Abstract

We present a novel technique to numerically solve transverse and pulsed optical beam or light bullet propagation in a layered alternating self-focusing and self-defocusing medium based on the scalar nonlinear Schrödinger equation in two and three dimensions with cylindrical and spherical symmetry, respectively. Using fast algorithms for Hankel transform along with adaptive longitudinal stepping and transverse grid management in a symmetrized split-step technique, it is possible to accurately study many nonlinear effects, including the possibility of spatiotemporal collapse, or the collapse-arresting mechanism due to a sign-alternating nonlinearity coefficient. Also, by using the variational approximation technique, we can prove that stable (D+1)-dimensional soliton beams and optical bullets exist in these media.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription