. O. Espeso, G. García, A. Climent, F. Agulló-López, G. de la Paliza, J. M. Cabrera, and T. Sajavaara, "H-Li correlation and stoichiometry of mixed phases in proton-exchanged LiNbO3 waveguides," J. Appl. Phys. 94, 7710-7718 (2003).
    [CrossRef]
  15. Yu. N. Korkishko and V. A. Fedorov, "Relationship between refraction indices and hydrogen concentration in proton exchanged LiNbO3 waveguides," J. Appl. Phys. 82, 1010-1017 (1997).
    [CrossRef]
  16. F. Laurell, M. G. Roelofs, and H. Hsiung, "Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides," Appl. Phys. Lett. 60, 301-303 (1992).
    [CrossRef]
  17. V. A. Ganshin and Yu. N. Korkishko, "H:LiNbO3 waveguides effects of annealing," Opt. Commun. 86, 523-530 (1991).
    [CrossRef]
  18. R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, "A narrow-band interference filter with photorefractive LiNbO3," J. Phys. D 27, 241-246 (1994).
    [CrossRef]
  19. M. Carrascosa and L. Arizmendi, "High-temperature photorefractive effects in LiNbO3:Fe," J. Appl. Phys. 73, 2709-2713 (1993).
    [CrossRef]
  20. B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, "Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment," Phys. Rev. B 57, 12792-12805 (1998).
    [CrossRef]
  21. E. de Miguel Sanz, M. Carrascosa, and L. Arizmendi, "Effect of oxidation state and hydrgen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe," Phys. Rev. B 65, 165101-7 (2002).
    [CrossRef]
  22. J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, "Hydrogen in lithium niobate," Adv. Phys. 45, 349-392 (1996).
    [CrossRef]
  23. W. Josch, R. Munser, W. Ruppel, and P. Wurfel, "The photovoltaic effect and the charge transport in LiNbO3," Ferroelectrics 21, 623-625 (1978).
    [CrossRef]
  24. M. Carrascosa and F. Agulló-López, "Theoretical modeling of the fixing and developing of holographic grating in LiNbO3," J. Opt. Soc. Am. B 7, 2317-2322 (1990).
    [CrossRef]
  25. B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, "Two kinetic regimes for high-temperature photorefractive phenomena," J. Opt. Soc. Am. B 15, 148-151 (1998).
    [CrossRef]
  26. L. Arizmendi, E. M. de Miguel-Sanz, and M. Carrascosa, "Lifetimes of thermally fixed holograms in LiNbO3 crystals," Opt. Lett. 23, 960-962 (1998).
    [CrossRef]

2003

G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Superlinear photovoltaic currents in proton-exchanged LiNbO3 waveguides," Appl. Phys. B 76, 555-559 (2003).
[CrossRef]

O. Espeso, G. García, A. Climent, F. Agulló-López, G. de la Paliza, J. M. Cabrera, and T. Sajavaara, "H-Li correlation and stoichiometry of mixed phases in proton-exchanged LiNbO3 waveguides," J. Appl. Phys. 94, 7710-7718 (2003).
[CrossRef]

B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
[CrossRef]

2002

E. de Miguel Sanz, M. Carrascosa, and L. Arizmendi, "Effect of oxidation state and hydrgen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe," Phys. Rev. B 65, 165101-7 (2002).
[CrossRef]

2001

A. Méndez, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Dark developing of photorefractive proton-exchanged LiNbO3 waveguides," Opt. Mater. 18, 111-114 (2001)
[CrossRef]

2000

1998

1997

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals", Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Yu. N. Korkishko and V. A. Fedorov, "Relationship between refraction indices and hydrogen concentration in proton exchanged LiNbO3 waveguides," J. Appl. Phys. 82, 1010-1017 (1997).
[CrossRef]

1996

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, "Hydrogen in lithium niobate," Adv. Phys. 45, 349-392 (1996).
[CrossRef]

1994

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, "A narrow-band interference filter with photorefractive LiNbO3," J. Phys. D 27, 241-246 (1994).
[CrossRef]

1993

M. Carrascosa and L. Arizmendi, "High-temperature photorefractive effects in LiNbO3:Fe," J. Appl. Phys. 73, 2709-2713 (1993).
[CrossRef]

1992

F. Laurell, M. G. Roelofs, and H. Hsiung, "Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides," Appl. Phys. Lett. 60, 301-303 (1992).
[CrossRef]

1991

V. A. Ganshin and Yu. N. Korkishko, "H:LiNbO3 waveguides effects of annealing," Opt. Commun. 86, 523-530 (1991).
[CrossRef]

1990

1981

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, "Hydrogen as origin of thermal fixing in LiNbO3:Fe," Solid State Commun. 40, 543-545 (1981).
[CrossRef]

1978

W. Josch, R. Munser, W. Ruppel, and P. Wurfel, "The photovoltaic effect and the charge transport in LiNbO3," Ferroelectrics 21, 623-625 (1978).
[CrossRef]

1972

J. J. Amodei and D. L. Staebler, "Holographic recording in lithium niobate," RCA Rev. 33, 71-93 (1972).

Agulló-López, F.

O. Espeso, G. García, A. Climent, F. Agulló-López, G. de la Paliza, J. M. Cabrera, and T. Sajavaara, "H-Li correlation and stoichiometry of mixed phases in proton-exchanged LiNbO3 waveguides," J. Appl. Phys. 94, 7710-7718 (2003).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, "Two kinetic regimes for high-temperature photorefractive phenomena," J. Opt. Soc. Am. B 15, 148-151 (1998).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, "Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment," Phys. Rev. B 57, 12792-12805 (1998).
[CrossRef]

M. Carrascosa and F. Agulló-López, "Theoretical modeling of the fixing and developing of holographic grating in LiNbO3," J. Opt. Soc. Am. B 7, 2317-2322 (1990).
[CrossRef]

M. Carrascosa, J. M. Cabrera, and F. Agulló-López, "Long-lifetime photorefractive holographic devices via thermal fixing methods," in Infrared Holography for Optical Communications, Vol. 86 of Topics in Applied Physics, P.Boffi, D.Piccinin, and M.C.Ubaldi, eds. (Springer Verlag, 2003), pp. 91-110.
[CrossRef]

Amodei, J. J.

J. J. Amodei and D. L. Staebler, "Holographic recording in lithium niobate," RCA Rev. 33, 71-93 (1972).

Arizmendi, L.

E. de Miguel Sanz, M. Carrascosa, and L. Arizmendi, "Effect of oxidation state and hydrgen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe," Phys. Rev. B 65, 165101-7 (2002).
[CrossRef]

L. Arizmendi, E. M. de Miguel-Sanz, and M. Carrascosa, "Lifetimes of thermally fixed holograms in LiNbO3 crystals," Opt. Lett. 23, 960-962 (1998).
[CrossRef]

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, "A narrow-band interference filter with photorefractive LiNbO3," J. Phys. D 27, 241-246 (1994).
[CrossRef]

M. Carrascosa and L. Arizmendi, "High-temperature photorefractive effects in LiNbO3:Fe," J. Appl. Phys. 73, 2709-2713 (1993).
[CrossRef]

M. Carrascosa, L. Arizmendi, and J. M. Cabrera, "Thermal fixing of photoinduced gratings," in Photorefractive Materials and Their Applications: Volume 1, P.Günter, and J.P.Huignard, eds. (Springer-Verlag, to be published).

Becker, Ch.

Breer, S.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals", Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Buse, K.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals", Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Caballero, O.

G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Superlinear photovoltaic currents in proton-exchanged LiNbO3 waveguides," Appl. Phys. B 76, 555-559 (2003).
[CrossRef]

Cabrera, J. M.

G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Superlinear photovoltaic currents in proton-exchanged LiNbO3 waveguides," Appl. Phys. B 76, 555-559 (2003).
[CrossRef]

O. Espeso, G. García, A. Climent, F. Agulló-López, G. de la Paliza, J. M. Cabrera, and T. Sajavaara, "H-Li correlation and stoichiometry of mixed phases in proton-exchanged LiNbO3 waveguides," J. Appl. Phys. 94, 7710-7718 (2003).
[CrossRef]

A. Méndez, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Dark developing of photorefractive proton-exchanged LiNbO3 waveguides," Opt. Mater. 18, 111-114 (2001)
[CrossRef]

A. Méndez, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Photorefractive charge compensation in alpha-phase proton-exchanged LiNbO3 waveguides," J. Opt. Soc. Am. B 17, 1412-1419 (2000).
[CrossRef]

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, "Hydrogen in lithium niobate," Adv. Phys. 45, 349-392 (1996).
[CrossRef]

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, "A narrow-band interference filter with photorefractive LiNbO3," J. Phys. D 27, 241-246 (1994).
[CrossRef]

M. Carrascosa, L. Arizmendi, and J. M. Cabrera, "Thermal fixing of photoinduced gratings," in Photorefractive Materials and Their Applications: Volume 1, P.Günter, and J.P.Huignard, eds. (Springer-Verlag, to be published).

M. Carrascosa, J. M. Cabrera, and F. Agulló-López, "Long-lifetime photorefractive holographic devices via thermal fixing methods," in Infrared Holography for Optical Communications, Vol. 86 of Topics in Applied Physics, P.Boffi, D.Piccinin, and M.C.Ubaldi, eds. (Springer Verlag, 2003), pp. 91-110.
[CrossRef]

G. del Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "High temperature photorefractive effects in alpha-phase PE:LiNbO3 waveguides," in Photorefractive Effects, Materials and Devices, P.Delaye, C.Denz, L.Mager, and G.Montemezzani, eds., Vol. 87 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 172-176.

Carrascosa, M.

G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Superlinear photovoltaic currents in proton-exchanged LiNbO3 waveguides," Appl. Phys. B 76, 555-559 (2003).
[CrossRef]

E. de Miguel Sanz, M. Carrascosa, and L. Arizmendi, "Effect of oxidation state and hydrgen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe," Phys. Rev. B 65, 165101-7 (2002).
[CrossRef]

A. Méndez, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Dark developing of photorefractive proton-exchanged LiNbO3 waveguides," Opt. Mater. 18, 111-114 (2001)
[CrossRef]

A. Méndez, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Photorefractive charge compensation in alpha-phase proton-exchanged LiNbO3 waveguides," J. Opt. Soc. Am. B 17, 1412-1419 (2000).
[CrossRef]

L. Arizmendi, E. M. de Miguel-Sanz, and M. Carrascosa, "Lifetimes of thermally fixed holograms in LiNbO3 crystals," Opt. Lett. 23, 960-962 (1998).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, "Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment," Phys. Rev. B 57, 12792-12805 (1998).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, "Two kinetic regimes for high-temperature photorefractive phenomena," J. Opt. Soc. Am. B 15, 148-151 (1998).
[CrossRef]

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, "Hydrogen in lithium niobate," Adv. Phys. 45, 349-392 (1996).
[CrossRef]

M. Carrascosa and L. Arizmendi, "High-temperature photorefractive effects in LiNbO3:Fe," J. Appl. Phys. 73, 2709-2713 (1993).
[CrossRef]

M. Carrascosa and F. Agulló-López, "Theoretical modeling of the fixing and developing of holographic grating in LiNbO3," J. Opt. Soc. Am. B 7, 2317-2322 (1990).
[CrossRef]

G. del Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "High temperature photorefractive effects in alpha-phase PE:LiNbO3 waveguides," in Photorefractive Effects, Materials and Devices, P.Delaye, C.Denz, L.Mager, and G.Montemezzani, eds., Vol. 87 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 172-176.

M. Carrascosa, J. M. Cabrera, and F. Agulló-López, "Long-lifetime photorefractive holographic devices via thermal fixing methods," in Infrared Holography for Optical Communications, Vol. 86 of Topics in Applied Physics, P.Boffi, D.Piccinin, and M.C.Ubaldi, eds. (Springer Verlag, 2003), pp. 91-110.
[CrossRef]

M. Carrascosa, L. Arizmendi, and J. M. Cabrera, "Thermal fixing of photoinduced gratings," in Photorefractive Materials and Their Applications: Volume 1, P.Günter, and J.P.Huignard, eds. (Springer-Verlag, to be published).

Climent, A.

O. Espeso, G. García, A. Climent, F. Agulló-López, G. de la Paliza, J. M. Cabrera, and T. Sajavaara, "H-Li correlation and stoichiometry of mixed phases in proton-exchanged LiNbO3 waveguides," J. Appl. Phys. 94, 7710-7718 (2003).
[CrossRef]

Das, B. K.

B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
[CrossRef]

de la Paliza, G.

G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Superlinear photovoltaic currents in proton-exchanged LiNbO3 waveguides," Appl. Phys. B 76, 555-559 (2003).
[CrossRef]

O. Espeso, G. García, A. Climent, F. Agulló-López, G. de la Paliza, J. M. Cabrera, and T. Sajavaara, "H-Li correlation and stoichiometry of mixed phases in proton-exchanged LiNbO3 waveguides," J. Appl. Phys. 94, 7710-7718 (2003).
[CrossRef]

de Miguel Sanz, E.

E. de Miguel Sanz, M. Carrascosa, and L. Arizmendi, "Effect of oxidation state and hydrgen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe," Phys. Rev. B 65, 165101-7 (2002).
[CrossRef]

de Miguel-Sanz, E. M.

del Paliza, G.

G. del Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "High temperature photorefractive effects in alpha-phase PE:LiNbO3 waveguides," in Photorefractive Effects, Materials and Devices, P.Delaye, C.Denz, L.Mager, and G.Montemezzani, eds., Vol. 87 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 172-176.

Diéguez, E.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, "Hydrogen in lithium niobate," Adv. Phys. 45, 349-392 (1996).
[CrossRef]

Espeso, O.

O. Espeso, G. García, A. Climent, F. Agulló-López, G. de la Paliza, J. M. Cabrera, and T. Sajavaara, "H-Li correlation and stoichiometry of mixed phases in proton-exchanged LiNbO3 waveguides," J. Appl. Phys. 94, 7710-7718 (2003).
[CrossRef]

Fedorov, V. A.

Yu. N. Korkishko and V. A. Fedorov, "Relationship between refraction indices and hydrogen concentration in proton exchanged LiNbO3 waveguides," J. Appl. Phys. 82, 1010-1017 (1997).
[CrossRef]

Ganshin, V. A.

V. A. Ganshin and Yu. N. Korkishko, "H:LiNbO3 waveguides effects of annealing," Opt. Commun. 86, 523-530 (1991).
[CrossRef]

Gao, M.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals", Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

García, G.

O. Espeso, G. García, A. Climent, F. Agulló-López, G. de la Paliza, J. M. Cabrera, and T. Sajavaara, "H-Li correlation and stoichiometry of mixed phases in proton-exchanged LiNbO3 waveguides," J. Appl. Phys. 94, 7710-7718 (2003).
[CrossRef]

García-Cabañes, A.

G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Superlinear photovoltaic currents in proton-exchanged LiNbO3 waveguides," Appl. Phys. B 76, 555-559 (2003).
[CrossRef]

A. Méndez, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Dark developing of photorefractive proton-exchanged LiNbO3 waveguides," Opt. Mater. 18, 111-114 (2001)
[CrossRef]

A. Méndez, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Photorefractive charge compensation in alpha-phase proton-exchanged LiNbO3 waveguides," J. Opt. Soc. Am. B 17, 1412-1419 (2000).
[CrossRef]

G. del Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "High temperature photorefractive effects in alpha-phase PE:LiNbO3 waveguides," in Photorefractive Effects, Materials and Devices, P.Delaye, C.Denz, L.Mager, and G.Montemezzani, eds., Vol. 87 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 172-176.

Greiner, A.

Hsiung, H.

F. Laurell, M. G. Roelofs, and H. Hsiung, "Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides," Appl. Phys. Lett. 60, 301-303 (1992).
[CrossRef]

Hukriede, J.

J. Hukriede, I. Nee, D. Kip, and E. Krätzig, "Thermally fixed reflection gratings for infrared light in LiNbO3:Ti:Fe channel waveguides," Opt. Lett. 23, 1405-1407 (1998).
[CrossRef]

J. Hukriede, D. Kip, and E. Krätzig, "Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides," Appl. Phys. B 66, 333-338 (1998).
[CrossRef]

Josch, W.

W. Josch, R. Munser, W. Ruppel, and P. Wurfel, "The photovoltaic effect and the charge transport in LiNbO3," Ferroelectrics 21, 623-625 (1978).
[CrossRef]

Kapphan, S.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals", Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, "Hydrogen as origin of thermal fixing in LiNbO3:Fe," Solid State Commun. 40, 543-545 (1981).
[CrossRef]

Kip, D.

J. Hukriede, I. Nee, D. Kip, and E. Krätzig, "Thermally fixed reflection gratings for infrared light in LiNbO3:Ti:Fe channel waveguides," Opt. Lett. 23, 1405-1407 (1998).
[CrossRef]

J. Hukriede, D. Kip, and E. Krätzig, "Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides," Appl. Phys. B 66, 333-338 (1998).
[CrossRef]

Korkishko, Yu. N.

Yu. N. Korkishko and V. A. Fedorov, "Relationship between refraction indices and hydrogen concentration in proton exchanged LiNbO3 waveguides," J. Appl. Phys. 82, 1010-1017 (1997).
[CrossRef]

V. A. Ganshin and Yu. N. Korkishko, "H:LiNbO3 waveguides effects of annealing," Opt. Commun. 86, 523-530 (1991).
[CrossRef]

Krätzig, E.

J. Hukriede, I. Nee, D. Kip, and E. Krätzig, "Thermally fixed reflection gratings for infrared light in LiNbO3:Ti:Fe channel waveguides," Opt. Lett. 23, 1405-1407 (1998).
[CrossRef]

J. Hukriede, D. Kip, and E. Krätzig, "Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides," Appl. Phys. B 66, 333-338 (1998).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals", Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, "Hydrogen as origin of thermal fixing in LiNbO3:Fe," Solid State Commun. 40, 543-545 (1981).
[CrossRef]

Laurell, F.

F. Laurell, M. G. Roelofs, and H. Hsiung, "Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides," Appl. Phys. Lett. 60, 301-303 (1992).
[CrossRef]

Limeres, J.

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, "Two kinetic regimes for high-temperature photorefractive phenomena," J. Opt. Soc. Am. B 15, 148-151 (1998).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, "Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment," Phys. Rev. B 57, 12792-12805 (1998).
[CrossRef]

Méndez, A.

A. Méndez, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Dark developing of photorefractive proton-exchanged LiNbO3 waveguides," Opt. Mater. 18, 111-114 (2001)
[CrossRef]

A. Méndez, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Photorefractive charge compensation in alpha-phase proton-exchanged LiNbO3 waveguides," J. Opt. Soc. Am. B 17, 1412-1419 (2000).
[CrossRef]

Müller, R.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, "Hydrogen in lithium niobate," Adv. Phys. 45, 349-392 (1996).
[CrossRef]

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, "A narrow-band interference filter with photorefractive LiNbO3," J. Phys. D 27, 241-246 (1994).
[CrossRef]

Munser, R.

W. Josch, R. Munser, W. Ruppel, and P. Wurfel, "The photovoltaic effect and the charge transport in LiNbO3," Ferroelectrics 21, 623-625 (1978).
[CrossRef]

Nee, I.

Oesselke, Th.

Olivares, J.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, "Hydrogen in lithium niobate," Adv. Phys. 45, 349-392 (1996).
[CrossRef]

Pape, A.

Peithmann, K.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals", Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Rams, J.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, "Hydrogen in lithium niobate," Adv. Phys. 45, 349-392 (1996).
[CrossRef]

Ricken, R.

B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
[CrossRef]

Roelofs, M. G.

F. Laurell, M. G. Roelofs, and H. Hsiung, "Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides," Appl. Phys. Lett. 60, 301-303 (1992).
[CrossRef]

Ruppel, W.

W. Josch, R. Munser, W. Ruppel, and P. Wurfel, "The photovoltaic effect and the charge transport in LiNbO3," Ferroelectrics 21, 623-625 (1978).
[CrossRef]

Sajavaara, T.

O. Espeso, G. García, A. Climent, F. Agulló-López, G. de la Paliza, J. M. Cabrera, and T. Sajavaara, "H-Li correlation and stoichiometry of mixed phases in proton-exchanged LiNbO3 waveguides," J. Appl. Phys. 94, 7710-7718 (2003).
[CrossRef]

Santos, M. T.

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, "A narrow-band interference filter with photorefractive LiNbO3," J. Phys. D 27, 241-246 (1994).
[CrossRef]

Sohler, W.

B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
[CrossRef]

Ch. Becker, A. Greiner, Th. Oesselke, A. Pape, W. Sohler, and H. Suche, "Integrated optical Ti:Er:LiNbO3 distributed Bragg reflector laser with a fixed photorefractive grating," Opt. Lett. 23, 1194-1196 (1998).
[CrossRef]

Staebler, D. L.

J. J. Amodei and D. L. Staebler, "Holographic recording in lithium niobate," RCA Rev. 33, 71-93 (1972).

Sturman, B. I.

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, "Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment," Phys. Rev. B 57, 12792-12805 (1998).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, "Two kinetic regimes for high-temperature photorefractive phenomena," J. Opt. Soc. Am. B 15, 148-151 (1998).
[CrossRef]

Suche, H.

Vormann, H.

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, "Hydrogen as origin of thermal fixing in LiNbO3:Fe," Solid State Commun. 40, 543-545 (1981).
[CrossRef]

Weber, G.

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, "Hydrogen as origin of thermal fixing in LiNbO3:Fe," Solid State Commun. 40, 543-545 (1981).
[CrossRef]

Wurfel, P.

W. Josch, R. Munser, W. Ruppel, and P. Wurfel, "The photovoltaic effect and the charge transport in LiNbO3," Ferroelectrics 21, 623-625 (1978).
[CrossRef]

Adv. Phys.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, "Hydrogen in lithium niobate," Adv. Phys. 45, 349-392 (1996).
[CrossRef]

Appl. Phys. B

G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Superlinear photovoltaic currents in proton-exchanged LiNbO3 waveguides," Appl. Phys. B 76, 555-559 (2003).
[CrossRef]

J. Hukriede, D. Kip, and E. Krätzig, "Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides," Appl. Phys. B 66, 333-338 (1998).
[CrossRef]

Appl. Phys. Lett.

B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003).
[CrossRef]

F. Laurell, M. G. Roelofs, and H. Hsiung, "Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides," Appl. Phys. Lett. 60, 301-303 (1992).
[CrossRef]

Ferroelectrics

W. Josch, R. Munser, W. Ruppel, and P. Wurfel, "The photovoltaic effect and the charge transport in LiNbO3," Ferroelectrics 21, 623-625 (1978).
[CrossRef]

J. Appl. Phys.

M. Carrascosa and L. Arizmendi, "High-temperature photorefractive effects in LiNbO3:Fe," J. Appl. Phys. 73, 2709-2713 (1993).
[CrossRef]

O. Espeso, G. García, A. Climent, F. Agulló-López, G. de la Paliza, J. M. Cabrera, and T. Sajavaara, "H-Li correlation and stoichiometry of mixed phases in proton-exchanged LiNbO3 waveguides," J. Appl. Phys. 94, 7710-7718 (2003).
[CrossRef]

Yu. N. Korkishko and V. A. Fedorov, "Relationship between refraction indices and hydrogen concentration in proton exchanged LiNbO3 waveguides," J. Appl. Phys. 82, 1010-1017 (1997).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, "A narrow-band interference filter with photorefractive LiNbO3," J. Phys. D 27, 241-246 (1994).
[CrossRef]

Opt. Commun.

V. A. Ganshin and Yu. N. Korkishko, "H:LiNbO3 waveguides effects of annealing," Opt. Commun. 86, 523-530 (1991).
[CrossRef]

Opt. Lett.

Opt. Mater.

A. Méndez, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Dark developing of photorefractive proton-exchanged LiNbO3 waveguides," Opt. Mater. 18, 111-114 (2001)
[CrossRef]

Phys. Rev. B

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals", Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, "Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment," Phys. Rev. B 57, 12792-12805 (1998).
[CrossRef]

E. de Miguel Sanz, M. Carrascosa, and L. Arizmendi, "Effect of oxidation state and hydrgen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe," Phys. Rev. B 65, 165101-7 (2002).
[CrossRef]

RCA Rev.

J. J. Amodei and D. L. Staebler, "Holographic recording in lithium niobate," RCA Rev. 33, 71-93 (1972).

Solid State Commun.

H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, "Hydrogen as origin of thermal fixing in LiNbO3:Fe," Solid State Commun. 40, 543-545 (1981).
[CrossRef]

Other

M. Carrascosa, J. M. Cabrera, and F. Agulló-López, "Long-lifetime photorefractive holographic devices via thermal fixing methods," in Infrared Holography for Optical Communications, Vol. 86 of Topics in Applied Physics, P.Boffi, D.Piccinin, and M.C.Ubaldi, eds. (Springer Verlag, 2003), pp. 91-110.
[CrossRef]

M. Carrascosa, L. Arizmendi, and J. M. Cabrera, "Thermal fixing of photoinduced gratings," in Photorefractive Materials and Their Applications: Volume 1, P.Günter, and J.P.Huignard, eds. (Springer-Verlag, to be published).

G. del Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "High temperature photorefractive effects in alpha-phase PE:LiNbO3 waveguides," in Photorefractive Effects, Materials and Devices, P.Delaye, C.Denz, L.Mager, and G.Montemezzani, eds., Vol. 87 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 172-176.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Scheme of the holographic setup used throughout the work, including the vacuum chamber and the temperature controller (TC). P, polarizer; S1,S2, beam splitters; L1,L2, lenses; M1, M2,…M6 mirrors; W, waveguide with two prism couplers inside the chamber; I 1 and I 2 , recording beams; and I D and I T , diffracted and transmitted beams.

Fig. 2
Fig. 2

Kinetics of the square root of the diffraction efficiency η during recording at 90°C and 110°C. The continuous lines represent fits to two exponential terms (according to the standard fixing model), a fast one with time constant Γ rf = 1 τ rf before reaching η max and a slow one with time constant Γ rs = 1 τ rs after the peak.

Fig. 3
Fig. 3

Dark decays of η 1 2 at temperatures of 80°C and 100°C in a semilogarithmic plot. The continuous lines are fits with a fast exponential term (time constant Γ ef = 1 τ ef ) and a slow one (time constant Γ es = 1 τ es ), as predicted by the standard fixing model.

Fig. 4
Fig. 4

(a) Recording at 90°C 3 h, with I = 2 W cm 2 and m 1 . (b) Optical developing with homogeneous illumination of 2 W cm 2 (after quickly cooling down the sample). (c) New optical developing after complete dark erasure of (b). (d) New optical developing after complete dark erasure of (c).

Fig. 5
Fig. 5

Kinetics of dark erasure after optical developing at room temperature (fixing was performer at 90°C).

Fig. 6
Fig. 6

Optical developing with homogeneous illumination of 2 W cm 2 at 50°C and 85°C of a grating recorded and fixed at 90°C for 3 h. To be compared with Fig. 4, where developing was performed at room temperature.

Fig. 7
Fig. 7

Diffraction efficiency η as a function of time during recording at different temperatures. The diffraction efficiency has been normalized for comparison purposes; the peak value actually decreases upon raising the temperature. Only one of every ten experimental points has been plotted for sake of clarity.

Fig. 8
Fig. 8

Arrhenius plot of the fast rise constant during recording.

Fig. 9
Fig. 9

Arrhenius plot of the fast decay constant during dark erasure.

Fig. 10
Fig. 10

Arrhenius plot of the slow decay constant during dark erasure.

Fig. 11
Fig. 11

Arrhenius plot of the slow decay constant during long optical developing.

Fig. 12
Fig. 12

Arrhenius plots of the three relaxation parameters γ e ph , γ e T , and γ h .

Tables (1)

Tables Icon

Table 1 Photorefractive and Fixing Parameters

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T C = ϵ e T ϵ h k B ln ( μ e 0 μ h 0 ) ,
γ e ph = e μ e n 0 ph ϵ , γ e T = e μ e n 0 T ϵ , γ h = e μ h H 0 ϵ ,
n 0 T = S t N D S r N A , n 0 ph = S ph I N D S r N A ,
S t = S t 0 exp ( ϵ e T k B T ) , μ e = μ e 0 exp ( ϵ e k B T ) ,
μ h = μ h 0 exp ( ϵ h k B T ) .
τ dev , s 1 = D H K 2 ( H 0 N D + 1 ) ,
τ dev , s = 1 D H K 2 N D H 0 .

Metrics