Abstract

Large-aperture and high-energy seeded operation of optical parametric generators (OPGs) based on quasi-phase-matched crystals is presented. High-quality seeded outputs as evidenced by narrow bandwidth and low divergence are demonstrated with energies up to 12.5 mJ in the signal and the idler. The results of OPG devices operating in a partially seeded regime are also presented to give a general prescription for successful seeding at high energies.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
    [CrossRef]
  2. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, "Absolute scale of second-order nonlinear-optical coefficients," J. Opt. Soc. Am. B 14, 2268-2294 (1997).
    [CrossRef]
  3. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, "93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator," Opt. Lett. 21, 1336-1339 (1996).
    [CrossRef] [PubMed]
  4. J. J. Zayhowski, "Periodically poled lithium niobate optical parametric amplifiers pumped by high-power passively Q-switched microchip lasers," Opt. Lett. 22, 169-171 (1997).
    [CrossRef] [PubMed]
  5. P. E. Powers, K. W. Aniolek, T. J. Kulp, B. A. Richman, and S. E. Bisson, "Periodically poled lithium niobate optical parametric amplifier seeded with the narrow-band filtered output of an optical parametric generator," Opt. Lett. 23, 1886-1888 (1998).
    [CrossRef]
  6. M. Rahm, U. Bäder, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, "Pulse-to-pulse wavelength tuning of an injection seeded nanosecond optical parametric generator with 10 kHz repetition rate," Appl. Phys. B 75, 47-51 (2002).
    [CrossRef]
  7. K. W. Aniolek, R. L. Schmitt, T. J. Kulp, B. A. Richman, S. E. Bisson, and P. E. Powers, "Microlaser-pumped periodically poled lithium niobate optical parametric generator optical parametric amplifier," Opt. Lett. 25, 557-559 (2000).
    [CrossRef]
  8. K. Polgar, A. Peter, G. Corradi, and Z. Szaller, "Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method," J. Cryst. Growth 177, 211-216 (1997).
    [CrossRef]
  9. A. Grisard, E. Lallier, K. Polgar, and A. Peter, "Low electric field periodic poling of thick stoichiometric lithium niobate," Electron. Lett. 36, 1043-1044 (2000).
    [CrossRef]
  10. T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, "Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3," Opt. Lett. 25, 651-653 (2000).
    [CrossRef]
  11. M. Missey, V. Dominic, P. Powers, and K. L. Schepler, "Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators," Opt. Lett. 25, 248-250 (2000).
    [CrossRef]
  12. S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, "Broadband mid-infrared generation with two-dimensional quasi-phase-matched structures," IEEE J. Quantum Electron. 37, 877-887 (2001).
    [CrossRef]
  13. M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, "Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators," Opt. Lett. 24, 1227-1229 (1999).
    [CrossRef]
  14. H. Ishizuki, I. Shoji, and T. Taira, "High-energy quasi-phase-matched optical parametric oscillation in a 3-mm-thick periodically poled MgO:LiNbO3 device," Opt. Lett. 29, 2527-2529 (2004).
    [CrossRef] [PubMed]
  15. J. Hellstrom, V. Pasiskevicius, H. Karlsson, and F. Laurell, "High-power optical parametric oscillation in large-aperture periodically poled KTiOPO4," Opt. Lett. 25, 174-176 (2000).
    [CrossRef]
  16. H. Karlsson, M. Olson, G. Arvidson, F. Laurell, U. Bader, A. Borsutzky, R. Wallenstein, S. Wickstrom, and M. Gustafsson, "Nanosecond optical parametric oscillator based on large-aperture periodically poled RbTiOAsO4," Opt. Lett. 24, 330-332 (1999).
    [CrossRef]
  17. Y. Y. Guan, J. W. Haus, and P. E. Powers, "Broadband and of-axis optical parametric generation in periodically-poled LiNbO3," J. Opt. Soc. Am. B 21, 1225-1233 (2004).
    [CrossRef]
  18. S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, "Optical parametric generation of greater than 30 mJ signal energies in PPLN stacks," in Conference on Lasers and Electro-optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), postdeadline paper CPD-24.
  19. M. V. Pack, D. J. Armstrong, and A. V. Smith, "Measurement of the chi-(2) tensors of KTiOPO4, KTiOAsO4, RbTiOPO4, and RbTiOAsO4 crystals," Appl. Opt. 43, 3319-3323(2004).
    [CrossRef] [PubMed]
  20. A. E. Siegman, "Defining and measuring laser beam quality," in Solid State Lasers: New Developments and Applications" (Plenum, 1994).
  21. R. W. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3612 (1968).
    [CrossRef]

2004

2002

M. Rahm, U. Bäder, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, "Pulse-to-pulse wavelength tuning of an injection seeded nanosecond optical parametric generator with 10 kHz repetition rate," Appl. Phys. B 75, 47-51 (2002).
[CrossRef]

2001

S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, "Broadband mid-infrared generation with two-dimensional quasi-phase-matched structures," IEEE J. Quantum Electron. 37, 877-887 (2001).
[CrossRef]

2000

1999

1998

1997

1996

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

1968

R. W. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3612 (1968).
[CrossRef]

Alexander, J. I.

Aniolek, K. W.

Anstett, G.

M. Rahm, U. Bäder, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, "Pulse-to-pulse wavelength tuning of an injection seeded nanosecond optical parametric generator with 10 kHz repetition rate," Appl. Phys. B 75, 47-51 (2002).
[CrossRef]

Armstrong, D. J.

Arvidson, G.

Bader, U.

Bäder, U.

M. Rahm, U. Bäder, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, "Pulse-to-pulse wavelength tuning of an injection seeded nanosecond optical parametric generator with 10 kHz repetition rate," Appl. Phys. B 75, 47-51 (2002).
[CrossRef]

Bisson, S. E.

Borsutzky, A.

M. Rahm, U. Bäder, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, "Pulse-to-pulse wavelength tuning of an injection seeded nanosecond optical parametric generator with 10 kHz repetition rate," Appl. Phys. B 75, 47-51 (2002).
[CrossRef]

H. Karlsson, M. Olson, G. Arvidson, F. Laurell, U. Bader, A. Borsutzky, R. Wallenstein, S. Wickstrom, and M. Gustafsson, "Nanosecond optical parametric oscillator based on large-aperture periodically poled RbTiOAsO4," Opt. Lett. 24, 330-332 (1999).
[CrossRef]

Bosenberg, W. R.

Boyd, R. W.

R. W. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3612 (1968).
[CrossRef]

Byer, R. L.

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, "93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator," Opt. Lett. 21, 1336-1339 (1996).
[CrossRef] [PubMed]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Corradi, G.

K. Polgar, A. Peter, G. Corradi, and Z. Szaller, "Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method," J. Cryst. Growth 177, 211-216 (1997).
[CrossRef]

Dominic, V.

Drobshoff, A.

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Furukawa, Y.

Grisard, A.

A. Grisard, E. Lallier, K. Polgar, and A. Peter, "Low electric field periodic poling of thick stoichiometric lithium niobate," Electron. Lett. 36, 1043-1044 (2000).
[CrossRef]

Guan, Y. Y.

Gustafsson, M.

Hatanaka, T.

Haus, J. W.

Hellstrom, J.

Ishizuki, H.

Ito, H.

Ito, R.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Karlsson, H.

Kitamoto, A.

Kitamura, K.

Kleinman, D. A.

R. W. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3612 (1968).
[CrossRef]

Kondo, T.

Kulp, T. J.

Lallier, E.

A. Grisard, E. Lallier, K. Polgar, and A. Peter, "Low electric field periodic poling of thick stoichiometric lithium niobate," Electron. Lett. 36, 1043-1044 (2000).
[CrossRef]

Laurell, F.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Meyn, J.-P.

M. Rahm, U. Bäder, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, "Pulse-to-pulse wavelength tuning of an injection seeded nanosecond optical parametric generator with 10 kHz repetition rate," Appl. Phys. B 75, 47-51 (2002).
[CrossRef]

Missey, M.

Missey, M. J.

S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, "Broadband mid-infrared generation with two-dimensional quasi-phase-matched structures," IEEE J. Quantum Electron. 37, 877-887 (2001).
[CrossRef]

M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, "Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators," Opt. Lett. 24, 1227-1229 (1999).
[CrossRef]

S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, "Optical parametric generation of greater than 30 mJ signal energies in PPLN stacks," in Conference on Lasers and Electro-optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), postdeadline paper CPD-24.

Myers, L. E.

Nakamura, K.

Olson, M.

Pack, M. V.

Pasiskevicius, V.

Peter, A.

A. Grisard, E. Lallier, K. Polgar, and A. Peter, "Low electric field periodic poling of thick stoichiometric lithium niobate," Electron. Lett. 36, 1043-1044 (2000).
[CrossRef]

K. Polgar, A. Peter, G. Corradi, and Z. Szaller, "Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method," J. Cryst. Growth 177, 211-216 (1997).
[CrossRef]

Polgar, K.

A. Grisard, E. Lallier, K. Polgar, and A. Peter, "Low electric field periodic poling of thick stoichiometric lithium niobate," Electron. Lett. 36, 1043-1044 (2000).
[CrossRef]

K. Polgar, A. Peter, G. Corradi, and Z. Szaller, "Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method," J. Cryst. Growth 177, 211-216 (1997).
[CrossRef]

Powers, P.

Powers, P. E.

Rahm, M.

M. Rahm, U. Bäder, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, "Pulse-to-pulse wavelength tuning of an injection seeded nanosecond optical parametric generator with 10 kHz repetition rate," Appl. Phys. B 75, 47-51 (2002).
[CrossRef]

Richman, B. A.

Russell, S. M.

S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, "Broadband mid-infrared generation with two-dimensional quasi-phase-matched structures," IEEE J. Quantum Electron. 37, 877-887 (2001).
[CrossRef]

S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, "Optical parametric generation of greater than 30 mJ signal energies in PPLN stacks," in Conference on Lasers and Electro-optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), postdeadline paper CPD-24.

Schepler, K. L.

S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, "Broadband mid-infrared generation with two-dimensional quasi-phase-matched structures," IEEE J. Quantum Electron. 37, 877-887 (2001).
[CrossRef]

M. Missey, V. Dominic, P. Powers, and K. L. Schepler, "Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators," Opt. Lett. 25, 248-250 (2000).
[CrossRef]

M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, "Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators," Opt. Lett. 24, 1227-1229 (1999).
[CrossRef]

S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, "Optical parametric generation of greater than 30 mJ signal energies in PPLN stacks," in Conference on Lasers and Electro-optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), postdeadline paper CPD-24.

Schmitt, R. L.

Shirane, M.

Shoji, I.

Siegman, A. E.

A. E. Siegman, "Defining and measuring laser beam quality," in Solid State Lasers: New Developments and Applications" (Plenum, 1994).

Smith, A. V.

Szaller, Z.

K. Polgar, A. Peter, G. Corradi, and Z. Szaller, "Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method," J. Cryst. Growth 177, 211-216 (1997).
[CrossRef]

Taira, T.

Taniuchi, T.

Wallenstein, R.

M. Rahm, U. Bäder, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, "Pulse-to-pulse wavelength tuning of an injection seeded nanosecond optical parametric generator with 10 kHz repetition rate," Appl. Phys. B 75, 47-51 (2002).
[CrossRef]

H. Karlsson, M. Olson, G. Arvidson, F. Laurell, U. Bader, A. Borsutzky, R. Wallenstein, S. Wickstrom, and M. Gustafsson, "Nanosecond optical parametric oscillator based on large-aperture periodically poled RbTiOAsO4," Opt. Lett. 24, 330-332 (1999).
[CrossRef]

Wickstrom, S.

Zayhowski, J. J.

Appl. Opt.

Appl. Phys. B

M. Rahm, U. Bäder, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, "Pulse-to-pulse wavelength tuning of an injection seeded nanosecond optical parametric generator with 10 kHz repetition rate," Appl. Phys. B 75, 47-51 (2002).
[CrossRef]

Electron. Lett.

A. Grisard, E. Lallier, K. Polgar, and A. Peter, "Low electric field periodic poling of thick stoichiometric lithium niobate," Electron. Lett. 36, 1043-1044 (2000).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, "Broadband mid-infrared generation with two-dimensional quasi-phase-matched structures," IEEE J. Quantum Electron. 37, 877-887 (2001).
[CrossRef]

J. Appl. Phys.

R. W. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3612 (1968).
[CrossRef]

J. Cryst. Growth

K. Polgar, A. Peter, G. Corradi, and Z. Szaller, "Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method," J. Cryst. Growth 177, 211-216 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, "93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator," Opt. Lett. 21, 1336-1339 (1996).
[CrossRef] [PubMed]

J. J. Zayhowski, "Periodically poled lithium niobate optical parametric amplifiers pumped by high-power passively Q-switched microchip lasers," Opt. Lett. 22, 169-171 (1997).
[CrossRef] [PubMed]

P. E. Powers, K. W. Aniolek, T. J. Kulp, B. A. Richman, and S. E. Bisson, "Periodically poled lithium niobate optical parametric amplifier seeded with the narrow-band filtered output of an optical parametric generator," Opt. Lett. 23, 1886-1888 (1998).
[CrossRef]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, "Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3," Opt. Lett. 25, 651-653 (2000).
[CrossRef]

M. Missey, V. Dominic, P. Powers, and K. L. Schepler, "Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators," Opt. Lett. 25, 248-250 (2000).
[CrossRef]

K. W. Aniolek, R. L. Schmitt, T. J. Kulp, B. A. Richman, S. E. Bisson, and P. E. Powers, "Microlaser-pumped periodically poled lithium niobate optical parametric generator optical parametric amplifier," Opt. Lett. 25, 557-559 (2000).
[CrossRef]

M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, "Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators," Opt. Lett. 24, 1227-1229 (1999).
[CrossRef]

H. Ishizuki, I. Shoji, and T. Taira, "High-energy quasi-phase-matched optical parametric oscillation in a 3-mm-thick periodically poled MgO:LiNbO3 device," Opt. Lett. 29, 2527-2529 (2004).
[CrossRef] [PubMed]

J. Hellstrom, V. Pasiskevicius, H. Karlsson, and F. Laurell, "High-power optical parametric oscillation in large-aperture periodically poled KTiOPO4," Opt. Lett. 25, 174-176 (2000).
[CrossRef]

H. Karlsson, M. Olson, G. Arvidson, F. Laurell, U. Bader, A. Borsutzky, R. Wallenstein, S. Wickstrom, and M. Gustafsson, "Nanosecond optical parametric oscillator based on large-aperture periodically poled RbTiOAsO4," Opt. Lett. 24, 330-332 (1999).
[CrossRef]

Other

S. M. Russell, P. E. Powers, M. J. Missey, and K. L. Schepler, "Optical parametric generation of greater than 30 mJ signal energies in PPLN stacks," in Conference on Lasers and Electro-optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), postdeadline paper CPD-24.

A. E. Siegman, "Defining and measuring laser beam quality," in Solid State Lasers: New Developments and Applications" (Plenum, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup. The output of an Nd : YAG laser and an amplified diode laser were overlapped in an OPG crystal. The output of the Nd : YAG laser was adjusted with a variable attenuator consisting of a half-wave plate ( λ 2 plate) and a thin-film polarizer (TFP). The beams were formatted into an elliptical beam with a cylindrical microlens array (MLA). A mask (not shown) placed after the MLA selected only one of these elliptical beams to pump the OPG crystal. The output of the OPG was collected with a curved mirror and focused onto a diffuser whose scattered light was collected with a CaF 2 lens and sent to a monochromator.

Fig. 2
Fig. 2

Beam cross sections from the pump laser and the seed beam at the crystal location. The cross section is in the long direction of the elliptical beams. Note that the seed overfills the pump beam.

Fig. 3
Fig. 3

Unseeded OPG energy for PPLN and PPRTA crystals. The intersection of the linear fit with zero output energy was our determination of the OPG threshold. This gives 3 mJ for PPLN and 13.5 mJ for PPRTA.

Fig. 4
Fig. 4

Spectrum of seeded PPLN OPG output for a range of pump energies. (a) A broad spectrum taken with low resolution shows that the OPG background was present out to degeneracy (2128 nm) for high energies. Several scans were pieced together to cover the entire range. (b) High-resolution spectrum in the region of the seeded peak, also showing an OPG background for high pump energies.

Fig. 5
Fig. 5

Seeded and unseeded spectra for PPRTA OPG when the pump energy was 40 mJ and the seed power was 55 mW. The spectra were pieced together from three scans.

Fig. 6
Fig. 6

Seeded spectra of the PPRTA crystal for a range of seed powers.

Fig. 7
Fig. 7

Far-field output of PPRTA (a) seeded and (b) unseeded. Both images were plotted with the same gray scale, but the unseeded image was multiplied by 10 for visibility.

Fig. 8
Fig. 8

Pump and signal beam geometries for the two expressions given in the text for differing noncollinear angles used to determine the gain reduction factor, f. The overlap is the darkly shaded region. The reason for two expressions is that the overlap in the top picture is entirely within the crystal, whereas it is both inside and outside the crystal in the bottom picture.

Fig. 9
Fig. 9

Normalized gain–overlap function plotted as a function of wavelength for ξ = 3.5 . Superposed on the plot is the measured spectrum from the 3 cm PPLN crystal.

Fig. 10
Fig. 10

Comparison of the gain–overlap between a long crystal with a low d eff and a short crystal with a large d eff .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M 2 = π W NF λ W FF z = π W NF λ θ FF ,
G = Γ 2 L z 2 f ( θ , ξ ) ,
Γ 2 = 8 π 2 d eff 2 I p n p n s n i c ϵ o λ s λ i ,
f = { 1 ξ ( tan θ s + tan θ i ) 2 ξ ( tan θ s + tan θ i ) < 1 1 1 2 ξ ( tan θ s + tan θ i ) ξ ( tan θ s + tan θ i ) > 1 } ,

Metrics