Abstract

The isolation effect was studied in a Cd1-xMnxTe magneto-optical waveguide grown on a GaAs substrate. By use of prism coupling, an isolation ratio of 20 dB was achieved at λ=740 nm under a magnetic field of 5 kG. The high isolation ratio obtained in the magneto-optical waveguide grown on the semiconductor substrate shows the feasibility of monolithical integration of an optical isolator with semiconductor optoelectronic devices.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ando, T. Okoshi, and N. Koshizuka, "Waveguide magneto-optic isolator fabricated by laser annealing," Appl. Phys. Lett. 53, 4-6 (1988).
    [CrossRef]
  2. K. Ando, "Nonreciprocal devices for integrated optics," in Magneto-Optical Garnet Films with High g-factor, V. V. Randoshkin, ed., Proc. SPIE 1126, 58-65 (1989).
    [CrossRef]
  3. N. Sugimoto, H. Terui, A. Tate, Y. Katoh, Y. Yamada, A. Sugita, A. Shibukawa, and Y. Inoe, "A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit," J. Lightwave Technol. 14, 2537-2546 (1996).
    [CrossRef]
  4. R. Gerhardt, S. Sure, H. Dötsch, T. Linkewitz, and W. Tolksdorf, "Optical properties of bismuth and gallium substituted thulium iron garnet films," Opt. Commun. 102, 31-35 (1991).
    [CrossRef]
  5. T. Shintaku, "Integrated optical isolator based on efficient nonreciprocal radiation mode conversion," Appl. Phys. Lett. 73, 1946-1948 (1998).
    [CrossRef]
  6. H. Yokoi, T. Mizumoto, T. Takano, and N. Shinjo, "Demonstration of an optical isolator by use of a nonreciprocal phase shift," Appl. Opt. 38, 7409-7413 (1999).
    [CrossRef]
  7. M. Levy, R. M. Osgood, A. Kumar, and H. Bakhru, "Epitaxial liftoff of thin oxide layers: yttrium iron garnets onto GaAs," Appl. Phys. Lett. 71, 2617-2619 (1997).
    [CrossRef]
  8. J. M. Hammer, J. H. Abeles, and D. J. Channin, "Polycrystalline-metal-ferromagnetic optical waveguide isolator for monolithic-integration with diode-laser devices," IEEE Photonics Technol. Lett. 9, 631-633 (1997).
    [CrossRef]
  9. W. Zaets and K. Ando, "Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer," IEEE Photonics Technol. Lett. 11, 1012-1014 (1999).
    [CrossRef]
  10. W. Zaets, K. Watanabe, and K. Ando, "Cd1−xMnxTe magneto-optical waveguide integrated on GaAs substrate," Appl. Phys. Lett. 70, 2508-2510 (1997).
    [CrossRef]
  11. W. Zaets and K. Ando, "Magneto-optical mode conversion in Cd1−xMnxTe waveguide on GaAs substrate," Appl. Phys. Lett. 77, 1593-1595 (2000).
    [CrossRef]
  12. V. Zayets, M. C. Debnath, and K. Ando, "Complete magneto-optical waveguide mode conversion in Cd1−xMnxTe waveguide on GaAs substrate," Appl. Phys. Lett. 84, 565-567 (2004).
    [CrossRef]
  13. J. K. Furdyna, "Diluted magnetic semiconductors," J. Appl. Phys. 64, R29-R64 (1988).
    [CrossRef]
  14. A. E. Turner, R. L. Gunshor, and S. Datta, "New class of materials for optical isolators," Appl. Opt. 22, 3152-3154 (1983).
    [CrossRef] [PubMed]
  15. S. Hugonnard-Bruyere, C. Buss, F. Vouilloz, R. Frey, and C. Flytzanis, "Faraday-rotation spectra of semimagnetic semiconductors," Phys. Rev. B 50, 2200-2207 (1994).
    [CrossRef]
  16. D. U. Bartholomew, J. K. Furdyna, and A. K. Ramdas, "Interband Faraday rotation in diluted magnetic semiconductors: Zn1−xMnxTe and Cd1−xMnxTe," Phys. Rev. B 34, 6943-6950 (1986).
    [CrossRef]
  17. K. Onodera, T. Masumoto, and M. Kimura, "980-nm compact optical isolators using Cd1−x−yMnxHgyTe single crystals for high-power pumping-laser diodes," Electron. Lett. 30, 1954-1955 (1994).
    [CrossRef]
  18. J. F. Dillon, J. K. Furdyna, U. Debska, and A. Mycielski,"Faraday rotation in Hg1−xMnxTe at 1.3 and 1.55 µm," J. Appl. Phys. 67, 4917-4919 (1990).
    [CrossRef]
  19. W. Zaets and K. Ando, "Amorphous Zn predeposition for growth of low-defect-density CdTe films and low-optical-loss Cd1−xMnxTe magneto-optic waveguide on GaAs substrate," J. Cryst. Growth 237-239, 1554-1558 (2002).
    [CrossRef]
  20. M. C. Debnath, V. Zayets, and K. Ando, "Enhancement of magneto-optical TE-TM mode conversion efficiency of (Cd,Mn)Te waveguide by graded-index clad layers," J. Appl. Phys. 95, 7181-7183 (2004).
    [CrossRef]
  21. P. K. Tien, D. P. Schinke, and S. L. Blank, "Magneto-optics and motion of the magnetization in a film-waveguide optical switch," J. Appl. Phys. 45, 3059-3068 (1974).
    [CrossRef]
  22. H. Dammann, E. Pross, G. Rabe, and W. Tolksdorf, "45° waveguide isolators with phase mismatch," Appl. Phys. Lett. 56, 1302-1304 (1990).
    [CrossRef]
  23. R. Wolfe, J. F. Dillon, Jr., R. A. Lieberman, and V. J. Fratello, "Broadband magneto-optic waveguide isolator," Appl. Phys. Lett. 57, 960-962 (1990).
    [CrossRef]

2004 (2)

V. Zayets, M. C. Debnath, and K. Ando, "Complete magneto-optical waveguide mode conversion in Cd1−xMnxTe waveguide on GaAs substrate," Appl. Phys. Lett. 84, 565-567 (2004).
[CrossRef]

M. C. Debnath, V. Zayets, and K. Ando, "Enhancement of magneto-optical TE-TM mode conversion efficiency of (Cd,Mn)Te waveguide by graded-index clad layers," J. Appl. Phys. 95, 7181-7183 (2004).
[CrossRef]

2002 (1)

W. Zaets and K. Ando, "Amorphous Zn predeposition for growth of low-defect-density CdTe films and low-optical-loss Cd1−xMnxTe magneto-optic waveguide on GaAs substrate," J. Cryst. Growth 237-239, 1554-1558 (2002).
[CrossRef]

2000 (1)

W. Zaets and K. Ando, "Magneto-optical mode conversion in Cd1−xMnxTe waveguide on GaAs substrate," Appl. Phys. Lett. 77, 1593-1595 (2000).
[CrossRef]

1999 (2)

W. Zaets and K. Ando, "Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer," IEEE Photonics Technol. Lett. 11, 1012-1014 (1999).
[CrossRef]

H. Yokoi, T. Mizumoto, T. Takano, and N. Shinjo, "Demonstration of an optical isolator by use of a nonreciprocal phase shift," Appl. Opt. 38, 7409-7413 (1999).
[CrossRef]

1998 (1)

T. Shintaku, "Integrated optical isolator based on efficient nonreciprocal radiation mode conversion," Appl. Phys. Lett. 73, 1946-1948 (1998).
[CrossRef]

1997 (3)

W. Zaets, K. Watanabe, and K. Ando, "Cd1−xMnxTe magneto-optical waveguide integrated on GaAs substrate," Appl. Phys. Lett. 70, 2508-2510 (1997).
[CrossRef]

M. Levy, R. M. Osgood, A. Kumar, and H. Bakhru, "Epitaxial liftoff of thin oxide layers: yttrium iron garnets onto GaAs," Appl. Phys. Lett. 71, 2617-2619 (1997).
[CrossRef]

J. M. Hammer, J. H. Abeles, and D. J. Channin, "Polycrystalline-metal-ferromagnetic optical waveguide isolator for monolithic-integration with diode-laser devices," IEEE Photonics Technol. Lett. 9, 631-633 (1997).
[CrossRef]

1996 (1)

N. Sugimoto, H. Terui, A. Tate, Y. Katoh, Y. Yamada, A. Sugita, A. Shibukawa, and Y. Inoe, "A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit," J. Lightwave Technol. 14, 2537-2546 (1996).
[CrossRef]

1994 (2)

S. Hugonnard-Bruyere, C. Buss, F. Vouilloz, R. Frey, and C. Flytzanis, "Faraday-rotation spectra of semimagnetic semiconductors," Phys. Rev. B 50, 2200-2207 (1994).
[CrossRef]

K. Onodera, T. Masumoto, and M. Kimura, "980-nm compact optical isolators using Cd1−x−yMnxHgyTe single crystals for high-power pumping-laser diodes," Electron. Lett. 30, 1954-1955 (1994).
[CrossRef]

1991 (1)

R. Gerhardt, S. Sure, H. Dötsch, T. Linkewitz, and W. Tolksdorf, "Optical properties of bismuth and gallium substituted thulium iron garnet films," Opt. Commun. 102, 31-35 (1991).
[CrossRef]

1990 (3)

J. F. Dillon, J. K. Furdyna, U. Debska, and A. Mycielski,"Faraday rotation in Hg1−xMnxTe at 1.3 and 1.55 µm," J. Appl. Phys. 67, 4917-4919 (1990).
[CrossRef]

H. Dammann, E. Pross, G. Rabe, and W. Tolksdorf, "45° waveguide isolators with phase mismatch," Appl. Phys. Lett. 56, 1302-1304 (1990).
[CrossRef]

R. Wolfe, J. F. Dillon, Jr., R. A. Lieberman, and V. J. Fratello, "Broadband magneto-optic waveguide isolator," Appl. Phys. Lett. 57, 960-962 (1990).
[CrossRef]

1989 (1)

K. Ando, "Nonreciprocal devices for integrated optics," in Magneto-Optical Garnet Films with High g-factor, V. V. Randoshkin, ed., Proc. SPIE 1126, 58-65 (1989).
[CrossRef]

1988 (2)

K. Ando, T. Okoshi, and N. Koshizuka, "Waveguide magneto-optic isolator fabricated by laser annealing," Appl. Phys. Lett. 53, 4-6 (1988).
[CrossRef]

J. K. Furdyna, "Diluted magnetic semiconductors," J. Appl. Phys. 64, R29-R64 (1988).
[CrossRef]

1986 (1)

D. U. Bartholomew, J. K. Furdyna, and A. K. Ramdas, "Interband Faraday rotation in diluted magnetic semiconductors: Zn1−xMnxTe and Cd1−xMnxTe," Phys. Rev. B 34, 6943-6950 (1986).
[CrossRef]

1983 (1)

1974 (1)

P. K. Tien, D. P. Schinke, and S. L. Blank, "Magneto-optics and motion of the magnetization in a film-waveguide optical switch," J. Appl. Phys. 45, 3059-3068 (1974).
[CrossRef]

Abeles, J. H.

J. M. Hammer, J. H. Abeles, and D. J. Channin, "Polycrystalline-metal-ferromagnetic optical waveguide isolator for monolithic-integration with diode-laser devices," IEEE Photonics Technol. Lett. 9, 631-633 (1997).
[CrossRef]

Ando, K.

V. Zayets, M. C. Debnath, and K. Ando, "Complete magneto-optical waveguide mode conversion in Cd1−xMnxTe waveguide on GaAs substrate," Appl. Phys. Lett. 84, 565-567 (2004).
[CrossRef]

M. C. Debnath, V. Zayets, and K. Ando, "Enhancement of magneto-optical TE-TM mode conversion efficiency of (Cd,Mn)Te waveguide by graded-index clad layers," J. Appl. Phys. 95, 7181-7183 (2004).
[CrossRef]

W. Zaets and K. Ando, "Amorphous Zn predeposition for growth of low-defect-density CdTe films and low-optical-loss Cd1−xMnxTe magneto-optic waveguide on GaAs substrate," J. Cryst. Growth 237-239, 1554-1558 (2002).
[CrossRef]

W. Zaets and K. Ando, "Magneto-optical mode conversion in Cd1−xMnxTe waveguide on GaAs substrate," Appl. Phys. Lett. 77, 1593-1595 (2000).
[CrossRef]

W. Zaets and K. Ando, "Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer," IEEE Photonics Technol. Lett. 11, 1012-1014 (1999).
[CrossRef]

W. Zaets, K. Watanabe, and K. Ando, "Cd1−xMnxTe magneto-optical waveguide integrated on GaAs substrate," Appl. Phys. Lett. 70, 2508-2510 (1997).
[CrossRef]

K. Ando, "Nonreciprocal devices for integrated optics," in Magneto-Optical Garnet Films with High g-factor, V. V. Randoshkin, ed., Proc. SPIE 1126, 58-65 (1989).
[CrossRef]

K. Ando, T. Okoshi, and N. Koshizuka, "Waveguide magneto-optic isolator fabricated by laser annealing," Appl. Phys. Lett. 53, 4-6 (1988).
[CrossRef]

Bakhru, H.

M. Levy, R. M. Osgood, A. Kumar, and H. Bakhru, "Epitaxial liftoff of thin oxide layers: yttrium iron garnets onto GaAs," Appl. Phys. Lett. 71, 2617-2619 (1997).
[CrossRef]

Bartholomew, D. U.

D. U. Bartholomew, J. K. Furdyna, and A. K. Ramdas, "Interband Faraday rotation in diluted magnetic semiconductors: Zn1−xMnxTe and Cd1−xMnxTe," Phys. Rev. B 34, 6943-6950 (1986).
[CrossRef]

Blank, S. L.

P. K. Tien, D. P. Schinke, and S. L. Blank, "Magneto-optics and motion of the magnetization in a film-waveguide optical switch," J. Appl. Phys. 45, 3059-3068 (1974).
[CrossRef]

Buss, C.

S. Hugonnard-Bruyere, C. Buss, F. Vouilloz, R. Frey, and C. Flytzanis, "Faraday-rotation spectra of semimagnetic semiconductors," Phys. Rev. B 50, 2200-2207 (1994).
[CrossRef]

Channin, D. J.

J. M. Hammer, J. H. Abeles, and D. J. Channin, "Polycrystalline-metal-ferromagnetic optical waveguide isolator for monolithic-integration with diode-laser devices," IEEE Photonics Technol. Lett. 9, 631-633 (1997).
[CrossRef]

Dammann, H.

H. Dammann, E. Pross, G. Rabe, and W. Tolksdorf, "45° waveguide isolators with phase mismatch," Appl. Phys. Lett. 56, 1302-1304 (1990).
[CrossRef]

Datta, S.

Debnath, M. C.

V. Zayets, M. C. Debnath, and K. Ando, "Complete magneto-optical waveguide mode conversion in Cd1−xMnxTe waveguide on GaAs substrate," Appl. Phys. Lett. 84, 565-567 (2004).
[CrossRef]

M. C. Debnath, V. Zayets, and K. Ando, "Enhancement of magneto-optical TE-TM mode conversion efficiency of (Cd,Mn)Te waveguide by graded-index clad layers," J. Appl. Phys. 95, 7181-7183 (2004).
[CrossRef]

Debska, U.

J. F. Dillon, J. K. Furdyna, U. Debska, and A. Mycielski,"Faraday rotation in Hg1−xMnxTe at 1.3 and 1.55 µm," J. Appl. Phys. 67, 4917-4919 (1990).
[CrossRef]

Dillon, J. F.

J. F. Dillon, J. K. Furdyna, U. Debska, and A. Mycielski,"Faraday rotation in Hg1−xMnxTe at 1.3 and 1.55 µm," J. Appl. Phys. 67, 4917-4919 (1990).
[CrossRef]

R. Wolfe, J. F. Dillon, Jr., R. A. Lieberman, and V. J. Fratello, "Broadband magneto-optic waveguide isolator," Appl. Phys. Lett. 57, 960-962 (1990).
[CrossRef]

Dötsch, H.

R. Gerhardt, S. Sure, H. Dötsch, T. Linkewitz, and W. Tolksdorf, "Optical properties of bismuth and gallium substituted thulium iron garnet films," Opt. Commun. 102, 31-35 (1991).
[CrossRef]

Flytzanis, C.

S. Hugonnard-Bruyere, C. Buss, F. Vouilloz, R. Frey, and C. Flytzanis, "Faraday-rotation spectra of semimagnetic semiconductors," Phys. Rev. B 50, 2200-2207 (1994).
[CrossRef]

Fratello, V. J.

R. Wolfe, J. F. Dillon, Jr., R. A. Lieberman, and V. J. Fratello, "Broadband magneto-optic waveguide isolator," Appl. Phys. Lett. 57, 960-962 (1990).
[CrossRef]

Frey, R.

S. Hugonnard-Bruyere, C. Buss, F. Vouilloz, R. Frey, and C. Flytzanis, "Faraday-rotation spectra of semimagnetic semiconductors," Phys. Rev. B 50, 2200-2207 (1994).
[CrossRef]

Furdyna, J. K.

J. F. Dillon, J. K. Furdyna, U. Debska, and A. Mycielski,"Faraday rotation in Hg1−xMnxTe at 1.3 and 1.55 µm," J. Appl. Phys. 67, 4917-4919 (1990).
[CrossRef]

J. K. Furdyna, "Diluted magnetic semiconductors," J. Appl. Phys. 64, R29-R64 (1988).
[CrossRef]

D. U. Bartholomew, J. K. Furdyna, and A. K. Ramdas, "Interband Faraday rotation in diluted magnetic semiconductors: Zn1−xMnxTe and Cd1−xMnxTe," Phys. Rev. B 34, 6943-6950 (1986).
[CrossRef]

Gerhardt, R.

R. Gerhardt, S. Sure, H. Dötsch, T. Linkewitz, and W. Tolksdorf, "Optical properties of bismuth and gallium substituted thulium iron garnet films," Opt. Commun. 102, 31-35 (1991).
[CrossRef]

Gunshor, R. L.

Hammer, J. M.

J. M. Hammer, J. H. Abeles, and D. J. Channin, "Polycrystalline-metal-ferromagnetic optical waveguide isolator for monolithic-integration with diode-laser devices," IEEE Photonics Technol. Lett. 9, 631-633 (1997).
[CrossRef]

Hugonnard-Bruyere, S.

S. Hugonnard-Bruyere, C. Buss, F. Vouilloz, R. Frey, and C. Flytzanis, "Faraday-rotation spectra of semimagnetic semiconductors," Phys. Rev. B 50, 2200-2207 (1994).
[CrossRef]

Inoe, Y.

N. Sugimoto, H. Terui, A. Tate, Y. Katoh, Y. Yamada, A. Sugita, A. Shibukawa, and Y. Inoe, "A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit," J. Lightwave Technol. 14, 2537-2546 (1996).
[CrossRef]

Katoh, Y.

N. Sugimoto, H. Terui, A. Tate, Y. Katoh, Y. Yamada, A. Sugita, A. Shibukawa, and Y. Inoe, "A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit," J. Lightwave Technol. 14, 2537-2546 (1996).
[CrossRef]

Kimura, M.

K. Onodera, T. Masumoto, and M. Kimura, "980-nm compact optical isolators using Cd1−x−yMnxHgyTe single crystals for high-power pumping-laser diodes," Electron. Lett. 30, 1954-1955 (1994).
[CrossRef]

Koshizuka, N.

K. Ando, T. Okoshi, and N. Koshizuka, "Waveguide magneto-optic isolator fabricated by laser annealing," Appl. Phys. Lett. 53, 4-6 (1988).
[CrossRef]

Kumar, A.

M. Levy, R. M. Osgood, A. Kumar, and H. Bakhru, "Epitaxial liftoff of thin oxide layers: yttrium iron garnets onto GaAs," Appl. Phys. Lett. 71, 2617-2619 (1997).
[CrossRef]

Levy, M.

M. Levy, R. M. Osgood, A. Kumar, and H. Bakhru, "Epitaxial liftoff of thin oxide layers: yttrium iron garnets onto GaAs," Appl. Phys. Lett. 71, 2617-2619 (1997).
[CrossRef]

Lieberman, R. A.

R. Wolfe, J. F. Dillon, Jr., R. A. Lieberman, and V. J. Fratello, "Broadband magneto-optic waveguide isolator," Appl. Phys. Lett. 57, 960-962 (1990).
[CrossRef]

Linkewitz, T.

R. Gerhardt, S. Sure, H. Dötsch, T. Linkewitz, and W. Tolksdorf, "Optical properties of bismuth and gallium substituted thulium iron garnet films," Opt. Commun. 102, 31-35 (1991).
[CrossRef]

Masumoto, T.

K. Onodera, T. Masumoto, and M. Kimura, "980-nm compact optical isolators using Cd1−x−yMnxHgyTe single crystals for high-power pumping-laser diodes," Electron. Lett. 30, 1954-1955 (1994).
[CrossRef]

Mizumoto, T.

Mycielski, A.

J. F. Dillon, J. K. Furdyna, U. Debska, and A. Mycielski,"Faraday rotation in Hg1−xMnxTe at 1.3 and 1.55 µm," J. Appl. Phys. 67, 4917-4919 (1990).
[CrossRef]

Okoshi, T.

K. Ando, T. Okoshi, and N. Koshizuka, "Waveguide magneto-optic isolator fabricated by laser annealing," Appl. Phys. Lett. 53, 4-6 (1988).
[CrossRef]

Onodera, K.

K. Onodera, T. Masumoto, and M. Kimura, "980-nm compact optical isolators using Cd1−x−yMnxHgyTe single crystals for high-power pumping-laser diodes," Electron. Lett. 30, 1954-1955 (1994).
[CrossRef]

Osgood, R. M.

M. Levy, R. M. Osgood, A. Kumar, and H. Bakhru, "Epitaxial liftoff of thin oxide layers: yttrium iron garnets onto GaAs," Appl. Phys. Lett. 71, 2617-2619 (1997).
[CrossRef]

Pross, E.

H. Dammann, E. Pross, G. Rabe, and W. Tolksdorf, "45° waveguide isolators with phase mismatch," Appl. Phys. Lett. 56, 1302-1304 (1990).
[CrossRef]

Rabe, G.

H. Dammann, E. Pross, G. Rabe, and W. Tolksdorf, "45° waveguide isolators with phase mismatch," Appl. Phys. Lett. 56, 1302-1304 (1990).
[CrossRef]

Ramdas, A. K.

D. U. Bartholomew, J. K. Furdyna, and A. K. Ramdas, "Interband Faraday rotation in diluted magnetic semiconductors: Zn1−xMnxTe and Cd1−xMnxTe," Phys. Rev. B 34, 6943-6950 (1986).
[CrossRef]

Schinke, D. P.

P. K. Tien, D. P. Schinke, and S. L. Blank, "Magneto-optics and motion of the magnetization in a film-waveguide optical switch," J. Appl. Phys. 45, 3059-3068 (1974).
[CrossRef]

Shibukawa, A.

N. Sugimoto, H. Terui, A. Tate, Y. Katoh, Y. Yamada, A. Sugita, A. Shibukawa, and Y. Inoe, "A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit," J. Lightwave Technol. 14, 2537-2546 (1996).
[CrossRef]

Shinjo, N.

Shintaku, T.

T. Shintaku, "Integrated optical isolator based on efficient nonreciprocal radiation mode conversion," Appl. Phys. Lett. 73, 1946-1948 (1998).
[CrossRef]

Sugimoto, N.

N. Sugimoto, H. Terui, A. Tate, Y. Katoh, Y. Yamada, A. Sugita, A. Shibukawa, and Y. Inoe, "A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit," J. Lightwave Technol. 14, 2537-2546 (1996).
[CrossRef]

Sugita, A.

N. Sugimoto, H. Terui, A. Tate, Y. Katoh, Y. Yamada, A. Sugita, A. Shibukawa, and Y. Inoe, "A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit," J. Lightwave Technol. 14, 2537-2546 (1996).
[CrossRef]

Sure, S.

R. Gerhardt, S. Sure, H. Dötsch, T. Linkewitz, and W. Tolksdorf, "Optical properties of bismuth and gallium substituted thulium iron garnet films," Opt. Commun. 102, 31-35 (1991).
[CrossRef]

Takano, T.

Tate, A.

N. Sugimoto, H. Terui, A. Tate, Y. Katoh, Y. Yamada, A. Sugita, A. Shibukawa, and Y. Inoe, "A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit," J. Lightwave Technol. 14, 2537-2546 (1996).
[CrossRef]

Terui, H.

N. Sugimoto, H. Terui, A. Tate, Y. Katoh, Y. Yamada, A. Sugita, A. Shibukawa, and Y. Inoe, "A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit," J. Lightwave Technol. 14, 2537-2546 (1996).
[CrossRef]

Tien, P. K.

P. K. Tien, D. P. Schinke, and S. L. Blank, "Magneto-optics and motion of the magnetization in a film-waveguide optical switch," J. Appl. Phys. 45, 3059-3068 (1974).
[CrossRef]

Tolksdorf, W.

R. Gerhardt, S. Sure, H. Dötsch, T. Linkewitz, and W. Tolksdorf, "Optical properties of bismuth and gallium substituted thulium iron garnet films," Opt. Commun. 102, 31-35 (1991).
[CrossRef]

H. Dammann, E. Pross, G. Rabe, and W. Tolksdorf, "45° waveguide isolators with phase mismatch," Appl. Phys. Lett. 56, 1302-1304 (1990).
[CrossRef]

Turner, A. E.

Vouilloz, F.

S. Hugonnard-Bruyere, C. Buss, F. Vouilloz, R. Frey, and C. Flytzanis, "Faraday-rotation spectra of semimagnetic semiconductors," Phys. Rev. B 50, 2200-2207 (1994).
[CrossRef]

Watanabe, K.

W. Zaets, K. Watanabe, and K. Ando, "Cd1−xMnxTe magneto-optical waveguide integrated on GaAs substrate," Appl. Phys. Lett. 70, 2508-2510 (1997).
[CrossRef]

Wolfe, R.

R. Wolfe, J. F. Dillon, Jr., R. A. Lieberman, and V. J. Fratello, "Broadband magneto-optic waveguide isolator," Appl. Phys. Lett. 57, 960-962 (1990).
[CrossRef]

Yamada, Y.

N. Sugimoto, H. Terui, A. Tate, Y. Katoh, Y. Yamada, A. Sugita, A. Shibukawa, and Y. Inoe, "A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit," J. Lightwave Technol. 14, 2537-2546 (1996).
[CrossRef]

Yokoi, H.

Zaets , W.

W. Zaets and K. Ando, "Amorphous Zn predeposition for growth of low-defect-density CdTe films and low-optical-loss Cd1−xMnxTe magneto-optic waveguide on GaAs substrate," J. Cryst. Growth 237-239, 1554-1558 (2002).
[CrossRef]

W. Zaets and K. Ando, "Magneto-optical mode conversion in Cd1−xMnxTe waveguide on GaAs substrate," Appl. Phys. Lett. 77, 1593-1595 (2000).
[CrossRef]

W. Zaets and K. Ando, "Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer," IEEE Photonics Technol. Lett. 11, 1012-1014 (1999).
[CrossRef]

Zaets, W.

W. Zaets, K. Watanabe, and K. Ando, "Cd1−xMnxTe magneto-optical waveguide integrated on GaAs substrate," Appl. Phys. Lett. 70, 2508-2510 (1997).
[CrossRef]

Zayets, V.

V. Zayets, M. C. Debnath, and K. Ando, "Complete magneto-optical waveguide mode conversion in Cd1−xMnxTe waveguide on GaAs substrate," Appl. Phys. Lett. 84, 565-567 (2004).
[CrossRef]

M. C. Debnath, V. Zayets, and K. Ando, "Enhancement of magneto-optical TE-TM mode conversion efficiency of (Cd,Mn)Te waveguide by graded-index clad layers," J. Appl. Phys. 95, 7181-7183 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (8)

W. Zaets, K. Watanabe, and K. Ando, "Cd1−xMnxTe magneto-optical waveguide integrated on GaAs substrate," Appl. Phys. Lett. 70, 2508-2510 (1997).
[CrossRef]

W. Zaets and K. Ando, "Magneto-optical mode conversion in Cd1−xMnxTe waveguide on GaAs substrate," Appl. Phys. Lett. 77, 1593-1595 (2000).
[CrossRef]

V. Zayets, M. C. Debnath, and K. Ando, "Complete magneto-optical waveguide mode conversion in Cd1−xMnxTe waveguide on GaAs substrate," Appl. Phys. Lett. 84, 565-567 (2004).
[CrossRef]

M. Levy, R. M. Osgood, A. Kumar, and H. Bakhru, "Epitaxial liftoff of thin oxide layers: yttrium iron garnets onto GaAs," Appl. Phys. Lett. 71, 2617-2619 (1997).
[CrossRef]

K. Ando, T. Okoshi, and N. Koshizuka, "Waveguide magneto-optic isolator fabricated by laser annealing," Appl. Phys. Lett. 53, 4-6 (1988).
[CrossRef]

H. Dammann, E. Pross, G. Rabe, and W. Tolksdorf, "45° waveguide isolators with phase mismatch," Appl. Phys. Lett. 56, 1302-1304 (1990).
[CrossRef]

R. Wolfe, J. F. Dillon, Jr., R. A. Lieberman, and V. J. Fratello, "Broadband magneto-optic waveguide isolator," Appl. Phys. Lett. 57, 960-962 (1990).
[CrossRef]

T. Shintaku, "Integrated optical isolator based on efficient nonreciprocal radiation mode conversion," Appl. Phys. Lett. 73, 1946-1948 (1998).
[CrossRef]

Electron. Lett. (1)

K. Onodera, T. Masumoto, and M. Kimura, "980-nm compact optical isolators using Cd1−x−yMnxHgyTe single crystals for high-power pumping-laser diodes," Electron. Lett. 30, 1954-1955 (1994).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

J. M. Hammer, J. H. Abeles, and D. J. Channin, "Polycrystalline-metal-ferromagnetic optical waveguide isolator for monolithic-integration with diode-laser devices," IEEE Photonics Technol. Lett. 9, 631-633 (1997).
[CrossRef]

W. Zaets and K. Ando, "Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer," IEEE Photonics Technol. Lett. 11, 1012-1014 (1999).
[CrossRef]

J. Appl. Phys. (4)

J. F. Dillon, J. K. Furdyna, U. Debska, and A. Mycielski,"Faraday rotation in Hg1−xMnxTe at 1.3 and 1.55 µm," J. Appl. Phys. 67, 4917-4919 (1990).
[CrossRef]

J. K. Furdyna, "Diluted magnetic semiconductors," J. Appl. Phys. 64, R29-R64 (1988).
[CrossRef]

M. C. Debnath, V. Zayets, and K. Ando, "Enhancement of magneto-optical TE-TM mode conversion efficiency of (Cd,Mn)Te waveguide by graded-index clad layers," J. Appl. Phys. 95, 7181-7183 (2004).
[CrossRef]

P. K. Tien, D. P. Schinke, and S. L. Blank, "Magneto-optics and motion of the magnetization in a film-waveguide optical switch," J. Appl. Phys. 45, 3059-3068 (1974).
[CrossRef]

J. Cryst. Growth (1)

W. Zaets and K. Ando, "Amorphous Zn predeposition for growth of low-defect-density CdTe films and low-optical-loss Cd1−xMnxTe magneto-optic waveguide on GaAs substrate," J. Cryst. Growth 237-239, 1554-1558 (2002).
[CrossRef]

J. Lightwave Technol. (1)

N. Sugimoto, H. Terui, A. Tate, Y. Katoh, Y. Yamada, A. Sugita, A. Shibukawa, and Y. Inoe, "A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit," J. Lightwave Technol. 14, 2537-2546 (1996).
[CrossRef]

Opt. Commun. (1)

R. Gerhardt, S. Sure, H. Dötsch, T. Linkewitz, and W. Tolksdorf, "Optical properties of bismuth and gallium substituted thulium iron garnet films," Opt. Commun. 102, 31-35 (1991).
[CrossRef]

Phys. Rev. B (2)

S. Hugonnard-Bruyere, C. Buss, F. Vouilloz, R. Frey, and C. Flytzanis, "Faraday-rotation spectra of semimagnetic semiconductors," Phys. Rev. B 50, 2200-2207 (1994).
[CrossRef]

D. U. Bartholomew, J. K. Furdyna, and A. K. Ramdas, "Interband Faraday rotation in diluted magnetic semiconductors: Zn1−xMnxTe and Cd1−xMnxTe," Phys. Rev. B 34, 6943-6950 (1986).
[CrossRef]

Proc. SPIE (1)

K. Ando, "Nonreciprocal devices for integrated optics," in Magneto-Optical Garnet Films with High g-factor, V. V. Randoshkin, ed., Proc. SPIE 1126, 58-65 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Experimental setup for evaluating optical propagation loss and TE–TM waveguide mode conversion at λ=740 nm. (b) A spatially modulated light streak appears when a magnetic field of 5 kG is applied parallel to the light propagation direction. Input light is TM polarized. (c) TE–TM conversion ratio as a function of propagation length. Solid curve is calculated data from Eq. (1) with Δβ=160 deg/cm and V=95 (deg/cm)/kG. Arrows indicate propagation distance for 45° and 45°+180° polarization rotation.

Fig. 2
Fig. 2

Maximum TE–TM conversion ratio as a function of the applied magnetic field. Triangles, experimental data measured with the setup in Fig. 1(a); solid curve, fitting with Eq. (1).

Fig. 3
Fig. 3

Angle of polarization rotation at the light propagation distance of 4.8 mm in the Cd1-xMnxTe waveguide as a function of the applied magnetic field. Triangles, measured data; solid curve, fitting with Eq. (1).

Fig. 4
Fig. 4

Two-prism-coupling setup for evaluating the isolation ratio and transmission coefficient.

Fig. 5
Fig. 5

Transmission coefficient in forward and backward directions in the Cd1-xMnxTe waveguide as a function of the applied magnetic field. Distance between input and output prisms is 4.8 mm.

Fig. 6
Fig. 6

Isolation ratio in the Cd1-xMnxTe waveguide as a function of the applied magnetic field. Distance between input and output prisms is 4.8 mm. Arrows show angles of Faraday rotation at maxima and minimum of isolation.

Fig. 7
Fig. 7

Diagrams illustrating the isolation effect for different angles of Faraday rotation. The upper set is for forward propagation, and the lower set is for backward propagation. Thin arrows indicate the direction of the polarization plane, and bold arrows show the directions of the analyzer (A) and the polarizer (P). The angle between the analyzer and the polarizer is 45 deg. Faraday rotation is in the clockwise direction for both forward and backward propagations (owing to its nonreciprocal nature). The angles of Faraday rotation are (a) 45°, (b) 45°+90°, (c) 45°+180°. FW, forward; BW, backward.

Fig. 8
Fig. 8

Isolation ratio as a function of maximum mode conversion. Triangles, the maxima for absolute values of the isolation ratio from Fig. 6; curves are calculated data. Polarization dependence of coupling is not included in curve 1 and is included in curve 2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R=ӨF2ӨF2+(Δβ/2)2sin2[ӨF2+(Δβ/2)2L],

Metrics