Abstract

The magneto-optic interaction of waveguide light (WL) with spin waves (SW) in nonuniformly magnetized yttrium iron garnet (YIG) films was investigated both experimentally and theoretically. The measurements were carried out on YIG film of thickness 3.8 µm at the optical wavelength of 1.15 µm and in the SW frequency band of 3–4 GHz. It is shown that for collinear WL–SW interaction, a spatial nonuniformity of the magnetizing field can provide SW beam focusing and improve WL–SW interaction efficiency by a factor of an order of magnitude. Field nonuniformity in the transverse direction results in a spatial separation of regions of WL interaction with SW of different frequencies. For orthogonal geometry of the WL–SW interaction the artificial field nonuniformity leads to an increase in the Bragg diffraction angles.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Fisher, J. N. Lee, E. S. Gaynor, and A. B. Tveten, "Optical guided-wave interactions with magnetostatic waves at microwave frequencies," Appl. Phys. Lett. 41, 779-781 (1982).
    [CrossRef]
  2. A. D. Fisher, "Optical signal processing with magnetostatic waves," Circuits Syst. Signal Process. 4, 265-284 (1985).
    [CrossRef]
  3. A. D. Boardman, Yu. V. Gulyaev, and S. A. Nikitov, "Thin-film solid state devices based on nonlinear magnetostatic waves," Jpn. J. Appl. Phys. 27, L2438-2441 (1988).
    [CrossRef]
  4. C. S. Tsai, "Recent advances in guided-wave magnetooptic interactions. Devices and applications," Photonics Optoelectron. 1, 59-74 (1993).
  5. Y. K. Fetisov and A. A. Klimov, "Sequential microwave analyzer based on waveguide light interaction with magneto-static wave in garnet film," International Conference on Optical Information Processing, Yu. Gulyaev and D. Pape, eds., Proc. SPIE 2051, 779-786 (1994).
    [CrossRef]
  6. H. Tamada, M. Kaneko, and T. Okamoto, "TM-TE optical mode conversion induced by a transversely propagating magnetostatic wave in (BiLu)3Fe5O12 film," J. Appl. Phys. 64, 554-559 (1988).
    [CrossRef]
  7. A. A. Klimov, V. L. Preobrazhenskii, and Y. K. Fetisov, "Efficient light scattering by magnetostatic waves in a ferrite film," Sov. Tech. Phys. Lett. 16, 649-650 (1990),
  8. A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973).
    [CrossRef]
  9. R. W. Damon and J. R. Eshbach, "Magnetostatic modes of a ferromagnetic slab," J. Phys. Chem. Solids 19, 308-320 (1961).
    [CrossRef]
  10. Y. K. Fetisov and V. L. Preobrazhenskii, "Anisotropic propagation of magnetostatic waves in tangentially magnetized ferrite film," Sov. Phys. Tech. Phys. 32, 341-342 (1987),
  11. I. Awai and J. Ikenoue, "Magnetostatic surface wave propagation in a nonuniform magnetic field," J. Appl. Phys. 51, 2326-2331 (1980).
    [CrossRef]
  12. D. D. Stancil and N. Bilaniuk, "Collinear interaction of optical guided modes with microwave spin waves in magnetic films," in High Frequency Processes in Magnetic Materials , G. Srinivasan and A. Slavin, eds. (World Scientific, Singapore, 1995), pp. 1-37.
  13. C. S. Tsai, Y. S. Lin, J. Su, and S. R. Calciu, "High efficiency guided-wave magneto-optic Bragg cell modulator using nonuniform bias magnetic field," Appl. Phys. Lett. 71, 3715-3717 (1997).
    [CrossRef]
  14. A. A. Klimov, V. L. Preobrazhensky, and Y. K. Fetisov, "Collinear interaction of light with a magnetostatic wave in a ferrite film in a transversely nonuniform magnetic field," Sov. Tech. Phys. Lett. 17, 240-241 (1991),
  15. O. L. Galkin, A. A. Klimov, V. L. Preobrazhenskii, Y. K. Fetisov, and P. S. Kostuk, "Bragg diffraction of light on backward volume magnetostatic waves in a nonuniform magnetic field," Sov. Tech. Phys. Lett. 15, 906-907 (1989), [Pis'ma Zh. Tekh. Fiz. 15, 79–82 (1990) in Russian].

1997

C. S. Tsai, Y. S. Lin, J. Su, and S. R. Calciu, "High efficiency guided-wave magneto-optic Bragg cell modulator using nonuniform bias magnetic field," Appl. Phys. Lett. 71, 3715-3717 (1997).
[CrossRef]

1994

Y. K. Fetisov and A. A. Klimov, "Sequential microwave analyzer based on waveguide light interaction with magneto-static wave in garnet film," International Conference on Optical Information Processing, Yu. Gulyaev and D. Pape, eds., Proc. SPIE 2051, 779-786 (1994).
[CrossRef]

1993

C. S. Tsai, "Recent advances in guided-wave magnetooptic interactions. Devices and applications," Photonics Optoelectron. 1, 59-74 (1993).

1991

A. A. Klimov, V. L. Preobrazhensky, and Y. K. Fetisov, "Collinear interaction of light with a magnetostatic wave in a ferrite film in a transversely nonuniform magnetic field," Sov. Tech. Phys. Lett. 17, 240-241 (1991),

1990

A. A. Klimov, V. L. Preobrazhenskii, and Y. K. Fetisov, "Efficient light scattering by magnetostatic waves in a ferrite film," Sov. Tech. Phys. Lett. 16, 649-650 (1990),

1989

O. L. Galkin, A. A. Klimov, V. L. Preobrazhenskii, Y. K. Fetisov, and P. S. Kostuk, "Bragg diffraction of light on backward volume magnetostatic waves in a nonuniform magnetic field," Sov. Tech. Phys. Lett. 15, 906-907 (1989), [Pis'ma Zh. Tekh. Fiz. 15, 79–82 (1990) in Russian].

1988

H. Tamada, M. Kaneko, and T. Okamoto, "TM-TE optical mode conversion induced by a transversely propagating magnetostatic wave in (BiLu)3Fe5O12 film," J. Appl. Phys. 64, 554-559 (1988).
[CrossRef]

A. D. Boardman, Yu. V. Gulyaev, and S. A. Nikitov, "Thin-film solid state devices based on nonlinear magnetostatic waves," Jpn. J. Appl. Phys. 27, L2438-2441 (1988).
[CrossRef]

1987

Y. K. Fetisov and V. L. Preobrazhenskii, "Anisotropic propagation of magnetostatic waves in tangentially magnetized ferrite film," Sov. Phys. Tech. Phys. 32, 341-342 (1987),

1985

A. D. Fisher, "Optical signal processing with magnetostatic waves," Circuits Syst. Signal Process. 4, 265-284 (1985).
[CrossRef]

1982

A. D. Fisher, J. N. Lee, E. S. Gaynor, and A. B. Tveten, "Optical guided-wave interactions with magnetostatic waves at microwave frequencies," Appl. Phys. Lett. 41, 779-781 (1982).
[CrossRef]

1980

I. Awai and J. Ikenoue, "Magnetostatic surface wave propagation in a nonuniform magnetic field," J. Appl. Phys. 51, 2326-2331 (1980).
[CrossRef]

1973

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973).
[CrossRef]

1961

R. W. Damon and J. R. Eshbach, "Magnetostatic modes of a ferromagnetic slab," J. Phys. Chem. Solids 19, 308-320 (1961).
[CrossRef]

Awai , I.

I. Awai and J. Ikenoue, "Magnetostatic surface wave propagation in a nonuniform magnetic field," J. Appl. Phys. 51, 2326-2331 (1980).
[CrossRef]

Boardman, A. D.

A. D. Boardman, Yu. V. Gulyaev, and S. A. Nikitov, "Thin-film solid state devices based on nonlinear magnetostatic waves," Jpn. J. Appl. Phys. 27, L2438-2441 (1988).
[CrossRef]

Calciu, S. R.

C. S. Tsai, Y. S. Lin, J. Su, and S. R. Calciu, "High efficiency guided-wave magneto-optic Bragg cell modulator using nonuniform bias magnetic field," Appl. Phys. Lett. 71, 3715-3717 (1997).
[CrossRef]

Damon , R. W.

R. W. Damon and J. R. Eshbach, "Magnetostatic modes of a ferromagnetic slab," J. Phys. Chem. Solids 19, 308-320 (1961).
[CrossRef]

Eshbach, J. R.

R. W. Damon and J. R. Eshbach, "Magnetostatic modes of a ferromagnetic slab," J. Phys. Chem. Solids 19, 308-320 (1961).
[CrossRef]

Fetisov , Y. K.

Y. K. Fetisov and A. A. Klimov, "Sequential microwave analyzer based on waveguide light interaction with magneto-static wave in garnet film," International Conference on Optical Information Processing, Yu. Gulyaev and D. Pape, eds., Proc. SPIE 2051, 779-786 (1994).
[CrossRef]

Fetisov, Y. K.

A. A. Klimov, V. L. Preobrazhensky, and Y. K. Fetisov, "Collinear interaction of light with a magnetostatic wave in a ferrite film in a transversely nonuniform magnetic field," Sov. Tech. Phys. Lett. 17, 240-241 (1991),

A. A. Klimov, V. L. Preobrazhenskii, and Y. K. Fetisov, "Efficient light scattering by magnetostatic waves in a ferrite film," Sov. Tech. Phys. Lett. 16, 649-650 (1990),

O. L. Galkin, A. A. Klimov, V. L. Preobrazhenskii, Y. K. Fetisov, and P. S. Kostuk, "Bragg diffraction of light on backward volume magnetostatic waves in a nonuniform magnetic field," Sov. Tech. Phys. Lett. 15, 906-907 (1989), [Pis'ma Zh. Tekh. Fiz. 15, 79–82 (1990) in Russian].

Fetisov , Y. K.

Y. K. Fetisov and V. L. Preobrazhenskii, "Anisotropic propagation of magnetostatic waves in tangentially magnetized ferrite film," Sov. Phys. Tech. Phys. 32, 341-342 (1987),

Fisher, A. D.

A. D. Fisher, "Optical signal processing with magnetostatic waves," Circuits Syst. Signal Process. 4, 265-284 (1985).
[CrossRef]

A. D. Fisher, J. N. Lee, E. S. Gaynor, and A. B. Tveten, "Optical guided-wave interactions with magnetostatic waves at microwave frequencies," Appl. Phys. Lett. 41, 779-781 (1982).
[CrossRef]

Galkin, O. L.

O. L. Galkin, A. A. Klimov, V. L. Preobrazhenskii, Y. K. Fetisov, and P. S. Kostuk, "Bragg diffraction of light on backward volume magnetostatic waves in a nonuniform magnetic field," Sov. Tech. Phys. Lett. 15, 906-907 (1989), [Pis'ma Zh. Tekh. Fiz. 15, 79–82 (1990) in Russian].

Gaynor, E. S.

A. D. Fisher, J. N. Lee, E. S. Gaynor, and A. B. Tveten, "Optical guided-wave interactions with magnetostatic waves at microwave frequencies," Appl. Phys. Lett. 41, 779-781 (1982).
[CrossRef]

Gulyaev, Yu. V.

A. D. Boardman, Yu. V. Gulyaev, and S. A. Nikitov, "Thin-film solid state devices based on nonlinear magnetostatic waves," Jpn. J. Appl. Phys. 27, L2438-2441 (1988).
[CrossRef]

Ikenoue, J.

I. Awai and J. Ikenoue, "Magnetostatic surface wave propagation in a nonuniform magnetic field," J. Appl. Phys. 51, 2326-2331 (1980).
[CrossRef]

Kaneko, M.

H. Tamada, M. Kaneko, and T. Okamoto, "TM-TE optical mode conversion induced by a transversely propagating magnetostatic wave in (BiLu)3Fe5O12 film," J. Appl. Phys. 64, 554-559 (1988).
[CrossRef]

Klimov, A. A.

Y. K. Fetisov and A. A. Klimov, "Sequential microwave analyzer based on waveguide light interaction with magneto-static wave in garnet film," International Conference on Optical Information Processing, Yu. Gulyaev and D. Pape, eds., Proc. SPIE 2051, 779-786 (1994).
[CrossRef]

A. A. Klimov, V. L. Preobrazhensky, and Y. K. Fetisov, "Collinear interaction of light with a magnetostatic wave in a ferrite film in a transversely nonuniform magnetic field," Sov. Tech. Phys. Lett. 17, 240-241 (1991),

A. A. Klimov, V. L. Preobrazhenskii, and Y. K. Fetisov, "Efficient light scattering by magnetostatic waves in a ferrite film," Sov. Tech. Phys. Lett. 16, 649-650 (1990),

O. L. Galkin, A. A. Klimov, V. L. Preobrazhenskii, Y. K. Fetisov, and P. S. Kostuk, "Bragg diffraction of light on backward volume magnetostatic waves in a nonuniform magnetic field," Sov. Tech. Phys. Lett. 15, 906-907 (1989), [Pis'ma Zh. Tekh. Fiz. 15, 79–82 (1990) in Russian].

Kostuk, P. S.

O. L. Galkin, A. A. Klimov, V. L. Preobrazhenskii, Y. K. Fetisov, and P. S. Kostuk, "Bragg diffraction of light on backward volume magnetostatic waves in a nonuniform magnetic field," Sov. Tech. Phys. Lett. 15, 906-907 (1989), [Pis'ma Zh. Tekh. Fiz. 15, 79–82 (1990) in Russian].

Lee, J. N.

A. D. Fisher, J. N. Lee, E. S. Gaynor, and A. B. Tveten, "Optical guided-wave interactions with magnetostatic waves at microwave frequencies," Appl. Phys. Lett. 41, 779-781 (1982).
[CrossRef]

Lin, Y. S.

C. S. Tsai, Y. S. Lin, J. Su, and S. R. Calciu, "High efficiency guided-wave magneto-optic Bragg cell modulator using nonuniform bias magnetic field," Appl. Phys. Lett. 71, 3715-3717 (1997).
[CrossRef]

Nikitov, S. A.

A. D. Boardman, Yu. V. Gulyaev, and S. A. Nikitov, "Thin-film solid state devices based on nonlinear magnetostatic waves," Jpn. J. Appl. Phys. 27, L2438-2441 (1988).
[CrossRef]

Okamoto, T.

H. Tamada, M. Kaneko, and T. Okamoto, "TM-TE optical mode conversion induced by a transversely propagating magnetostatic wave in (BiLu)3Fe5O12 film," J. Appl. Phys. 64, 554-559 (1988).
[CrossRef]

Preobrazhenskii, V. L.

A. A. Klimov, V. L. Preobrazhenskii, and Y. K. Fetisov, "Efficient light scattering by magnetostatic waves in a ferrite film," Sov. Tech. Phys. Lett. 16, 649-650 (1990),

O. L. Galkin, A. A. Klimov, V. L. Preobrazhenskii, Y. K. Fetisov, and P. S. Kostuk, "Bragg diffraction of light on backward volume magnetostatic waves in a nonuniform magnetic field," Sov. Tech. Phys. Lett. 15, 906-907 (1989), [Pis'ma Zh. Tekh. Fiz. 15, 79–82 (1990) in Russian].

Y. K. Fetisov and V. L. Preobrazhenskii, "Anisotropic propagation of magnetostatic waves in tangentially magnetized ferrite film," Sov. Phys. Tech. Phys. 32, 341-342 (1987),

Preobrazhensky, V. L.

A. A. Klimov, V. L. Preobrazhensky, and Y. K. Fetisov, "Collinear interaction of light with a magnetostatic wave in a ferrite film in a transversely nonuniform magnetic field," Sov. Tech. Phys. Lett. 17, 240-241 (1991),

Su, J.

C. S. Tsai, Y. S. Lin, J. Su, and S. R. Calciu, "High efficiency guided-wave magneto-optic Bragg cell modulator using nonuniform bias magnetic field," Appl. Phys. Lett. 71, 3715-3717 (1997).
[CrossRef]

Tamada, H.

H. Tamada, M. Kaneko, and T. Okamoto, "TM-TE optical mode conversion induced by a transversely propagating magnetostatic wave in (BiLu)3Fe5O12 film," J. Appl. Phys. 64, 554-559 (1988).
[CrossRef]

Tsai, C. S.

C. S. Tsai, Y. S. Lin, J. Su, and S. R. Calciu, "High efficiency guided-wave magneto-optic Bragg cell modulator using nonuniform bias magnetic field," Appl. Phys. Lett. 71, 3715-3717 (1997).
[CrossRef]

C. S. Tsai, "Recent advances in guided-wave magnetooptic interactions. Devices and applications," Photonics Optoelectron. 1, 59-74 (1993).

Tveten, A. B.

A. D. Fisher, J. N. Lee, E. S. Gaynor, and A. B. Tveten, "Optical guided-wave interactions with magnetostatic waves at microwave frequencies," Appl. Phys. Lett. 41, 779-781 (1982).
[CrossRef]

Yariv, A.

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973).
[CrossRef]

Appl. Phys. Lett.

A. D. Fisher, J. N. Lee, E. S. Gaynor, and A. B. Tveten, "Optical guided-wave interactions with magnetostatic waves at microwave frequencies," Appl. Phys. Lett. 41, 779-781 (1982).
[CrossRef]

C. S. Tsai, Y. S. Lin, J. Su, and S. R. Calciu, "High efficiency guided-wave magneto-optic Bragg cell modulator using nonuniform bias magnetic field," Appl. Phys. Lett. 71, 3715-3717 (1997).
[CrossRef]

Circuits Syst. Signal Process.

A. D. Fisher, "Optical signal processing with magnetostatic waves," Circuits Syst. Signal Process. 4, 265-284 (1985).
[CrossRef]

IEEE J. Quantum Electron.

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973).
[CrossRef]

J. Appl. Phys.

H. Tamada, M. Kaneko, and T. Okamoto, "TM-TE optical mode conversion induced by a transversely propagating magnetostatic wave in (BiLu)3Fe5O12 film," J. Appl. Phys. 64, 554-559 (1988).
[CrossRef]

I. Awai and J. Ikenoue, "Magnetostatic surface wave propagation in a nonuniform magnetic field," J. Appl. Phys. 51, 2326-2331 (1980).
[CrossRef]

J. Phys. Chem. Solids

R. W. Damon and J. R. Eshbach, "Magnetostatic modes of a ferromagnetic slab," J. Phys. Chem. Solids 19, 308-320 (1961).
[CrossRef]

Jpn. J. Appl. Phys.

A. D. Boardman, Yu. V. Gulyaev, and S. A. Nikitov, "Thin-film solid state devices based on nonlinear magnetostatic waves," Jpn. J. Appl. Phys. 27, L2438-2441 (1988).
[CrossRef]

Photonics Optoelectron.

C. S. Tsai, "Recent advances in guided-wave magnetooptic interactions. Devices and applications," Photonics Optoelectron. 1, 59-74 (1993).

Proc. SPIE

Y. K. Fetisov and A. A. Klimov, "Sequential microwave analyzer based on waveguide light interaction with magneto-static wave in garnet film," International Conference on Optical Information Processing, Yu. Gulyaev and D. Pape, eds., Proc. SPIE 2051, 779-786 (1994).
[CrossRef]

Sov. Phys. Tech. Phys.

Y. K. Fetisov and V. L. Preobrazhenskii, "Anisotropic propagation of magnetostatic waves in tangentially magnetized ferrite film," Sov. Phys. Tech. Phys. 32, 341-342 (1987),

Sov. Tech. Phys. Lett.

A. A. Klimov, V. L. Preobrazhenskii, and Y. K. Fetisov, "Efficient light scattering by magnetostatic waves in a ferrite film," Sov. Tech. Phys. Lett. 16, 649-650 (1990),

A. A. Klimov, V. L. Preobrazhensky, and Y. K. Fetisov, "Collinear interaction of light with a magnetostatic wave in a ferrite film in a transversely nonuniform magnetic field," Sov. Tech. Phys. Lett. 17, 240-241 (1991),

O. L. Galkin, A. A. Klimov, V. L. Preobrazhenskii, Y. K. Fetisov, and P. S. Kostuk, "Bragg diffraction of light on backward volume magnetostatic waves in a nonuniform magnetic field," Sov. Tech. Phys. Lett. 15, 906-907 (1989), [Pis'ma Zh. Tekh. Fiz. 15, 79–82 (1990) in Russian].

Other

D. D. Stancil and N. Bilaniuk, "Collinear interaction of optical guided modes with microwave spin waves in magnetic films," in High Frequency Processes in Magnetic Materials , G. Srinivasan and A. Slavin, eds. (World Scientific, Singapore, 1995), pp. 1-37.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic view of the magneto-optical cell.

Fig. 2
Fig. 2

Spectrum of the waveguide TE and TM modes in the 3.8-µm-thick YIG film.

Fig. 3
Fig. 3

Dependences of insertion loss L and wave number k versus frequency f for the surface SW in YIG film.

Fig. 4
Fig. 4

Measured dependences of TM2TE2 optical modes’ conversion efficiency versus the SW frequency for (curve 1) uniformly and (curve 2) nonuniformly magnetized YIG film.

Fig. 5
Fig. 5

Distributions of the magnetic field magnitude across the YIG film width measured near the (curve 1) input and near the (curve 2) output prisms. Dashed lines are approximations with the analytical function.

Fig. 6
Fig. 6

Calculated trajectories of the surface SW rays in a nonuniform focusing magnetic field. The wave vector component remains constant at ky128 rad/cm inside the optical beam propagation region |x|<0.5 mm.

Fig. 7
Fig. 7

Calculated dependences of TM2TE2 optical modes’ conversion efficiency versus the SW frequency for (curve 1) uniformly and (curve 2) nonuniformly magnetized YIG film and interaction length of l=12 mm.

Fig. 8
Fig. 8

Efficiency of TM2TE2 optical modes’ conversion as a function of interaction length in (curve 1) uniformly and (curve 2) nonuniformly magnetized YIG films.

Fig. 9
Fig. 9

Calculated trajectories of the surface SW rays in a YIG film magnetized nonuniformly in the transverse direction.

Fig. 10
Fig. 10

Measured distributions of the optical modes’ conversion efficiency across the film width in a nonuniformly magnetized YIG film for two frequencies: f=(curve 1) 3500 MHz, (curve 2) 3550 MHz.

Fig. 11
Fig. 11

Calculated distributions of the optical modes’ conversion efficiency across the film width in a nonuniformly magnetized YIG film for two frequencies: f=(curve 1) 3550 MHz, (curve 2) 3570 MHz.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ExTE(y, z)=A(y)exp(-iωt+iβTEybTEz)EzTM(y, z)=B(y)exp(-iωt+iβTMybTMz),
tg(qd)=q(p+r)q2-pr,
tg(qd)=(p+ns2r)nf2qns2q2-nf4pr,
kd=12ξ(ϕ) ln[μξ(ϕ)-1)2-μa2 sin2 ϕ][μξ(ϕ)+1)2-μa2 sin2 ϕ],
dydx=kϕ cos ϕ-k sin ϕkϕ sin ϕ+k cos ϕ,
kx=kx cos ϕ+ky sin ϕkϕ sin ϕ+k cos ϕ,
ϕx=ky cos ϕ-kx sin ϕkϕ sin ϕ+k cos ϕ.
αoA+Ay=ξB exp(-αmy)exp(-iΔy)αoB+By=-ξ*A exp(-αmy)exp(iΔy),
ξ2Φ2PSW.
η(y)=A2A2+B2=ξ2ξ2+Δ2/4sin2(ξ2+Δ2/4y).
tgξαm[1-exp(-αmlopt)]=ξαoexp(-αmlopt).

Metrics