Abstract

Magneto-optical properties of photonic crystals (or bandgap materials) have been examined with respect to their possible applications for the control of electromagnetic radiation in integrated-optics devices. Theoretical studies of one-dimensional photonic crystals were conducted on the basis of the transfer-matrix method. For investigation of two- and three-dimensional photonic crystals we propose the original theoretical approach based on perturbation theory. Magneto-optical Faraday and Voigt effects have been studied near extremum points of photonic bands where their significant enhancement takes place. On the basis of the theory elaborated some experimental results are discussed. Experimentally obtained Faraday-rotation-angle-frequency dependence shows good agreement with our theoretical analysis.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2063 (1987).
    [CrossRef] [PubMed]
  2. E. Yablonovitch, "Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures," Phys. Rev. Lett. 61, 2546-2549 (1988).
    [CrossRef] [PubMed]
  3. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  4. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  5. C. Monat, C. Seassal, and X. Letartre, "InP-based photonic crystal microlasers on silicon wafer," Physica E (Amsterdam) 17, 475-476 (2003).
    [CrossRef]
  6. M. D. B. Charlton, M. E. Zoorob, and G. J. Parker, "Polarisation-dependent mixing in photonic crystal filled optical resonators," Mater. Sci. Eng., B 74, 17-27 (2000).
    [CrossRef]
  7. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, "Dispersion compensation using single material fibers," IEEE Photonics Technol. Lett. 11, 674-680 (1999).
    [CrossRef]
  8. V. Berger, "Nonlinear photonic crystals," Phys. Rev. Lett. 81, 4136-4139 (1998).
    [CrossRef]
  9. T. Baba and M. Nakamura, "Spacing-tunable multiwavelength fiber laser," IEEE J. Quantum Electron. 38, 909-914 (2002).
    [CrossRef]
  10. A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and E. Akmansoy, "High-transmission defect modes in two-dimensional metallic photonic crystals," Appl. Phys. Lett. 75, 1625 (1999).
    [CrossRef]
  11. S. Kim and V. Gopalan, "Strain-tunable photonic band gap crystals," Appl. Phys. Lett. 78, 3015-3021 (2001).
    [CrossRef]
  12. C. S. Kee, H. Lim, Y. K. Ha, J. E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
    [CrossRef]
  13. D. Lacoste, F. Donatini, and S. Neveu, "Photonic Hall effect in ferrofluids: theory and experiments," Phys. Rev. E 62, 3934-3943 (2000).
    [CrossRef]
  14. L. B. Gates and Y. N. Xia, "Mesoporous silica films with highly ordered large pore structures," Adv. Mater. (Weinheim, Ger.) 13, 1605-1613 (2001).
    [CrossRef]
  15. E. L. Bizdoaca, M. Spasova, and M. Farle, "Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell," J. Magn. Magn. Mater. 240, 44-46 (2002).
    [CrossRef]
  16. A. Figotin and I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E 63, 066609 (2001).
    [CrossRef]
  17. T. V. Dolgova, A. A. Fedyanin, T. Yoshida, K. Nishimura, G. Marowsky, M. Inoue, and O. A. Aksipetrov, "Magnetization-induced second-harmonic generation in magnetophotonic microcavities based on ferrite garnets," JETP Lett. 76, 527-531 (2002).
    [CrossRef]
  18. M. Inoue and T. Fujii, "Magnetooptical properties of one-dimensional photonic crystals composed of random magnetic and dielectric layers," J. Appl. Phys. 81, 5659-5665 (1997).
    [CrossRef]
  19. M. Inoue, K. Arai, T. Fujii, and M. Abe, "Magnetooptical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers," J. Appl. Phys. 85, 5768-5777 (1999).
    [CrossRef]
  20. M. J. Steel, M. Levy, and R. M. Osgood, "High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects," IEEE Photonics Technol. Lett. 12, 1171-1173 (2000).
    [CrossRef]
  21. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, "Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals," J. Appl. Phys. 93, 3906-3911 (2003).
    [CrossRef]
  22. H. Kato, T. Matsushita, and A. Takayama, "Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices," J. Appl. Phys. 93, 3906-3911 (2003).
    [CrossRef]
  23. Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, "Tunable photonic bandgap in self-assembled clusters of floating magnetic particles," Phys. Rev. B 66, 195108 (2002).
    [CrossRef]
  24. M. Levy, H. C. Yang, and M. J. Steel, "Flat top response in one-dimensional magnetic photonic band gap structures with Faraday rotation enhancement," J. Lightwave Technol. 19, 1964-1969 (2001).
    [CrossRef]
  25. T. V. Dolgova, A. A. Fedyanin, O. A. Aksipetrov, K. Nishimura, H. Uchida, and M. Inoue, "Nonlinear magneto-optical Kerr effect in garnet magnetophotonic crystals," J. Appl. Phys. 95, 7330-7332 (2004).
    [CrossRef]
  26. S. N. Kurilkina and M. V. Shuba, "Propagation and transformation of the light waves in magnetoactive periodic structures," Opt. Spectrosc. 93, 918-923 (2002).
    [CrossRef]
  27. A. K. Zvezdin and V. I. Belotelov, "Magnetooptical properties of photonic crystals," Eur. Phys. J. B 37, 479-487 (2004).
    [CrossRef]
  28. I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, "Magnetic photonic crystals," J. Phys. D 36, R277-287 (2003).
    [CrossRef]
  29. A. Zvezdin and V. Kotov, Modern Magneto-optics and Magneto-optical materials (Institute of Physics, London, 1997).
  30. M. Shubert, "Explicit solutions for the optical properties of arbitrary magneto-optic materials in generalized ellipsometry," Appl. Opt. 38, 177-184 (1999).
    [CrossRef]
  31. I. Abdulhalim, "Analytic propagation matrix method for anisotropic magneto-optic layered media," J. Opt. A, Pure Appl. Opt. 2, 557-561 (2000).
    [CrossRef]
  32. J. Metzdorf and F. R. Kessler, "Magneto-optical properties of Si-based substances in the external magnetic field," Phys. Status Solidi B 71, 237-247 (1975).
    [CrossRef]
  33. I. S. Grigoriev, Handbook of Physical Values (Nauka, Moscow, 1991).
  34. K. Sakoda, Optical Properties of Photonic Crystals , 2nd ed. (Springer-Verlag, New York, 2004).
  35. M. Plihal, A. Shambrook, and A. A. Maradudin, "Two-dimensional photonic crystals," Opt. Commun. 80, 199-211 (1991).
    [CrossRef]
  36. C. Koerdt, G. L. J. A. Rikken, and E. P. Petrov, "Faraday effect of photonic crystals," Appl. Phys. Lett. 82, 1538-1540 (2003).
    [CrossRef]

2004

A. K. Zvezdin and V. I. Belotelov, "Magnetooptical properties of photonic crystals," Eur. Phys. J. B 37, 479-487 (2004).
[CrossRef]

T. V. Dolgova, A. A. Fedyanin, O. A. Aksipetrov, K. Nishimura, H. Uchida, and M. Inoue, "Nonlinear magneto-optical Kerr effect in garnet magnetophotonic crystals," J. Appl. Phys. 95, 7330-7332 (2004).
[CrossRef]

2003

C. Koerdt, G. L. J. A. Rikken, and E. P. Petrov, "Faraday effect of photonic crystals," Appl. Phys. Lett. 82, 1538-1540 (2003).
[CrossRef]

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, "Magnetic photonic crystals," J. Phys. D 36, R277-287 (2003).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, "Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals," J. Appl. Phys. 93, 3906-3911 (2003).
[CrossRef]

H. Kato, T. Matsushita, and A. Takayama, "Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices," J. Appl. Phys. 93, 3906-3911 (2003).
[CrossRef]

C. Monat, C. Seassal, and X. Letartre, "InP-based photonic crystal microlasers on silicon wafer," Physica E (Amsterdam) 17, 475-476 (2003).
[CrossRef]

2002

T. Baba and M. Nakamura, "Spacing-tunable multiwavelength fiber laser," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

E. L. Bizdoaca, M. Spasova, and M. Farle, "Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell," J. Magn. Magn. Mater. 240, 44-46 (2002).
[CrossRef]

T. V. Dolgova, A. A. Fedyanin, T. Yoshida, K. Nishimura, G. Marowsky, M. Inoue, and O. A. Aksipetrov, "Magnetization-induced second-harmonic generation in magnetophotonic microcavities based on ferrite garnets," JETP Lett. 76, 527-531 (2002).
[CrossRef]

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, "Tunable photonic bandgap in self-assembled clusters of floating magnetic particles," Phys. Rev. B 66, 195108 (2002).
[CrossRef]

S. N. Kurilkina and M. V. Shuba, "Propagation and transformation of the light waves in magnetoactive periodic structures," Opt. Spectrosc. 93, 918-923 (2002).
[CrossRef]

2001

M. Levy, H. C. Yang, and M. J. Steel, "Flat top response in one-dimensional magnetic photonic band gap structures with Faraday rotation enhancement," J. Lightwave Technol. 19, 1964-1969 (2001).
[CrossRef]

A. Figotin and I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E 63, 066609 (2001).
[CrossRef]

S. Kim and V. Gopalan, "Strain-tunable photonic band gap crystals," Appl. Phys. Lett. 78, 3015-3021 (2001).
[CrossRef]

C. S. Kee, H. Lim, Y. K. Ha, J. E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[CrossRef]

L. B. Gates and Y. N. Xia, "Mesoporous silica films with highly ordered large pore structures," Adv. Mater. (Weinheim, Ger.) 13, 1605-1613 (2001).
[CrossRef]

2000

D. Lacoste, F. Donatini, and S. Neveu, "Photonic Hall effect in ferrofluids: theory and experiments," Phys. Rev. E 62, 3934-3943 (2000).
[CrossRef]

M. D. B. Charlton, M. E. Zoorob, and G. J. Parker, "Polarisation-dependent mixing in photonic crystal filled optical resonators," Mater. Sci. Eng., B 74, 17-27 (2000).
[CrossRef]

M. J. Steel, M. Levy, and R. M. Osgood, "High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects," IEEE Photonics Technol. Lett. 12, 1171-1173 (2000).
[CrossRef]

I. Abdulhalim, "Analytic propagation matrix method for anisotropic magneto-optic layered media," J. Opt. A, Pure Appl. Opt. 2, 557-561 (2000).
[CrossRef]

1999

M. Inoue, K. Arai, T. Fujii, and M. Abe, "Magnetooptical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers," J. Appl. Phys. 85, 5768-5777 (1999).
[CrossRef]

M. Shubert, "Explicit solutions for the optical properties of arbitrary magneto-optic materials in generalized ellipsometry," Appl. Opt. 38, 177-184 (1999).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, "Dispersion compensation using single material fibers," IEEE Photonics Technol. Lett. 11, 674-680 (1999).
[CrossRef]

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and E. Akmansoy, "High-transmission defect modes in two-dimensional metallic photonic crystals," Appl. Phys. Lett. 75, 1625 (1999).
[CrossRef]

1998

V. Berger, "Nonlinear photonic crystals," Phys. Rev. Lett. 81, 4136-4139 (1998).
[CrossRef]

1997

M. Inoue and T. Fujii, "Magnetooptical properties of one-dimensional photonic crystals composed of random magnetic and dielectric layers," J. Appl. Phys. 81, 5659-5665 (1997).
[CrossRef]

1991

M. Plihal, A. Shambrook, and A. A. Maradudin, "Two-dimensional photonic crystals," Opt. Commun. 80, 199-211 (1991).
[CrossRef]

1988

E. Yablonovitch, "Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures," Phys. Rev. Lett. 61, 2546-2549 (1988).
[CrossRef] [PubMed]

1987

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2063 (1987).
[CrossRef] [PubMed]

1975

J. Metzdorf and F. R. Kessler, "Magneto-optical properties of Si-based substances in the external magnetic field," Phys. Status Solidi B 71, 237-247 (1975).
[CrossRef]

Abdulhalim, I.

I. Abdulhalim, "Analytic propagation matrix method for anisotropic magneto-optic layered media," J. Opt. A, Pure Appl. Opt. 2, 557-561 (2000).
[CrossRef]

Abe, M.

M. Inoue, K. Arai, T. Fujii, and M. Abe, "Magnetooptical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers," J. Appl. Phys. 85, 5768-5777 (1999).
[CrossRef]

Akmansoy, E.

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and E. Akmansoy, "High-transmission defect modes in two-dimensional metallic photonic crystals," Appl. Phys. Lett. 75, 1625 (1999).
[CrossRef]

Aksipetrov, O. A.

T. V. Dolgova, A. A. Fedyanin, O. A. Aksipetrov, K. Nishimura, H. Uchida, and M. Inoue, "Nonlinear magneto-optical Kerr effect in garnet magnetophotonic crystals," J. Appl. Phys. 95, 7330-7332 (2004).
[CrossRef]

T. V. Dolgova, A. A. Fedyanin, T. Yoshida, K. Nishimura, G. Marowsky, M. Inoue, and O. A. Aksipetrov, "Magnetization-induced second-harmonic generation in magnetophotonic microcavities based on ferrite garnets," JETP Lett. 76, 527-531 (2002).
[CrossRef]

Arai, K.

M. Inoue, K. Arai, T. Fujii, and M. Abe, "Magnetooptical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers," J. Appl. Phys. 85, 5768-5777 (1999).
[CrossRef]

Baba , T.

T. Baba and M. Nakamura, "Spacing-tunable multiwavelength fiber laser," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

Belotelov, V. I.

A. K. Zvezdin and V. I. Belotelov, "Magnetooptical properties of photonic crystals," Eur. Phys. J. B 37, 479-487 (2004).
[CrossRef]

Berger, V.

V. Berger, "Nonlinear photonic crystals," Phys. Rev. Lett. 81, 4136-4139 (1998).
[CrossRef]

Birks, T. A.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, "Dispersion compensation using single material fibers," IEEE Photonics Technol. Lett. 11, 674-680 (1999).
[CrossRef]

Bizdoaca, E. L.

E. L. Bizdoaca, M. Spasova, and M. Farle, "Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell," J. Magn. Magn. Mater. 240, 44-46 (2002).
[CrossRef]

Brillat, T.

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and E. Akmansoy, "High-transmission defect modes in two-dimensional metallic photonic crystals," Appl. Phys. Lett. 75, 1625 (1999).
[CrossRef]

Cabaret, S.

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and E. Akmansoy, "High-transmission defect modes in two-dimensional metallic photonic crystals," Appl. Phys. Lett. 75, 1625 (1999).
[CrossRef]

Charlton, M. D. B.

M. D. B. Charlton, M. E. Zoorob, and G. J. Parker, "Polarisation-dependent mixing in photonic crystal filled optical resonators," Mater. Sci. Eng., B 74, 17-27 (2000).
[CrossRef]

Dadoenkova, N. N.

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, "Magnetic photonic crystals," J. Phys. D 36, R277-287 (2003).
[CrossRef]

Davidov, D.

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, "Tunable photonic bandgap in self-assembled clusters of floating magnetic particles," Phys. Rev. B 66, 195108 (2002).
[CrossRef]

de Lustrac, A.

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and E. Akmansoy, "High-transmission defect modes in two-dimensional metallic photonic crystals," Appl. Phys. Lett. 75, 1625 (1999).
[CrossRef]

Dolgova, T. V.

T. V. Dolgova, A. A. Fedyanin, O. A. Aksipetrov, K. Nishimura, H. Uchida, and M. Inoue, "Nonlinear magneto-optical Kerr effect in garnet magnetophotonic crystals," J. Appl. Phys. 95, 7330-7332 (2004).
[CrossRef]

T. V. Dolgova, A. A. Fedyanin, T. Yoshida, K. Nishimura, G. Marowsky, M. Inoue, and O. A. Aksipetrov, "Magnetization-induced second-harmonic generation in magnetophotonic microcavities based on ferrite garnets," JETP Lett. 76, 527-531 (2002).
[CrossRef]

Donatini, F.

D. Lacoste, F. Donatini, and S. Neveu, "Photonic Hall effect in ferrofluids: theory and experiments," Phys. Rev. E 62, 3934-3943 (2000).
[CrossRef]

Egawa, M.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, "Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals," J. Appl. Phys. 93, 3906-3911 (2003).
[CrossRef]

Farle, M.

E. L. Bizdoaca, M. Spasova, and M. Farle, "Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell," J. Magn. Magn. Mater. 240, 44-46 (2002).
[CrossRef]

Fedyanin, A. A.

T. V. Dolgova, A. A. Fedyanin, O. A. Aksipetrov, K. Nishimura, H. Uchida, and M. Inoue, "Nonlinear magneto-optical Kerr effect in garnet magnetophotonic crystals," J. Appl. Phys. 95, 7330-7332 (2004).
[CrossRef]

T. V. Dolgova, A. A. Fedyanin, T. Yoshida, K. Nishimura, G. Marowsky, M. Inoue, and O. A. Aksipetrov, "Magnetization-induced second-harmonic generation in magnetophotonic microcavities based on ferrite garnets," JETP Lett. 76, 527-531 (2002).
[CrossRef]

Figotin , A.

A. Figotin and I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E 63, 066609 (2001).
[CrossRef]

Frenkel, A.

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, "Tunable photonic bandgap in self-assembled clusters of floating magnetic particles," Phys. Rev. B 66, 195108 (2002).
[CrossRef]

Fujii, T.

M. Inoue, K. Arai, T. Fujii, and M. Abe, "Magnetooptical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers," J. Appl. Phys. 85, 5768-5777 (1999).
[CrossRef]

M. Inoue and T. Fujii, "Magnetooptical properties of one-dimensional photonic crystals composed of random magnetic and dielectric layers," J. Appl. Phys. 81, 5659-5665 (1997).
[CrossRef]

Gadot, F.

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and E. Akmansoy, "High-transmission defect modes in two-dimensional metallic photonic crystals," Appl. Phys. Lett. 75, 1625 (1999).
[CrossRef]

Gates , L. B.

L. B. Gates and Y. N. Xia, "Mesoporous silica films with highly ordered large pore structures," Adv. Mater. (Weinheim, Ger.) 13, 1605-1613 (2001).
[CrossRef]

Golosovsky, M.

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, "Tunable photonic bandgap in self-assembled clusters of floating magnetic particles," Phys. Rev. B 66, 195108 (2002).
[CrossRef]

Gopalan, V.

S. Kim and V. Gopalan, "Strain-tunable photonic band gap crystals," Appl. Phys. Lett. 78, 3015-3021 (2001).
[CrossRef]

Ha, Y. K.

C. S. Kee, H. Lim, Y. K. Ha, J. E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[CrossRef]

Inoue, M.

T. V. Dolgova, A. A. Fedyanin, O. A. Aksipetrov, K. Nishimura, H. Uchida, and M. Inoue, "Nonlinear magneto-optical Kerr effect in garnet magnetophotonic crystals," J. Appl. Phys. 95, 7330-7332 (2004).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, "Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals," J. Appl. Phys. 93, 3906-3911 (2003).
[CrossRef]

T. V. Dolgova, A. A. Fedyanin, T. Yoshida, K. Nishimura, G. Marowsky, M. Inoue, and O. A. Aksipetrov, "Magnetization-induced second-harmonic generation in magnetophotonic microcavities based on ferrite garnets," JETP Lett. 76, 527-531 (2002).
[CrossRef]

M. Inoue, K. Arai, T. Fujii, and M. Abe, "Magnetooptical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers," J. Appl. Phys. 85, 5768-5777 (1999).
[CrossRef]

Inoue , M.

M. Inoue and T. Fujii, "Magnetooptical properties of one-dimensional photonic crystals composed of random magnetic and dielectric layers," J. Appl. Phys. 81, 5659-5665 (1997).
[CrossRef]

John, S.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Kato, H.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, "Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals," J. Appl. Phys. 93, 3906-3911 (2003).
[CrossRef]

H. Kato, T. Matsushita, and A. Takayama, "Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices," J. Appl. Phys. 93, 3906-3911 (2003).
[CrossRef]

Kee, C. S.

C. S. Kee, H. Lim, Y. K. Ha, J. E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[CrossRef]

Kessler, F. R.

J. Metzdorf and F. R. Kessler, "Magneto-optical properties of Si-based substances in the external magnetic field," Phys. Status Solidi B 71, 237-247 (1975).
[CrossRef]

Kim, J. E.

C. S. Kee, H. Lim, Y. K. Ha, J. E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[CrossRef]

Kim , S.

S. Kim and V. Gopalan, "Strain-tunable photonic band gap crystals," Appl. Phys. Lett. 78, 3015-3021 (2001).
[CrossRef]

Knight, J. C.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, "Dispersion compensation using single material fibers," IEEE Photonics Technol. Lett. 11, 674-680 (1999).
[CrossRef]

Koerdt, C.

C. Koerdt, G. L. J. A. Rikken, and E. P. Petrov, "Faraday effect of photonic crystals," Appl. Phys. Lett. 82, 1538-1540 (2003).
[CrossRef]

Kurilkina , S. N.

S. N. Kurilkina and M. V. Shuba, "Propagation and transformation of the light waves in magnetoactive periodic structures," Opt. Spectrosc. 93, 918-923 (2002).
[CrossRef]

Lacoste, D.

D. Lacoste, F. Donatini, and S. Neveu, "Photonic Hall effect in ferrofluids: theory and experiments," Phys. Rev. E 62, 3934-3943 (2000).
[CrossRef]

Letartre, X.

C. Monat, C. Seassal, and X. Letartre, "InP-based photonic crystal microlasers on silicon wafer," Physica E (Amsterdam) 17, 475-476 (2003).
[CrossRef]

Levy, M.

M. Levy, H. C. Yang, and M. J. Steel, "Flat top response in one-dimensional magnetic photonic band gap structures with Faraday rotation enhancement," J. Lightwave Technol. 19, 1964-1969 (2001).
[CrossRef]

M. J. Steel, M. Levy, and R. M. Osgood, "High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects," IEEE Photonics Technol. Lett. 12, 1171-1173 (2000).
[CrossRef]

Lim, H.

C. S. Kee, H. Lim, Y. K. Ha, J. E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[CrossRef]

Lourtioz, J. M.

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and E. Akmansoy, "High-transmission defect modes in two-dimensional metallic photonic crystals," Appl. Phys. Lett. 75, 1625 (1999).
[CrossRef]

Lyubchanskii, I. L.

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, "Magnetic photonic crystals," J. Phys. D 36, R277-287 (2003).
[CrossRef]

Lyubchanskii, M. I.

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, "Magnetic photonic crystals," J. Phys. D 36, R277-287 (2003).
[CrossRef]

Maradudin, A. A.

M. Plihal, A. Shambrook, and A. A. Maradudin, "Two-dimensional photonic crystals," Opt. Commun. 80, 199-211 (1991).
[CrossRef]

Marowsky, G.

T. V. Dolgova, A. A. Fedyanin, T. Yoshida, K. Nishimura, G. Marowsky, M. Inoue, and O. A. Aksipetrov, "Magnetization-induced second-harmonic generation in magnetophotonic microcavities based on ferrite garnets," JETP Lett. 76, 527-531 (2002).
[CrossRef]

Matsushita, T.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, "Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals," J. Appl. Phys. 93, 3906-3911 (2003).
[CrossRef]

H. Kato, T. Matsushita, and A. Takayama, "Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices," J. Appl. Phys. 93, 3906-3911 (2003).
[CrossRef]

Metzdorf , J.

J. Metzdorf and F. R. Kessler, "Magneto-optical properties of Si-based substances in the external magnetic field," Phys. Status Solidi B 71, 237-247 (1975).
[CrossRef]

Mogilevtsev, D.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, "Dispersion compensation using single material fibers," IEEE Photonics Technol. Lett. 11, 674-680 (1999).
[CrossRef]

Monat, C.

C. Monat, C. Seassal, and X. Letartre, "InP-based photonic crystal microlasers on silicon wafer," Physica E (Amsterdam) 17, 475-476 (2003).
[CrossRef]

Nakamura, M.

T. Baba and M. Nakamura, "Spacing-tunable multiwavelength fiber laser," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

Neveu, S.

D. Lacoste, F. Donatini, and S. Neveu, "Photonic Hall effect in ferrofluids: theory and experiments," Phys. Rev. E 62, 3934-3943 (2000).
[CrossRef]

Nishimura, K.

T. V. Dolgova, A. A. Fedyanin, O. A. Aksipetrov, K. Nishimura, H. Uchida, and M. Inoue, "Nonlinear magneto-optical Kerr effect in garnet magnetophotonic crystals," J. Appl. Phys. 95, 7330-7332 (2004).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, "Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals," J. Appl. Phys. 93, 3906-3911 (2003).
[CrossRef]

T. V. Dolgova, A. A. Fedyanin, T. Yoshida, K. Nishimura, G. Marowsky, M. Inoue, and O. A. Aksipetrov, "Magnetization-induced second-harmonic generation in magnetophotonic microcavities based on ferrite garnets," JETP Lett. 76, 527-531 (2002).
[CrossRef]

Osgood, R. M.

M. J. Steel, M. Levy, and R. M. Osgood, "High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects," IEEE Photonics Technol. Lett. 12, 1171-1173 (2000).
[CrossRef]

Park, H. Y.

C. S. Kee, H. Lim, Y. K. Ha, J. E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[CrossRef]

Parker, G. J.

M. D. B. Charlton, M. E. Zoorob, and G. J. Parker, "Polarisation-dependent mixing in photonic crystal filled optical resonators," Mater. Sci. Eng., B 74, 17-27 (2000).
[CrossRef]

Petrov, E. P.

C. Koerdt, G. L. J. A. Rikken, and E. P. Petrov, "Faraday effect of photonic crystals," Appl. Phys. Lett. 82, 1538-1540 (2003).
[CrossRef]

Plihal, M.

M. Plihal, A. Shambrook, and A. A. Maradudin, "Two-dimensional photonic crystals," Opt. Commun. 80, 199-211 (1991).
[CrossRef]

Priou, A.

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and E. Akmansoy, "High-transmission defect modes in two-dimensional metallic photonic crystals," Appl. Phys. Lett. 75, 1625 (1999).
[CrossRef]

Rasing, Th.

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, "Magnetic photonic crystals," J. Phys. D 36, R277-287 (2003).
[CrossRef]

Rikken, G. L. J. A.

C. Koerdt, G. L. J. A. Rikken, and E. P. Petrov, "Faraday effect of photonic crystals," Appl. Phys. Lett. 82, 1538-1540 (2003).
[CrossRef]

Russell, P. St. J.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, "Dispersion compensation using single material fibers," IEEE Photonics Technol. Lett. 11, 674-680 (1999).
[CrossRef]

Saado, Y.

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, "Tunable photonic bandgap in self-assembled clusters of floating magnetic particles," Phys. Rev. B 66, 195108 (2002).
[CrossRef]

Seassal, C.

C. Monat, C. Seassal, and X. Letartre, "InP-based photonic crystal microlasers on silicon wafer," Physica E (Amsterdam) 17, 475-476 (2003).
[CrossRef]

Shambrook, A.

M. Plihal, A. Shambrook, and A. A. Maradudin, "Two-dimensional photonic crystals," Opt. Commun. 80, 199-211 (1991).
[CrossRef]

Shapovalov, E. A.

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, "Magnetic photonic crystals," J. Phys. D 36, R277-287 (2003).
[CrossRef]

Shuba, M. V.

S. N. Kurilkina and M. V. Shuba, "Propagation and transformation of the light waves in magnetoactive periodic structures," Opt. Spectrosc. 93, 918-923 (2002).
[CrossRef]

Shubert, M.

Spasova, M.

E. L. Bizdoaca, M. Spasova, and M. Farle, "Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell," J. Magn. Magn. Mater. 240, 44-46 (2002).
[CrossRef]

Steel, M. J.

M. Levy, H. C. Yang, and M. J. Steel, "Flat top response in one-dimensional magnetic photonic band gap structures with Faraday rotation enhancement," J. Lightwave Technol. 19, 1964-1969 (2001).
[CrossRef]

M. J. Steel, M. Levy, and R. M. Osgood, "High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects," IEEE Photonics Technol. Lett. 12, 1171-1173 (2000).
[CrossRef]

Takayama, A.

H. Kato, T. Matsushita, and A. Takayama, "Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices," J. Appl. Phys. 93, 3906-3911 (2003).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, "Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals," J. Appl. Phys. 93, 3906-3911 (2003).
[CrossRef]

Uchida, H.

T. V. Dolgova, A. A. Fedyanin, O. A. Aksipetrov, K. Nishimura, H. Uchida, and M. Inoue, "Nonlinear magneto-optical Kerr effect in garnet magnetophotonic crystals," J. Appl. Phys. 95, 7330-7332 (2004).
[CrossRef]

Vitebsky, I.

A. Figotin and I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E 63, 066609 (2001).
[CrossRef]

Xia, Y. N.

L. B. Gates and Y. N. Xia, "Mesoporous silica films with highly ordered large pore structures," Adv. Mater. (Weinheim, Ger.) 13, 1605-1613 (2001).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures," Phys. Rev. Lett. 61, 2546-2549 (1988).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2063 (1987).
[CrossRef] [PubMed]

Yang, H. C.

Yoshida, T.

T. V. Dolgova, A. A. Fedyanin, T. Yoshida, K. Nishimura, G. Marowsky, M. Inoue, and O. A. Aksipetrov, "Magnetization-induced second-harmonic generation in magnetophotonic microcavities based on ferrite garnets," JETP Lett. 76, 527-531 (2002).
[CrossRef]

Zoorob, M. E.

M. D. B. Charlton, M. E. Zoorob, and G. J. Parker, "Polarisation-dependent mixing in photonic crystal filled optical resonators," Mater. Sci. Eng., B 74, 17-27 (2000).
[CrossRef]

Zvezdin , A. K.

A. K. Zvezdin and V. I. Belotelov, "Magnetooptical properties of photonic crystals," Eur. Phys. J. B 37, 479-487 (2004).
[CrossRef]

Adv. Mater. (Weinheim, Ger.)

L. B. Gates and Y. N. Xia, "Mesoporous silica films with highly ordered large pore structures," Adv. Mater. (Weinheim, Ger.) 13, 1605-1613 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and E. Akmansoy, "High-transmission defect modes in two-dimensional metallic photonic crystals," Appl. Phys. Lett. 75, 1625 (1999).
[CrossRef]

S. Kim and V. Gopalan, "Strain-tunable photonic band gap crystals," Appl. Phys. Lett. 78, 3015-3021 (2001).
[CrossRef]

C. Koerdt, G. L. J. A. Rikken, and E. P. Petrov, "Faraday effect of photonic crystals," Appl. Phys. Lett. 82, 1538-1540 (2003).
[CrossRef]

Eur. Phys. J. B

A. K. Zvezdin and V. I. Belotelov, "Magnetooptical properties of photonic crystals," Eur. Phys. J. B 37, 479-487 (2004).
[CrossRef]

IEEE J. Quantum Electron.

T. Baba and M. Nakamura, "Spacing-tunable multiwavelength fiber laser," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

IEEE Photonics Technol. Lett.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, "Dispersion compensation using single material fibers," IEEE Photonics Technol. Lett. 11, 674-680 (1999).
[CrossRef]

M. J. Steel, M. Levy, and R. M. Osgood, "High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects," IEEE Photonics Technol. Lett. 12, 1171-1173 (2000).
[CrossRef]

J. Appl. Phys.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, "Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals," J. Appl. Phys. 93, 3906-3911 (2003).
[CrossRef]

H. Kato, T. Matsushita, and A. Takayama, "Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices," J. Appl. Phys. 93, 3906-3911 (2003).
[CrossRef]

M. Inoue and T. Fujii, "Magnetooptical properties of one-dimensional photonic crystals composed of random magnetic and dielectric layers," J. Appl. Phys. 81, 5659-5665 (1997).
[CrossRef]

M. Inoue, K. Arai, T. Fujii, and M. Abe, "Magnetooptical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers," J. Appl. Phys. 85, 5768-5777 (1999).
[CrossRef]

T. V. Dolgova, A. A. Fedyanin, O. A. Aksipetrov, K. Nishimura, H. Uchida, and M. Inoue, "Nonlinear magneto-optical Kerr effect in garnet magnetophotonic crystals," J. Appl. Phys. 95, 7330-7332 (2004).
[CrossRef]

J. Lightwave Technol.

J. Magn. Magn. Mater.

E. L. Bizdoaca, M. Spasova, and M. Farle, "Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell," J. Magn. Magn. Mater. 240, 44-46 (2002).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

I. Abdulhalim, "Analytic propagation matrix method for anisotropic magneto-optic layered media," J. Opt. A, Pure Appl. Opt. 2, 557-561 (2000).
[CrossRef]

J. Phys. D

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, "Magnetic photonic crystals," J. Phys. D 36, R277-287 (2003).
[CrossRef]

JETP Lett.

T. V. Dolgova, A. A. Fedyanin, T. Yoshida, K. Nishimura, G. Marowsky, M. Inoue, and O. A. Aksipetrov, "Magnetization-induced second-harmonic generation in magnetophotonic microcavities based on ferrite garnets," JETP Lett. 76, 527-531 (2002).
[CrossRef]

Mater. Sci. Eng., B

M. D. B. Charlton, M. E. Zoorob, and G. J. Parker, "Polarisation-dependent mixing in photonic crystal filled optical resonators," Mater. Sci. Eng., B 74, 17-27 (2000).
[CrossRef]

Opt. Commun.

M. Plihal, A. Shambrook, and A. A. Maradudin, "Two-dimensional photonic crystals," Opt. Commun. 80, 199-211 (1991).
[CrossRef]

Opt. Spectrosc.

S. N. Kurilkina and M. V. Shuba, "Propagation and transformation of the light waves in magnetoactive periodic structures," Opt. Spectrosc. 93, 918-923 (2002).
[CrossRef]

Phys. Rev. B

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, "Tunable photonic bandgap in self-assembled clusters of floating magnetic particles," Phys. Rev. B 66, 195108 (2002).
[CrossRef]

C. S. Kee, H. Lim, Y. K. Ha, J. E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[CrossRef]

Phys. Rev. E

D. Lacoste, F. Donatini, and S. Neveu, "Photonic Hall effect in ferrofluids: theory and experiments," Phys. Rev. E 62, 3934-3943 (2000).
[CrossRef]

A. Figotin and I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E 63, 066609 (2001).
[CrossRef]

Phys. Rev. Lett.

V. Berger, "Nonlinear photonic crystals," Phys. Rev. Lett. 81, 4136-4139 (1998).
[CrossRef]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2063 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures," Phys. Rev. Lett. 61, 2546-2549 (1988).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Phys. Status Solidi B

J. Metzdorf and F. R. Kessler, "Magneto-optical properties of Si-based substances in the external magnetic field," Phys. Status Solidi B 71, 237-247 (1975).
[CrossRef]

Physica E (Amsterdam)

C. Monat, C. Seassal, and X. Letartre, "InP-based photonic crystal microlasers on silicon wafer," Physica E (Amsterdam) 17, 475-476 (2003).
[CrossRef]

Other

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

I. S. Grigoriev, Handbook of Physical Values (Nauka, Moscow, 1991).

K. Sakoda, Optical Properties of Photonic Crystals , 2nd ed. (Springer-Verlag, New York, 2004).

A. Zvezdin and V. Kotov, Modern Magneto-optics and Magneto-optical materials (Institute of Physics, London, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

One-dimensional multilayered structure.

Fig. 2
Fig. 2

Examples of two considered, photonic, multilayered structures. (a) PhC-A with magnetic (M) and nonmagnetic (N) layers with sequence defined by (NM)a(MN)b(NM)a; a=2, b=3. (b) PhC-B with magnetic (M) and nonmagnetic (N) layers with sequence defined by (NM)aNeMcNe(MN)b(NM)bNeMcNe(MN)a; a=2, b=3, c=2, e=2.5.

Fig. 3
Fig. 3

Calculated Faraday rotation for PhC-A with a=9 and b=17 (see text).

Fig. 4
Fig. 4

Calculated transmission for PhC-B with a=11, b=7, c=4, e=5 for two different magnetizations of two additional magnetic layers. Solid curve, magnetization in M1 layers coincides with the magnetization in the other magnetic layers; dashed-dotted curve, magnetization in M1 layers is opposite that of the other magnetic layers (see text).

Fig. 5
Fig. 5

Faraday rotation angle versus λ/λn0. Data points: experimental data for 3D magnetic colloidal crystal consisting of a fcc packing of silica spheres with interstices filled with a saturated glycerol solution of dysprosium nitrate (dspheres=260 nm, silica=2.0, liquid=2.2, Bext=33.5 mT, Q=1×107). 36 Solid curve: theory [in accordance with Eq. (12)], λn0=566.5 nm.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

E(v)(r)=P=r,ld0=±Ev,P,dev,P,d exp{ik0[nx,vx+ny,vy
+nz,v,P,d(z-zv-1)]},
ev,r,±=1±i,  ev,l,±=1i;
nv,r,±=(-g)1/2,nv,l,±=(+g)1/2;
ˆ=000000+ig0-mzmymz0-mx-mymx0,
AL+1=SL+1A0,
Pm(r)=i0(r)Q(r)·mE,
Hˆ+Vˆ-ωc2Ψ(r)=0,
Ψnk(r)=unk(r)exp(ikr),
Hˆ+Vˆ-ω2c2unk=0,
Hˆunk=1()1/2unk()1/2+ik()1/2unk()1/2+i()1/2kunk()1/2-kkunk
Vˆunk=-iω2c2Q(r)munk.
Hˆ=Hˆ0+Hˆ1,
Hˆ0unk=1()1/2unk()1/2+k0ˆ1unk()1/2+k02 unk,
H1unk=κˆ2unk()1/2+2k0κ unk+κ2 unk,
un0k(r)=c1un0k0TE(r)ez+c2un0k0TM(r)ey+c3un0k0L(r)ex,
c1[(ωn0kTE)2-ω2]-c2iω2Q=0c2[(ωn0kTM)2-ω2]+c1iω2Q*=0,
ωn0TE=ωn0TMωn0,βTE=βTMβ.
κ±=ωc(|β|)1/21-ωn0ω2±|Q|1/2,
Ψ(r)=exp(ik0x)expiκ++κ-2xun0k0TE(x)cos Δκ2xun0k0TM(x)sin Δκ2x,
Φ=Δk=ωc2|β|1/2|Q|1-ωn0ω2-1/2.
ΦPhC=ωn0c|β|1/2Q21/2.
Φuni=(ω/2c)()1/2Q.
ΦPhCΦuni(1/Q)1/2.
Bmb=Re(κ-κ)=ω2c|β|1/2|QL|21-ωn02ω2-1/2.

Metrics