Abstract

We present a theory on a novel class of magneto-optical devices operated by means of magneto-optically induced refractive-index perturbations in chirped Bragg gratings. The predicted effect of the introduced perturbation is an opening of a narrow transmission window in the band-blocking transmission of the chirped grating. The narrow transmission window is tunable in wavelength, and relative transmission and the effects of multiple, spatially separated perturbations can also be superimposed, hence allowing for tunable, magneto-optically operated, multichannel add–drop multiplexors suitable for modularization in integrated optics.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Jonsson and C. Flytzanis, "Polarization state controlled multistability of a nonlinear magneto-optic cavity," Phys. Rev. Lett. 82, 1426-1429 (1999).
    [CrossRef]
  2. S. Wabnitz, E. Westin, R. Frey, and C. Flytzanis, "Soliton mode locking by nonlinear Faraday rotation," J. Opt. Soc. Am. B 13, 2420-2423 (1996).
    [CrossRef]
  3. J. Fujita, M. Levy, R. Scarmozzino, R. M. Osgood, L. Eldada, and J. Yardley, "Integrated multistack waveguide polarizer," IEEE Photonics Technol. Lett. 10, 93-95 (1998).
    [CrossRef]
  4. J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
    [CrossRef]
  5. H. Kato and M. Inoue, "Reflection-mode operation of 1-dimensional magnetophotonic crystals for use in film-based magneto-optical isolator devices," J. Appl. Phys. 91, 7017-7019 (2002).
    [CrossRef]
  6. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phys. Lett. 82, 1999-2001 (2003).
    [CrossRef]
  7. R. Khomeriki and L. Tkeshelashvili, "Stable magnetostatic solitons in yttrium iron garnet film waveguides for tilted in-plane magnetic fields," Phys. Rev. B 65, 134415 (2002).
    [CrossRef]
  8. F. J. Rachford, M. Levy, R. M. Osgood, Jr., A. Kumar, and H. Bakhru, "Magnetization and ferromagnetic resonance studies in implanted and crystal ion sliced bismuth-substituted yttrium iron garnet films," J. Appl. Phys. 85, 5217-5219 (1999).
    [CrossRef]
  9. F. J. Rachford, M. Levy, R. M. Osgood, Jr., A. Kumar, and H. Bakhru, "Magnetization and FMR studies of crystal-ion-sliced narrow linewidth gallium-doped yttrium iron garnet," J. Appl. Phys. 87, 6253-6255 (2000).
    [CrossRef]
  10. M. J. Steel, M. Levy, and J. R. M. Osgood, "Large magnetooptical Kerr rotation with high reflectivity from photonic bandgap structures with defects," J. Lightwave Technol. 18, 1289-1296 (2000).
    [CrossRef]
  11. M. J. Steel, M. Levy, and J. R. M. Osgood, "Photonic bandgaps with defects and the enhancement of Faraday rotation," J. Lightwave Technol. 18, 1297-1308 (2000).
    [CrossRef]
  12. M. J. Steel, M. Levy, and J. R. M. Osgood, "High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects," IEEE Photonics Technol. Lett. 12, 1171-1173 (2002).
    [CrossRef]
  13. J. Su and C. S. Tsai, "Nonlinear characteristics of magnetooptic Bragg diffraction in bismuth substituted yttrium iron garnet films," J. Appl. Phys. 87, 1474-1481 (2000).
    [CrossRef]
  14. C. Xu, X. Hu, Y. Li, X. Liu, R. Fu, and J. Zi, "Semiconductor-based tunable photonic crystals by means of an external magnetic field," Phys. Rev. B 68, 193201 (2003).
    [CrossRef]
  15. J. L. Arce-Diego, R. López-Ruisánchez, J. M. López-Higuera, and M. A. Muriel, "Fiber Bragg grating as an optical filter tuned by a magnetic field," Opt. Lett. 22, 603-605 (1997).
    [CrossRef] [PubMed]
  16. A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, Norwood, Mass., 1999).
  17. S. Jin, H. Mavoori, R. P. Espindola, and T. A. Strasser, "Broad-range, latchable reconfiguration of Bragg wavelength in optical gratings," Appl. Phys. Lett. 74, 2259-2261 (1999).
    [CrossRef]
  18. J. Mora, B. Ortega, M. V. Andrés, J. Capmany, D. Pastor, J. L. Cruz, and S. Sales, "Tunable chirped fibre Bragg grating device controlled by variable magnetic fields," Electron. Lett. 38, 118-119 (2002).
    [CrossRef]
  19. F. Jonsson and C. Flytzanis, "Optical amplitude and phase evolution in nonlinear magneto-optical Bragg gratings," J. Nonlinear Opt. Phys. Mater. 13, 129-154 (2004).
    [CrossRef]
  20. S. Kielich and R. Zawodny, "Optical nonlinear phenomena in magnetized crystals and isotropic bodies," Acta Phys. Pol. A 43, 579-602 (1973).
  21. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media , 2nd ed. (Butterworth-Heinemann, Stoneham, Mass., 1984).
  22. R. Feced, M. N. Zervas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings," IEEE J. Quantum Electron. 35, 1105-1115 (1999).
    [CrossRef]

2004 (1)

F. Jonsson and C. Flytzanis, "Optical amplitude and phase evolution in nonlinear magneto-optical Bragg gratings," J. Nonlinear Opt. Phys. Mater. 13, 129-154 (2004).
[CrossRef]

2003 (2)

C. Xu, X. Hu, Y. Li, X. Liu, R. Fu, and J. Zi, "Semiconductor-based tunable photonic crystals by means of an external magnetic field," Phys. Rev. B 68, 193201 (2003).
[CrossRef]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

2002 (4)

R. Khomeriki and L. Tkeshelashvili, "Stable magnetostatic solitons in yttrium iron garnet film waveguides for tilted in-plane magnetic fields," Phys. Rev. B 65, 134415 (2002).
[CrossRef]

H. Kato and M. Inoue, "Reflection-mode operation of 1-dimensional magnetophotonic crystals for use in film-based magneto-optical isolator devices," J. Appl. Phys. 91, 7017-7019 (2002).
[CrossRef]

M. J. Steel, M. Levy, and J. R. M. Osgood, "High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects," IEEE Photonics Technol. Lett. 12, 1171-1173 (2002).
[CrossRef]

J. Mora, B. Ortega, M. V. Andrés, J. Capmany, D. Pastor, J. L. Cruz, and S. Sales, "Tunable chirped fibre Bragg grating device controlled by variable magnetic fields," Electron. Lett. 38, 118-119 (2002).
[CrossRef]

2000 (5)

J. Su and C. S. Tsai, "Nonlinear characteristics of magnetooptic Bragg diffraction in bismuth substituted yttrium iron garnet films," J. Appl. Phys. 87, 1474-1481 (2000).
[CrossRef]

F. J. Rachford, M. Levy, R. M. Osgood, Jr., A. Kumar, and H. Bakhru, "Magnetization and FMR studies of crystal-ion-sliced narrow linewidth gallium-doped yttrium iron garnet," J. Appl. Phys. 87, 6253-6255 (2000).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
[CrossRef]

M. J. Steel, M. Levy, and J. R. M. Osgood, "Large magnetooptical Kerr rotation with high reflectivity from photonic bandgap structures with defects," J. Lightwave Technol. 18, 1289-1296 (2000).
[CrossRef]

M. J. Steel, M. Levy, and J. R. M. Osgood, "Photonic bandgaps with defects and the enhancement of Faraday rotation," J. Lightwave Technol. 18, 1297-1308 (2000).
[CrossRef]

1999 (4)

F. J. Rachford, M. Levy, R. M. Osgood, Jr., A. Kumar, and H. Bakhru, "Magnetization and ferromagnetic resonance studies in implanted and crystal ion sliced bismuth-substituted yttrium iron garnet films," J. Appl. Phys. 85, 5217-5219 (1999).
[CrossRef]

R. Feced, M. N. Zervas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings," IEEE J. Quantum Electron. 35, 1105-1115 (1999).
[CrossRef]

F. Jonsson and C. Flytzanis, "Polarization state controlled multistability of a nonlinear magneto-optic cavity," Phys. Rev. Lett. 82, 1426-1429 (1999).
[CrossRef]

S. Jin, H. Mavoori, R. P. Espindola, and T. A. Strasser, "Broad-range, latchable reconfiguration of Bragg wavelength in optical gratings," Appl. Phys. Lett. 74, 2259-2261 (1999).
[CrossRef]

1998 (1)

J. Fujita, M. Levy, R. Scarmozzino, R. M. Osgood, L. Eldada, and J. Yardley, "Integrated multistack waveguide polarizer," IEEE Photonics Technol. Lett. 10, 93-95 (1998).
[CrossRef]

1997 (1)

1996 (1)

1973 (1)

S. Kielich and R. Zawodny, "Optical nonlinear phenomena in magnetized crystals and isotropic bodies," Acta Phys. Pol. A 43, 579-602 (1973).

Andrés, M. V.

J. Mora, B. Ortega, M. V. Andrés, J. Capmany, D. Pastor, J. L. Cruz, and S. Sales, "Tunable chirped fibre Bragg grating device controlled by variable magnetic fields," Electron. Lett. 38, 118-119 (2002).
[CrossRef]

Arce-Diego, J. L.

Bakhru, H.

F. J. Rachford, M. Levy, R. M. Osgood, Jr., A. Kumar, and H. Bakhru, "Magnetization and FMR studies of crystal-ion-sliced narrow linewidth gallium-doped yttrium iron garnet," J. Appl. Phys. 87, 6253-6255 (2000).
[CrossRef]

F. J. Rachford, M. Levy, R. M. Osgood, Jr., A. Kumar, and H. Bakhru, "Magnetization and ferromagnetic resonance studies in implanted and crystal ion sliced bismuth-substituted yttrium iron garnet films," J. Appl. Phys. 85, 5217-5219 (1999).
[CrossRef]

Capmany, J.

J. Mora, B. Ortega, M. V. Andrés, J. Capmany, D. Pastor, J. L. Cruz, and S. Sales, "Tunable chirped fibre Bragg grating device controlled by variable magnetic fields," Electron. Lett. 38, 118-119 (2002).
[CrossRef]

Cruz, J. L.

J. Mora, B. Ortega, M. V. Andrés, J. Capmany, D. Pastor, J. L. Cruz, and S. Sales, "Tunable chirped fibre Bragg grating device controlled by variable magnetic fields," Electron. Lett. 38, 118-119 (2002).
[CrossRef]

Dötsch, H.

J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
[CrossRef]

Eldada, L.

J. Fujita, M. Levy, R. Scarmozzino, R. M. Osgood, L. Eldada, and J. Yardley, "Integrated multistack waveguide polarizer," IEEE Photonics Technol. Lett. 10, 93-95 (1998).
[CrossRef]

Espindola, R. P.

S. Jin, H. Mavoori, R. P. Espindola, and T. A. Strasser, "Broad-range, latchable reconfiguration of Bragg wavelength in optical gratings," Appl. Phys. Lett. 74, 2259-2261 (1999).
[CrossRef]

Fan, S.

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

Feced, R.

R. Feced, M. N. Zervas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings," IEEE J. Quantum Electron. 35, 1105-1115 (1999).
[CrossRef]

Flytzanis, C.

F. Jonsson and C. Flytzanis, "Optical amplitude and phase evolution in nonlinear magneto-optical Bragg gratings," J. Nonlinear Opt. Phys. Mater. 13, 129-154 (2004).
[CrossRef]

F. Jonsson and C. Flytzanis, "Polarization state controlled multistability of a nonlinear magneto-optic cavity," Phys. Rev. Lett. 82, 1426-1429 (1999).
[CrossRef]

S. Wabnitz, E. Westin, R. Frey, and C. Flytzanis, "Soliton mode locking by nonlinear Faraday rotation," J. Opt. Soc. Am. B 13, 2420-2423 (1996).
[CrossRef]

Frey, R.

Fu, R.

C. Xu, X. Hu, Y. Li, X. Liu, R. Fu, and J. Zi, "Semiconductor-based tunable photonic crystals by means of an external magnetic field," Phys. Rev. B 68, 193201 (2003).
[CrossRef]

Fujita, J.

J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
[CrossRef]

J. Fujita, M. Levy, R. Scarmozzino, R. M. Osgood, L. Eldada, and J. Yardley, "Integrated multistack waveguide polarizer," IEEE Photonics Technol. Lett. 10, 93-95 (1998).
[CrossRef]

Hu, X.

C. Xu, X. Hu, Y. Li, X. Liu, R. Fu, and J. Zi, "Semiconductor-based tunable photonic crystals by means of an external magnetic field," Phys. Rev. B 68, 193201 (2003).
[CrossRef]

Inoue, M.

H. Kato and M. Inoue, "Reflection-mode operation of 1-dimensional magnetophotonic crystals for use in film-based magneto-optical isolator devices," J. Appl. Phys. 91, 7017-7019 (2002).
[CrossRef]

Jin, S.

S. Jin, H. Mavoori, R. P. Espindola, and T. A. Strasser, "Broad-range, latchable reconfiguration of Bragg wavelength in optical gratings," Appl. Phys. Lett. 74, 2259-2261 (1999).
[CrossRef]

Jonsson , F.

F. Jonsson and C. Flytzanis, "Optical amplitude and phase evolution in nonlinear magneto-optical Bragg gratings," J. Nonlinear Opt. Phys. Mater. 13, 129-154 (2004).
[CrossRef]

F. Jonsson and C. Flytzanis, "Polarization state controlled multistability of a nonlinear magneto-optic cavity," Phys. Rev. Lett. 82, 1426-1429 (1999).
[CrossRef]

Kato , H.

H. Kato and M. Inoue, "Reflection-mode operation of 1-dimensional magnetophotonic crystals for use in film-based magneto-optical isolator devices," J. Appl. Phys. 91, 7017-7019 (2002).
[CrossRef]

Khomeriki , R.

R. Khomeriki and L. Tkeshelashvili, "Stable magnetostatic solitons in yttrium iron garnet film waveguides for tilted in-plane magnetic fields," Phys. Rev. B 65, 134415 (2002).
[CrossRef]

Kielich , S.

S. Kielich and R. Zawodny, "Optical nonlinear phenomena in magnetized crystals and isotropic bodies," Acta Phys. Pol. A 43, 579-602 (1973).

Kumar, A.

F. J. Rachford, M. Levy, R. M. Osgood, Jr., A. Kumar, and H. Bakhru, "Magnetization and FMR studies of crystal-ion-sliced narrow linewidth gallium-doped yttrium iron garnet," J. Appl. Phys. 87, 6253-6255 (2000).
[CrossRef]

F. J. Rachford, M. Levy, R. M. Osgood, Jr., A. Kumar, and H. Bakhru, "Magnetization and ferromagnetic resonance studies in implanted and crystal ion sliced bismuth-substituted yttrium iron garnet films," J. Appl. Phys. 85, 5217-5219 (1999).
[CrossRef]

Levy, M.

M. J. Steel, M. Levy, and J. R. M. Osgood, "High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects," IEEE Photonics Technol. Lett. 12, 1171-1173 (2002).
[CrossRef]

F. J. Rachford, M. Levy, R. M. Osgood, Jr., A. Kumar, and H. Bakhru, "Magnetization and FMR studies of crystal-ion-sliced narrow linewidth gallium-doped yttrium iron garnet," J. Appl. Phys. 87, 6253-6255 (2000).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
[CrossRef]

M. J. Steel, M. Levy, and J. R. M. Osgood, "Large magnetooptical Kerr rotation with high reflectivity from photonic bandgap structures with defects," J. Lightwave Technol. 18, 1289-1296 (2000).
[CrossRef]

M. J. Steel, M. Levy, and J. R. M. Osgood, "Photonic bandgaps with defects and the enhancement of Faraday rotation," J. Lightwave Technol. 18, 1297-1308 (2000).
[CrossRef]

F. J. Rachford, M. Levy, R. M. Osgood, Jr., A. Kumar, and H. Bakhru, "Magnetization and ferromagnetic resonance studies in implanted and crystal ion sliced bismuth-substituted yttrium iron garnet films," J. Appl. Phys. 85, 5217-5219 (1999).
[CrossRef]

J. Fujita, M. Levy, R. Scarmozzino, R. M. Osgood, L. Eldada, and J. Yardley, "Integrated multistack waveguide polarizer," IEEE Photonics Technol. Lett. 10, 93-95 (1998).
[CrossRef]

Li, Y.

C. Xu, X. Hu, Y. Li, X. Liu, R. Fu, and J. Zi, "Semiconductor-based tunable photonic crystals by means of an external magnetic field," Phys. Rev. B 68, 193201 (2003).
[CrossRef]

Liu, X.

C. Xu, X. Hu, Y. Li, X. Liu, R. Fu, and J. Zi, "Semiconductor-based tunable photonic crystals by means of an external magnetic field," Phys. Rev. B 68, 193201 (2003).
[CrossRef]

López-Higuera, J. M.

López-Ruisánchez, R.

Mavoori, H.

S. Jin, H. Mavoori, R. P. Espindola, and T. A. Strasser, "Broad-range, latchable reconfiguration of Bragg wavelength in optical gratings," Appl. Phys. Lett. 74, 2259-2261 (1999).
[CrossRef]

Mora, J.

J. Mora, B. Ortega, M. V. Andrés, J. Capmany, D. Pastor, J. L. Cruz, and S. Sales, "Tunable chirped fibre Bragg grating device controlled by variable magnetic fields," Electron. Lett. 38, 118-119 (2002).
[CrossRef]

Muriel, M. A.

R. Feced, M. N. Zervas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings," IEEE J. Quantum Electron. 35, 1105-1115 (1999).
[CrossRef]

J. L. Arce-Diego, R. López-Ruisánchez, J. M. López-Higuera, and M. A. Muriel, "Fiber Bragg grating as an optical filter tuned by a magnetic field," Opt. Lett. 22, 603-605 (1997).
[CrossRef] [PubMed]

Ortega, B.

J. Mora, B. Ortega, M. V. Andrés, J. Capmany, D. Pastor, J. L. Cruz, and S. Sales, "Tunable chirped fibre Bragg grating device controlled by variable magnetic fields," Electron. Lett. 38, 118-119 (2002).
[CrossRef]

Osgood, J. R. M.

Osgood, R. M.

F. J. Rachford, M. Levy, R. M. Osgood, Jr., A. Kumar, and H. Bakhru, "Magnetization and FMR studies of crystal-ion-sliced narrow linewidth gallium-doped yttrium iron garnet," J. Appl. Phys. 87, 6253-6255 (2000).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
[CrossRef]

F. J. Rachford, M. Levy, R. M. Osgood, Jr., A. Kumar, and H. Bakhru, "Magnetization and ferromagnetic resonance studies in implanted and crystal ion sliced bismuth-substituted yttrium iron garnet films," J. Appl. Phys. 85, 5217-5219 (1999).
[CrossRef]

J. Fujita, M. Levy, R. Scarmozzino, R. M. Osgood, L. Eldada, and J. Yardley, "Integrated multistack waveguide polarizer," IEEE Photonics Technol. Lett. 10, 93-95 (1998).
[CrossRef]

Pastor, D.

J. Mora, B. Ortega, M. V. Andrés, J. Capmany, D. Pastor, J. L. Cruz, and S. Sales, "Tunable chirped fibre Bragg grating device controlled by variable magnetic fields," Electron. Lett. 38, 118-119 (2002).
[CrossRef]

Rachford, F. J.

F. J. Rachford, M. Levy, R. M. Osgood, Jr., A. Kumar, and H. Bakhru, "Magnetization and FMR studies of crystal-ion-sliced narrow linewidth gallium-doped yttrium iron garnet," J. Appl. Phys. 87, 6253-6255 (2000).
[CrossRef]

F. J. Rachford, M. Levy, R. M. Osgood, Jr., A. Kumar, and H. Bakhru, "Magnetization and ferromagnetic resonance studies in implanted and crystal ion sliced bismuth-substituted yttrium iron garnet films," J. Appl. Phys. 85, 5217-5219 (1999).
[CrossRef]

Sales, S.

J. Mora, B. Ortega, M. V. Andrés, J. Capmany, D. Pastor, J. L. Cruz, and S. Sales, "Tunable chirped fibre Bragg grating device controlled by variable magnetic fields," Electron. Lett. 38, 118-119 (2002).
[CrossRef]

Scarmozzino, R.

J. Fujita, M. Levy, R. Scarmozzino, R. M. Osgood, L. Eldada, and J. Yardley, "Integrated multistack waveguide polarizer," IEEE Photonics Technol. Lett. 10, 93-95 (1998).
[CrossRef]

Solgaard, O.

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

Steel, M. J.

Strasser, T. A.

S. Jin, H. Mavoori, R. P. Espindola, and T. A. Strasser, "Broad-range, latchable reconfiguration of Bragg wavelength in optical gratings," Appl. Phys. Lett. 74, 2259-2261 (1999).
[CrossRef]

Su , J.

J. Su and C. S. Tsai, "Nonlinear characteristics of magnetooptic Bragg diffraction in bismuth substituted yttrium iron garnet films," J. Appl. Phys. 87, 1474-1481 (2000).
[CrossRef]

Suh, W.

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

Tkeshelashvili, L.

R. Khomeriki and L. Tkeshelashvili, "Stable magnetostatic solitons in yttrium iron garnet film waveguides for tilted in-plane magnetic fields," Phys. Rev. B 65, 134415 (2002).
[CrossRef]

Tsai, C. S.

J. Su and C. S. Tsai, "Nonlinear characteristics of magnetooptic Bragg diffraction in bismuth substituted yttrium iron garnet films," J. Appl. Phys. 87, 1474-1481 (2000).
[CrossRef]

Wabnitz, S.

Westin, E.

Wilkens, L.

J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
[CrossRef]

Xu, C.

C. Xu, X. Hu, Y. Li, X. Liu, R. Fu, and J. Zi, "Semiconductor-based tunable photonic crystals by means of an external magnetic field," Phys. Rev. B 68, 193201 (2003).
[CrossRef]

Yanik, M. F.

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

Yardley, J.

J. Fujita, M. Levy, R. Scarmozzino, R. M. Osgood, L. Eldada, and J. Yardley, "Integrated multistack waveguide polarizer," IEEE Photonics Technol. Lett. 10, 93-95 (1998).
[CrossRef]

Zawodny, R.

S. Kielich and R. Zawodny, "Optical nonlinear phenomena in magnetized crystals and isotropic bodies," Acta Phys. Pol. A 43, 579-602 (1973).

Zervas, M. N.

R. Feced, M. N. Zervas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings," IEEE J. Quantum Electron. 35, 1105-1115 (1999).
[CrossRef]

Zi, J.

C. Xu, X. Hu, Y. Li, X. Liu, R. Fu, and J. Zi, "Semiconductor-based tunable photonic crystals by means of an external magnetic field," Phys. Rev. B 68, 193201 (2003).
[CrossRef]

Acta Phys. Pol. A (1)

S. Kielich and R. Zawodny, "Optical nonlinear phenomena in magnetized crystals and isotropic bodies," Acta Phys. Pol. A 43, 579-602 (1973).

Appl. Phys. Lett. (3)

S. Jin, H. Mavoori, R. P. Espindola, and T. A. Strasser, "Broad-range, latchable reconfiguration of Bragg wavelength in optical gratings," Appl. Phys. Lett. 74, 2259-2261 (1999).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
[CrossRef]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phys. Lett. 82, 1999-2001 (2003).
[CrossRef]

Electron. Lett. (1)

J. Mora, B. Ortega, M. V. Andrés, J. Capmany, D. Pastor, J. L. Cruz, and S. Sales, "Tunable chirped fibre Bragg grating device controlled by variable magnetic fields," Electron. Lett. 38, 118-119 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Feced, M. N. Zervas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings," IEEE J. Quantum Electron. 35, 1105-1115 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

M. J. Steel, M. Levy, and J. R. M. Osgood, "High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects," IEEE Photonics Technol. Lett. 12, 1171-1173 (2002).
[CrossRef]

J. Fujita, M. Levy, R. Scarmozzino, R. M. Osgood, L. Eldada, and J. Yardley, "Integrated multistack waveguide polarizer," IEEE Photonics Technol. Lett. 10, 93-95 (1998).
[CrossRef]

J. Appl. Phys. (4)

J. Su and C. S. Tsai, "Nonlinear characteristics of magnetooptic Bragg diffraction in bismuth substituted yttrium iron garnet films," J. Appl. Phys. 87, 1474-1481 (2000).
[CrossRef]

H. Kato and M. Inoue, "Reflection-mode operation of 1-dimensional magnetophotonic crystals for use in film-based magneto-optical isolator devices," J. Appl. Phys. 91, 7017-7019 (2002).
[CrossRef]

F. J. Rachford, M. Levy, R. M. Osgood, Jr., A. Kumar, and H. Bakhru, "Magnetization and ferromagnetic resonance studies in implanted and crystal ion sliced bismuth-substituted yttrium iron garnet films," J. Appl. Phys. 85, 5217-5219 (1999).
[CrossRef]

F. J. Rachford, M. Levy, R. M. Osgood, Jr., A. Kumar, and H. Bakhru, "Magnetization and FMR studies of crystal-ion-sliced narrow linewidth gallium-doped yttrium iron garnet," J. Appl. Phys. 87, 6253-6255 (2000).
[CrossRef]

J. Lightwave Technol. (2)

J. Nonlinear Opt. Phys. Mater. (1)

F. Jonsson and C. Flytzanis, "Optical amplitude and phase evolution in nonlinear magneto-optical Bragg gratings," J. Nonlinear Opt. Phys. Mater. 13, 129-154 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. B (2)

R. Khomeriki and L. Tkeshelashvili, "Stable magnetostatic solitons in yttrium iron garnet film waveguides for tilted in-plane magnetic fields," Phys. Rev. B 65, 134415 (2002).
[CrossRef]

C. Xu, X. Hu, Y. Li, X. Liu, R. Fu, and J. Zi, "Semiconductor-based tunable photonic crystals by means of an external magnetic field," Phys. Rev. B 68, 193201 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

F. Jonsson and C. Flytzanis, "Polarization state controlled multistability of a nonlinear magneto-optic cavity," Phys. Rev. Lett. 82, 1426-1429 (1999).
[CrossRef]

Other (2)

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media , 2nd ed. (Butterworth-Heinemann, Stoneham, Mass., 1984).

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, Norwood, Mass., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Setup for generation of a magneto-optically induced lattice of perturbations, superimposed to an all-optical, electric-dipolar induced grating in a waveguide.

Fig. 2
Fig. 2

Close-up figure of the distributions of effective refractive indices n+(z) and n-(z) experienced by forward-propagating left and right circularly polarized light (solid and dashed curves), respectively, in the region of the magneto-optically induced Lorentzian perturbation g(z). For backward-traveling components of the wave, the situation becomes the opposite, with left and right polarized light instead experiencing the effective indices n-(z) and n+(z), respectively.

Fig. 3
Fig. 3

Transmission spectrum of a linearly chirped, nonperturbed optical Bragg grating, in the absence of static magnetic fields. Parameters are the refractive-index bias n0=1.7, the refractive-index modulation n1=2.5×10-3, chirp ξ=1.47×10-6, and initial grating period Λ=382.4 nm.

Fig. 4
Fig. 4

Transmission spectrum of the linearly chirped grating of Fig. 3, with the magneto-optically induced gyration constant g(z) as a superimposed Lorenzian perturbation, for left and right circularly polarized light (drawn as solid and dashed curves, respectively). Parameters used for the perturbation are gp=5.0×10-3 (amplitude), wp=75 µm (spatial half maximum width), and zp=2.0 mm (center position).

Fig. 5
Fig. 5

Transmission window shape for a set of perturbation widths, shown for right circularly polarized light. The perturbation widths wp used were, respectively, (a) 25 µm, (b) 50 µm, (c) 75 µm, and (d) 100 µm.

Fig. 6
Fig. 6

Transmission window shape for a set of perturbation widths, shown for left circularly polarized light. The perturbation widths with respective labels are identical to those of the curves in Fig. 5.

Fig. 7
Fig. 7

Normalized ellipticity tr of the transmitted polarization state as function of vacuum wavelength λ, for a linearly polarized input beam. The parameters used are identical to those used to generate the curves in Fig. 3.

Fig. 8
Fig. 8

Relative intensity transmission Itr/Iin as function of vacuum wavelength λ, for a left circularly polarized incident beam, and for a magneto-optical perturbation with amplitude gp=5.0×10-3, width wp=75 µm, at center positions (a) zp=0.8 mm, (b) zp=1.4 mm, (c) zp=2.0 mm, (d) zp=2.6 mm, and (e) zp=3.2 mm. All other grating parameters are identical to those used for the graph in Fig. 4.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n(z)=n0+n1 sin[θ(z)],
θ(z)=(2π/ξ)ln(1+ξz/Λ).
Kloc(z)2π/Λloc(z)=θ(z)z,
Λloc(z)=Λ+ξz.
n±=n(z)±g(z),
g(z)=iχxyz(eem)B0(z)/2n0.
g(z)=gp1+4(z-zp)2/wp2,
Iin=(0c/2)(|Eω+|2+|Eω-|2)z=0,
Itr=(0c/2)(|Eω+|2+|Eω-|2)z=L,
in=(|Eω+|2-|Eω-|2)z=0(|Eω+|2+|Eω-|2)z=0,tr=(|Eω+|2-|Eω-|2)z=L(|Eω+|2+|Eω-|2)z=L.

Metrics