Abstract

Nonlinear properties of electromagnetically induced transparency (EIT) with respect to a weak probe light are studied. We observe EIT in a rubidium vapor, measure the slow light group velocity and the EIT resonance width, and find that those parameters show a strong dependence on the probe power. We theoretically study the influence of the EIT probe dependence on the performance of the EIT-based optical delay lines and magnetometers.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Letokhov and V. P. Chebotaev, Nonlinear Laser Spectroscopy (Springer-Verlag, New York, 1977).
  2. E. Arimondo, "Coherent population trapping in laser spectroscopy," in Progress in Optics, Vol. XXXV , E. Wolf, ed. (Elsevier, Amsterdam, 1996), pp. 257-354.
  3. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
    [CrossRef]
  4. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997).
  5. H. Wang, D. Goorskey, and M. Xiao, "Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system," Phys. Rev. Lett. 87, 073601 (2001).
    [CrossRef] [PubMed]
  6. H. Schmidt and A. Imamoglu, "Giant Kerr nonlinearities obtained by electromagnetically induced transparency," Opt. Lett. 21, 1936-1938 (1996).
    [CrossRef] [PubMed]
  7. D. Petrosyan and G. Kurizki, "Symmetric photon-photon coupling by atoms with Zeeman-split sublevels," Phys. Rev. A 65, 033833 (2002).
    [CrossRef]
  8. A. B. Matsko, I. Novikova, G. R. Welch, and M. S. Zubairy, "Enhancement of Kerr nonlinearity by multiphoton coherence," Opt. Lett. 28, 96-98 (2003).
    [CrossRef] [PubMed]
  9. M. Paternostro, M. S. Kim, and B. S. Ham, "Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime," Phys. Rev. A 67, 023811 (2003).
    [CrossRef]
  10. A. B. Matsko, I. Novikova, M. S. Zubairy, and G. R. Welch, "Nonlinear magneto-optical rotation of elliptically polarized light," Phys. Rev. A 67, 043805 (2003).
    [CrossRef]
  11. A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, "Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms," Phys. Rev. A 67, 023818 (2003).
    [CrossRef]
  12. P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, "Variable semiconductor all-optical buffer," Electron. Lett. 38, 1581-1583 (2002).
    [CrossRef]
  13. M. Fleischhauer and M. O. Scully, "Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence," Phys. Rev. A 49, 1973-1986 (1994).
    [CrossRef] [PubMed]
  14. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
    [CrossRef]
  15. O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, "Stopping light via hot atoms," Phys. Rev. Lett. 86, 628-631 (2001).
    [CrossRef] [PubMed]
  16. D. V. Strekalov, A. B. Matsko, N. Yu, and L. Maleki, "Observation of light dragging in a rubidium vapor cell," Phys. Rev. Lett. 93, 023601 (2004).
    [CrossRef] [PubMed]
  17. M. Fleischhauer, A. B. Matsko, and M. O. Scully, "Quantum limit of optical magnetometry in the presence of ac Stark shifts," Phys. Rev. A 62, 013808 (2000).
    [CrossRef]
  18. H. Schmidt and R. J. Ram, "All-optical wavelength converter and switch based on electro-magnetically induced transparency," Appl. Phys. Lett. 76, 3173-3175 (2000).
    [CrossRef]

2004 (1)

D. V. Strekalov, A. B. Matsko, N. Yu, and L. Maleki, "Observation of light dragging in a rubidium vapor cell," Phys. Rev. Lett. 93, 023601 (2004).
[CrossRef] [PubMed]

2003 (4)

A. B. Matsko, I. Novikova, G. R. Welch, and M. S. Zubairy, "Enhancement of Kerr nonlinearity by multiphoton coherence," Opt. Lett. 28, 96-98 (2003).
[CrossRef] [PubMed]

M. Paternostro, M. S. Kim, and B. S. Ham, "Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime," Phys. Rev. A 67, 023811 (2003).
[CrossRef]

A. B. Matsko, I. Novikova, M. S. Zubairy, and G. R. Welch, "Nonlinear magneto-optical rotation of elliptically polarized light," Phys. Rev. A 67, 043805 (2003).
[CrossRef]

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, "Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms," Phys. Rev. A 67, 023818 (2003).
[CrossRef]

2002 (2)

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, "Variable semiconductor all-optical buffer," Electron. Lett. 38, 1581-1583 (2002).
[CrossRef]

D. Petrosyan and G. Kurizki, "Symmetric photon-photon coupling by atoms with Zeeman-split sublevels," Phys. Rev. A 65, 033833 (2002).
[CrossRef]

2001 (2)

H. Wang, D. Goorskey, and M. Xiao, "Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system," Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef] [PubMed]

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, "Stopping light via hot atoms," Phys. Rev. Lett. 86, 628-631 (2001).
[CrossRef] [PubMed]

2000 (2)

M. Fleischhauer, A. B. Matsko, and M. O. Scully, "Quantum limit of optical magnetometry in the presence of ac Stark shifts," Phys. Rev. A 62, 013808 (2000).
[CrossRef]

H. Schmidt and R. J. Ram, "All-optical wavelength converter and switch based on electro-magnetically induced transparency," Appl. Phys. Lett. 76, 3173-3175 (2000).
[CrossRef]

1999 (1)

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

1997 (1)

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

1996 (1)

1994 (1)

M. Fleischhauer and M. O. Scully, "Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence," Phys. Rev. A 49, 1973-1986 (1994).
[CrossRef] [PubMed]

Chang-Hasnain, C. J.

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, "Variable semiconductor all-optical buffer," Electron. Lett. 38, 1581-1583 (2002).
[CrossRef]

Chuang, S. L.

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, "Variable semiconductor all-optical buffer," Electron. Lett. 38, 1581-1583 (2002).
[CrossRef]

de Echaniz, S. R.

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, "Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms," Phys. Rev. A 67, 023818 (2003).
[CrossRef]

Durrant, A. V.

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, "Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms," Phys. Rev. A 67, 023818 (2003).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. B. Matsko, and M. O. Scully, "Quantum limit of optical magnetometry in the presence of ac Stark shifts," Phys. Rev. A 62, 013808 (2000).
[CrossRef]

Fleischhauer , M.

M. Fleischhauer and M. O. Scully, "Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence," Phys. Rev. A 49, 1973-1986 (1994).
[CrossRef] [PubMed]

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Goorskey, D.

H. Wang, D. Goorskey, and M. Xiao, "Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system," Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef] [PubMed]

Greentree, A. D.

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, "Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms," Phys. Rev. A 67, 023818 (2003).
[CrossRef]

Ham, B. S.

M. Paternostro, M. S. Kim, and B. S. Ham, "Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime," Phys. Rev. A 67, 023811 (2003).
[CrossRef]

Harris, S. E.

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

Hollberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Imamoglu, A.

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Kim, M. S.

M. Paternostro, M. S. Kim, and B. S. Ham, "Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime," Phys. Rev. A 67, 023811 (2003).
[CrossRef]

Kocharovskaya, O.

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, "Stopping light via hot atoms," Phys. Rev. Lett. 86, 628-631 (2001).
[CrossRef] [PubMed]

Ku, P. C.

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, "Variable semiconductor all-optical buffer," Electron. Lett. 38, 1581-1583 (2002).
[CrossRef]

Kurizki, G.

D. Petrosyan and G. Kurizki, "Symmetric photon-photon coupling by atoms with Zeeman-split sublevels," Phys. Rev. A 65, 033833 (2002).
[CrossRef]

Lukin, M. D.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Maleki, L.

D. V. Strekalov, A. B. Matsko, N. Yu, and L. Maleki, "Observation of light dragging in a rubidium vapor cell," Phys. Rev. Lett. 93, 023601 (2004).
[CrossRef] [PubMed]

Marangos, J. P.

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, "Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms," Phys. Rev. A 67, 023818 (2003).
[CrossRef]

Matsko, A. B.

D. V. Strekalov, A. B. Matsko, N. Yu, and L. Maleki, "Observation of light dragging in a rubidium vapor cell," Phys. Rev. Lett. 93, 023601 (2004).
[CrossRef] [PubMed]

A. B. Matsko, I. Novikova, M. S. Zubairy, and G. R. Welch, "Nonlinear magneto-optical rotation of elliptically polarized light," Phys. Rev. A 67, 043805 (2003).
[CrossRef]

A. B. Matsko, I. Novikova, G. R. Welch, and M. S. Zubairy, "Enhancement of Kerr nonlinearity by multiphoton coherence," Opt. Lett. 28, 96-98 (2003).
[CrossRef] [PubMed]

M. Fleischhauer, A. B. Matsko, and M. O. Scully, "Quantum limit of optical magnetometry in the presence of ac Stark shifts," Phys. Rev. A 62, 013808 (2000).
[CrossRef]

Novikova, I.

A. B. Matsko, I. Novikova, G. R. Welch, and M. S. Zubairy, "Enhancement of Kerr nonlinearity by multiphoton coherence," Opt. Lett. 28, 96-98 (2003).
[CrossRef] [PubMed]

A. B. Matsko, I. Novikova, M. S. Zubairy, and G. R. Welch, "Nonlinear magneto-optical rotation of elliptically polarized light," Phys. Rev. A 67, 043805 (2003).
[CrossRef]

Paternostro, M.

M. Paternostro, M. S. Kim, and B. S. Ham, "Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime," Phys. Rev. A 67, 023811 (2003).
[CrossRef]

Petrosyan , D.

D. Petrosyan and G. Kurizki, "Symmetric photon-photon coupling by atoms with Zeeman-split sublevels," Phys. Rev. A 65, 033833 (2002).
[CrossRef]

Ram, R. J.

H. Schmidt and R. J. Ram, "All-optical wavelength converter and switch based on electro-magnetically induced transparency," Appl. Phys. Lett. 76, 3173-3175 (2000).
[CrossRef]

Richards, D.

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, "Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms," Phys. Rev. A 67, 023818 (2003).
[CrossRef]

Rostovtsev, Y.

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, "Stopping light via hot atoms," Phys. Rev. Lett. 86, 628-631 (2001).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Schmidt , H.

H. Schmidt and R. J. Ram, "All-optical wavelength converter and switch based on electro-magnetically induced transparency," Appl. Phys. Lett. 76, 3173-3175 (2000).
[CrossRef]

H. Schmidt and A. Imamoglu, "Giant Kerr nonlinearities obtained by electromagnetically induced transparency," Opt. Lett. 21, 1936-1938 (1996).
[CrossRef] [PubMed]

Scully, M. O.

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, "Stopping light via hot atoms," Phys. Rev. Lett. 86, 628-631 (2001).
[CrossRef] [PubMed]

M. Fleischhauer, A. B. Matsko, and M. O. Scully, "Quantum limit of optical magnetometry in the presence of ac Stark shifts," Phys. Rev. A 62, 013808 (2000).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

M. Fleischhauer and M. O. Scully, "Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence," Phys. Rev. A 49, 1973-1986 (1994).
[CrossRef] [PubMed]

Segal, D. M.

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, "Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms," Phys. Rev. A 67, 023818 (2003).
[CrossRef]

Strekalov, D. V.

D. V. Strekalov, A. B. Matsko, N. Yu, and L. Maleki, "Observation of light dragging in a rubidium vapor cell," Phys. Rev. Lett. 93, 023601 (2004).
[CrossRef] [PubMed]

Vaccaro, J. A.

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, "Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms," Phys. Rev. A 67, 023818 (2003).
[CrossRef]

Wang, H.

H. Wang, D. Goorskey, and M. Xiao, "Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system," Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef] [PubMed]

Welch, G. R.

A. B. Matsko, I. Novikova, G. R. Welch, and M. S. Zubairy, "Enhancement of Kerr nonlinearity by multiphoton coherence," Opt. Lett. 28, 96-98 (2003).
[CrossRef] [PubMed]

A. B. Matsko, I. Novikova, M. S. Zubairy, and G. R. Welch, "Nonlinear magneto-optical rotation of elliptically polarized light," Phys. Rev. A 67, 043805 (2003).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Xiao, M.

H. Wang, D. Goorskey, and M. Xiao, "Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system," Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef] [PubMed]

Yu, N.

D. V. Strekalov, A. B. Matsko, N. Yu, and L. Maleki, "Observation of light dragging in a rubidium vapor cell," Phys. Rev. Lett. 93, 023601 (2004).
[CrossRef] [PubMed]

Zibrov, A. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Zubairy, M. S.

A. B. Matsko, I. Novikova, M. S. Zubairy, and G. R. Welch, "Nonlinear magneto-optical rotation of elliptically polarized light," Phys. Rev. A 67, 043805 (2003).
[CrossRef]

A. B. Matsko, I. Novikova, G. R. Welch, and M. S. Zubairy, "Enhancement of Kerr nonlinearity by multiphoton coherence," Opt. Lett. 28, 96-98 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

H. Schmidt and R. J. Ram, "All-optical wavelength converter and switch based on electro-magnetically induced transparency," Appl. Phys. Lett. 76, 3173-3175 (2000).
[CrossRef]

Electron. Lett. (1)

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, "Variable semiconductor all-optical buffer," Electron. Lett. 38, 1581-1583 (2002).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (6)

M. Paternostro, M. S. Kim, and B. S. Ham, "Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime," Phys. Rev. A 67, 023811 (2003).
[CrossRef]

A. B. Matsko, I. Novikova, M. S. Zubairy, and G. R. Welch, "Nonlinear magneto-optical rotation of elliptically polarized light," Phys. Rev. A 67, 043805 (2003).
[CrossRef]

A. D. Greentree, D. Richards, J. A. Vaccaro, A. V. Durrant, S. R. de Echaniz, D. M. Segal, and J. P. Marangos, "Intensity-dependent dispersion under conditions of electromagnetically induced transparency in coherently prepared multistate atoms," Phys. Rev. A 67, 023818 (2003).
[CrossRef]

D. Petrosyan and G. Kurizki, "Symmetric photon-photon coupling by atoms with Zeeman-split sublevels," Phys. Rev. A 65, 033833 (2002).
[CrossRef]

M. Fleischhauer, A. B. Matsko, and M. O. Scully, "Quantum limit of optical magnetometry in the presence of ac Stark shifts," Phys. Rev. A 62, 013808 (2000).
[CrossRef]

M. Fleischhauer and M. O. Scully, "Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence," Phys. Rev. A 49, 1973-1986 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, "Stopping light via hot atoms," Phys. Rev. Lett. 86, 628-631 (2001).
[CrossRef] [PubMed]

D. V. Strekalov, A. B. Matsko, N. Yu, and L. Maleki, "Observation of light dragging in a rubidium vapor cell," Phys. Rev. Lett. 93, 023601 (2004).
[CrossRef] [PubMed]

H. Wang, D. Goorskey, and M. Xiao, "Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system," Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

Other (3)

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997).

V. S. Letokhov and V. P. Chebotaev, Nonlinear Laser Spectroscopy (Springer-Verlag, New York, 1977).

E. Arimondo, "Coherent population trapping in laser spectroscopy," in Progress in Optics, Vol. XXXV , E. Wolf, ed. (Elsevier, Amsterdam, 1996), pp. 257-354.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Level scheme for the 5S1/2, F=25P1/2, F=1 transition of  87Rb used in our experiment. (b) Possible simplification of the scheme in the case of strong drive and weak probe fields. The fractions represent the Clebsch–Gordan coefficients used in our numerical model.

Fig. 2
Fig. 2

Experimental setup that allows us to measure alternatively the EIT resonance width and the beat note phase (i.e., the group delay). The reference laser is locked to the F=2F=2 transition of  87Rb by the usual saturation absorption technique (not shown). AOM, acousto-optical modulator; PBS, polarizing beam splitter; PLL, phase-locked loop; RF, radio frequency; FM, frequency modulation; AM, amplitude modulation.

Fig. 3
Fig. 3

Full width at half-maximum of the EIT resonance. Drive power is Pdrive=2.2 mW. Cell temperature is 65 °C. Relative drive and probe transmission through the cell is approximately 0.4 and 0.15, respectively. Crosses show experimental data. Solid curve presents the results of numerical simulations of the probe light propagation in a Doppler-broadened gas.

Fig. 4
Fig. 4

Dependence of the beat note delay (open circles) and of probe transmission (filled squares) on the single-photon detuning from the center of the atomic resonance. Drive power is 2.3 mW, probe power is 0.2 mW, and cell temperature is 69 °C.

Fig. 5
Fig. 5

Maximum delay of the probe beat note versus relative probe power. Drive power is Pdrive=2.2 mW. Cell temperature is 65 °C. Experimental data are shown by the open circles. The results of our numerical simulations for the Doppler-broadened medium are shown by the solid curve.

Fig. 6
Fig. 6

Frequency shift of the group-delay maxima shown in Fig. 5.

Fig. 7
Fig. 7

(a) Λ and (b) M energy-level configurations.

Fig. 8
Fig. 8

Theoretical simulations of the relative delay of the probe beat note versus the relative probe power. Solid curves correspond to the naturally broadened rubidium vapor (2) and the equivalent three-level Λ system (1). The dotted curve (3) corresponds to the Doppler-broadened rubidium and drive Rabi frequency Ωdrive=0.1γr, where γr is the natural broadening of the excited state of rubidium. The dashed curve (4) corresponds to the Doppler-broadened rubidium and Ωdrive=0.5γr. The coherence decay was taken to be equal to γ0=0.004γr, and the Doppler distribution width ΔD=100γr. The matrix elements for the corresponding transitions were chosen as for  87Rb.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

vg=vg01+αvPprobePdrive.
Eprobez=2πiNωpcHIEprobe*,
HI=ħδ|Edrive|2-|Eprobe|2|Edrive|2+|Eprobe|2,
Eprobez=-8iπ2ħδNλEprobe|Edrive|2(|Edrive|2+|Eprobe|2)2,
vgΛλ|Edrive|24π2ħN1+2|Eprobe|2|Edrive|2.
HI=2ħδ|Edrive|4-|Eprobe|4|Edrive|4+|Eprobe|4+|Edrive|2|Eprobe|2.
vgMλ|Edrive|24π2ħN1-2|Eprobe|2|Edrive|2.
HI=ħδ|Edrive|2-|Eprobe|2|Edrive|2+|Eprobe|2+2|Edrive|4-|Eprobe|4|Edrive|4+|Eprobe|4+6|Edrive|2|Eprobe|2.
vgRλ|Edrive|228π2ħN1+10|Eprobe|2|Edrive|2.
HI=ħδ|Edrive|2-|Eprobe|2|Edrive|2+|Eprobe|2+|Edrive|2-6|Eprobe|2|Edrive|2+6|Eprobe|2.
v˜gRλ|Edrive|228π2ħN1+747|Eprobe|2|Edrive|2.
vgΛvgR=1+2(2+q2)(2-q2)2.
vgΛv˜gR=1+24(7-5q)2.
Δτ=τg(ΔPdrive)2+αv2(ΔPprobe)2Pdrive21/2,
PprobePdrive<αv-2.
ϕs=aB0Ldzvg01+αvPprobePdrive-1,
Δϕ=ħωpPprobe(z=L)τmeas1/2,
PprobePdrive=αv-1.

Metrics