Abstract

The generation of electron pulses of high peak current and low emittance in a 3-GHz radio-frequency electron gun requires the illumination of the photocathode by a rectangular-shaped 10-ps light beam with a rise time of less than 1 ps. The generation of this kind of laser pulse needs the insertion of a programmable pulse shaper into a femtosecond laser system. The shaping system that we discuss is a spectral phase-only filter. A genetic algorithm, in conjunction with a proper cost function, is used to determine the phase filter function for the desired square-pulse generation. Simulations show that the system is highly sensitive to the properties of the input signal and to alignment. Third-harmonic generation, as required by photoemission, leads to some relaxation in the settings of the system.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. SPARC Group (Sorgente Pulsata e Amplificata di Radiazione Coerente), “Conceptual design of a high-brightness linac for soft x-ray SASE FEL source,” presented at the European Particle Accelerator Conference 2002 meeting, La Villette, Paris, June 5, 2002, http://www.Inf.infn.it/acceleratori/sparc/PUBS/fe/2002palumbo1.pdf.
  2. LCLS design study group, “Linac coherent light source (LCLS) design study report,” Stanford University–University of California Rep., SLAC-R-521/UC-414, http://www.ssrl.slac.stanford.edu/lcls/lcls_pubs.html.
  3. F. Richard, J. R. Schneider, D. Trines, and A. Wagner, “TESLA, the superconducting electron-positron linear collider with an integrated X-ray laser laboratory, technical design report,” Desy Rep. DESY2001–011, http://tesla.desy.de/tdr (2001).
  4. P. T. Springer, S. Anderson, W. Brown, C. Barty, R. Cauble, J. Crane, H. Cynn, C. Ebbers, D. Fittinghoff, D. Gibson, F. Hartemann, I. Javanovich, J. Kuba, G. LeSage, A. McMahan, R. Minich, J. Moriarty, B. Remington, D. Slaughter, F. H. Steitz, A. Tremaine, Choon-shik Yoo, J. Rosenzweig, and T. Ditmire, “Ultrafast material probing with the Falcon/Linac Thomson x-ray source,” Lawrence Livermore National Laboratory Rep. UCRL-JC-150440, http://www.llnl.gov/tid/lof/documents/pdf/240996.pdf.
  5. J. Yang, M. Washio, A. Endo, and T. Hori, “Evaluation of femtosecond x-rays produced by Thomson scattering under linear and nonlinear interactions between a low-emittance electron beam and an intense polarized laser light,” Nucl. Instrum. Methods Phys. Res. A 428, 556–569 (1999).
    [CrossRef]
  6. M. Ferrario, M. Boscolo, V. Fusco, C. Vaccarezza, C. Roncisvalle, J. B. Rosenzweig, and L. Serafini, “Recent advances and novel ideas for high brightness electron beam production based on photo-injectors,” presented at the International Committee for Future Accelerators workshop on the physics and application of high brightness electron beams, Chia Laguna, Sardinia, Italy, July 1–6, 2002.
  7. J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, “Low-emittance electron-beam generation with laser pulse shaping in photocathode radio-frequency gun,” J. Appl. Phys. 92, 1608–1612 (2002).
    [CrossRef]
  8. S. Backus, C. G. Durfee III, M. M. Murname, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
    [CrossRef]
  9. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]
  10. P. Tournois, “Acusto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser system,” Opt. Commun. 140, 245–249 (1997).
    [CrossRef]
  11. F. Verluise, V. Launde, J.-P. Huignard, P. Tournois, and A. Migus, “Arbitrary dispersion control of ultrashort optical pulses with acoustic waves,” J. Opt. Soc. Am. B 17, 138–145 (2000).
    [CrossRef]
  12. A. M. Weiner, D. E. Leaiard, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 284, 908–920 (1992).
    [CrossRef]
  13. M. M. Wefers and K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B 127, 1343–1362 (1995).
    [CrossRef]
  14. R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor,” IEEE J. Quantum Electron. 22, 682–696 (1986).
    [CrossRef]
  15. D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” Opt. Commun. 138, 345–348 (1997).
    [CrossRef]
  16. D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” J. Opt. Soc. Am. B 155, 1615–1619 (1998).
    [CrossRef]
  17. A. M. Weiner, S. Oudin, D. E. Leaird, and D. H. Reitze, “Shaping of femtosecond pulses using phase-only filters designed by simulated annealing,” J. Opt. Soc. Am. B 105, 1112–1120 (1993).
    [CrossRef]
  18. W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1999).
  19. X. Alesini, M. E. Biagini, M. Boscolo, M. Ferrario, V. Fusco, S. Guiducci, M. Migloiorati, L. Palumbo, B. Spataro, C. Vaccarezza, A. Bacci, L. Serafini, R. Bartolini, L. Giannessi, L. Mezi, L. Picardi, M. Quattromini, C. Ronsivalle, and J. Rosenzweig, “Status of the beam dynamics studies for the SPARC project,” SPARC-BD-03/001, D note (Laboratorio Nazionate Frascati-LNF, Italy), http://www.frascati.enea.it/SPARC/SPARC_BD_03_001.pdf.

2002 (1)

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, “Low-emittance electron-beam generation with laser pulse shaping in photocathode radio-frequency gun,” J. Appl. Phys. 92, 1608–1612 (2002).
[CrossRef]

2000 (2)

1999 (1)

J. Yang, M. Washio, A. Endo, and T. Hori, “Evaluation of femtosecond x-rays produced by Thomson scattering under linear and nonlinear interactions between a low-emittance electron beam and an intense polarized laser light,” Nucl. Instrum. Methods Phys. Res. A 428, 556–569 (1999).
[CrossRef]

1998 (2)

D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” J. Opt. Soc. Am. B 155, 1615–1619 (1998).
[CrossRef]

S. Backus, C. G. Durfee III, M. M. Murname, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[CrossRef]

1997 (2)

P. Tournois, “Acusto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser system,” Opt. Commun. 140, 245–249 (1997).
[CrossRef]

D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” Opt. Commun. 138, 345–348 (1997).
[CrossRef]

1995 (1)

M. M. Wefers and K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B 127, 1343–1362 (1995).
[CrossRef]

1993 (1)

A. M. Weiner, S. Oudin, D. E. Leaird, and D. H. Reitze, “Shaping of femtosecond pulses using phase-only filters designed by simulated annealing,” J. Opt. Soc. Am. B 105, 1112–1120 (1993).
[CrossRef]

1992 (1)

A. M. Weiner, D. E. Leaiard, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 284, 908–920 (1992).
[CrossRef]

1986 (1)

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor,” IEEE J. Quantum Electron. 22, 682–696 (1986).
[CrossRef]

Backus, S.

S. Backus, C. G. Durfee III, M. M. Murname, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[CrossRef]

Durfee III, C. G.

S. Backus, C. G. Durfee III, M. M. Murname, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[CrossRef]

Endo, A.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, “Low-emittance electron-beam generation with laser pulse shaping in photocathode radio-frequency gun,” J. Appl. Phys. 92, 1608–1612 (2002).
[CrossRef]

J. Yang, M. Washio, A. Endo, and T. Hori, “Evaluation of femtosecond x-rays produced by Thomson scattering under linear and nonlinear interactions between a low-emittance electron beam and an intense polarized laser light,” Nucl. Instrum. Methods Phys. Res. A 428, 556–569 (1999).
[CrossRef]

Heritage, J. P.

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor,” IEEE J. Quantum Electron. 22, 682–696 (1986).
[CrossRef]

Hori, T.

J. Yang, M. Washio, A. Endo, and T. Hori, “Evaluation of femtosecond x-rays produced by Thomson scattering under linear and nonlinear interactions between a low-emittance electron beam and an intense polarized laser light,” Nucl. Instrum. Methods Phys. Res. A 428, 556–569 (1999).
[CrossRef]

Huignard, J.-P.

Kapteyn, H. C.

S. Backus, C. G. Durfee III, M. M. Murname, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[CrossRef]

Launde, V.

Leaiard, D. E.

A. M. Weiner, D. E. Leaiard, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 284, 908–920 (1992).
[CrossRef]

Leaird, D. E.

A. M. Weiner, S. Oudin, D. E. Leaird, and D. H. Reitze, “Shaping of femtosecond pulses using phase-only filters designed by simulated annealing,” J. Opt. Soc. Am. B 105, 1112–1120 (1993).
[CrossRef]

Meshulach, D.

D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” J. Opt. Soc. Am. B 155, 1615–1619 (1998).
[CrossRef]

D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” Opt. Commun. 138, 345–348 (1997).
[CrossRef]

Migus, A.

Murname, M. M.

S. Backus, C. G. Durfee III, M. M. Murname, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[CrossRef]

Nelson, K. A.

M. M. Wefers and K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B 127, 1343–1362 (1995).
[CrossRef]

Okada, Y.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, “Low-emittance electron-beam generation with laser pulse shaping in photocathode radio-frequency gun,” J. Appl. Phys. 92, 1608–1612 (2002).
[CrossRef]

Oudin, S.

A. M. Weiner, S. Oudin, D. E. Leaird, and D. H. Reitze, “Shaping of femtosecond pulses using phase-only filters designed by simulated annealing,” J. Opt. Soc. Am. B 105, 1112–1120 (1993).
[CrossRef]

Patel, J. S.

A. M. Weiner, D. E. Leaiard, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 284, 908–920 (1992).
[CrossRef]

Reitze, D. H.

A. M. Weiner, S. Oudin, D. E. Leaird, and D. H. Reitze, “Shaping of femtosecond pulses using phase-only filters designed by simulated annealing,” J. Opt. Soc. Am. B 105, 1112–1120 (1993).
[CrossRef]

Sakai, F.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, “Low-emittance electron-beam generation with laser pulse shaping in photocathode radio-frequency gun,” J. Appl. Phys. 92, 1608–1612 (2002).
[CrossRef]

Silberberg, Y.

D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” J. Opt. Soc. Am. B 155, 1615–1619 (1998).
[CrossRef]

D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” Opt. Commun. 138, 345–348 (1997).
[CrossRef]

Takasago, K.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, “Low-emittance electron-beam generation with laser pulse shaping in photocathode radio-frequency gun,” J. Appl. Phys. 92, 1608–1612 (2002).
[CrossRef]

Thurston, R. N.

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor,” IEEE J. Quantum Electron. 22, 682–696 (1986).
[CrossRef]

Tomlinson, W. J.

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor,” IEEE J. Quantum Electron. 22, 682–696 (1986).
[CrossRef]

Tournois, P.

F. Verluise, V. Launde, J.-P. Huignard, P. Tournois, and A. Migus, “Arbitrary dispersion control of ultrashort optical pulses with acoustic waves,” J. Opt. Soc. Am. B 17, 138–145 (2000).
[CrossRef]

P. Tournois, “Acusto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser system,” Opt. Commun. 140, 245–249 (1997).
[CrossRef]

Verluise, F.

Washio, M.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, “Low-emittance electron-beam generation with laser pulse shaping in photocathode radio-frequency gun,” J. Appl. Phys. 92, 1608–1612 (2002).
[CrossRef]

J. Yang, M. Washio, A. Endo, and T. Hori, “Evaluation of femtosecond x-rays produced by Thomson scattering under linear and nonlinear interactions between a low-emittance electron beam and an intense polarized laser light,” Nucl. Instrum. Methods Phys. Res. A 428, 556–569 (1999).
[CrossRef]

Wefers, M. M.

M. M. Wefers and K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B 127, 1343–1362 (1995).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

A. M. Weiner, S. Oudin, D. E. Leaird, and D. H. Reitze, “Shaping of femtosecond pulses using phase-only filters designed by simulated annealing,” J. Opt. Soc. Am. B 105, 1112–1120 (1993).
[CrossRef]

A. M. Weiner, D. E. Leaiard, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 284, 908–920 (1992).
[CrossRef]

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor,” IEEE J. Quantum Electron. 22, 682–696 (1986).
[CrossRef]

Wullert, J. R.

A. M. Weiner, D. E. Leaiard, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 284, 908–920 (1992).
[CrossRef]

Yada, A.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, “Low-emittance electron-beam generation with laser pulse shaping in photocathode radio-frequency gun,” J. Appl. Phys. 92, 1608–1612 (2002).
[CrossRef]

Yanagida, T.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, “Low-emittance electron-beam generation with laser pulse shaping in photocathode radio-frequency gun,” J. Appl. Phys. 92, 1608–1612 (2002).
[CrossRef]

Yang, J.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, “Low-emittance electron-beam generation with laser pulse shaping in photocathode radio-frequency gun,” J. Appl. Phys. 92, 1608–1612 (2002).
[CrossRef]

J. Yang, M. Washio, A. Endo, and T. Hori, “Evaluation of femtosecond x-rays produced by Thomson scattering under linear and nonlinear interactions between a low-emittance electron beam and an intense polarized laser light,” Nucl. Instrum. Methods Phys. Res. A 428, 556–569 (1999).
[CrossRef]

Yelin, D.

D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” J. Opt. Soc. Am. B 155, 1615–1619 (1998).
[CrossRef]

D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” Opt. Commun. 138, 345–348 (1997).
[CrossRef]

Yorozu, M.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, “Low-emittance electron-beam generation with laser pulse shaping in photocathode radio-frequency gun,” J. Appl. Phys. 92, 1608–1612 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. M. Weiner, D. E. Leaiard, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 284, 908–920 (1992).
[CrossRef]

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor,” IEEE J. Quantum Electron. 22, 682–696 (1986).
[CrossRef]

J. Appl. Phys. (1)

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, “Low-emittance electron-beam generation with laser pulse shaping in photocathode radio-frequency gun,” J. Appl. Phys. 92, 1608–1612 (2002).
[CrossRef]

J. Opt. Soc. Am. B (4)

M. M. Wefers and K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B 127, 1343–1362 (1995).
[CrossRef]

F. Verluise, V. Launde, J.-P. Huignard, P. Tournois, and A. Migus, “Arbitrary dispersion control of ultrashort optical pulses with acoustic waves,” J. Opt. Soc. Am. B 17, 138–145 (2000).
[CrossRef]

D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” J. Opt. Soc. Am. B 155, 1615–1619 (1998).
[CrossRef]

A. M. Weiner, S. Oudin, D. E. Leaird, and D. H. Reitze, “Shaping of femtosecond pulses using phase-only filters designed by simulated annealing,” J. Opt. Soc. Am. B 105, 1112–1120 (1993).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

J. Yang, M. Washio, A. Endo, and T. Hori, “Evaluation of femtosecond x-rays produced by Thomson scattering under linear and nonlinear interactions between a low-emittance electron beam and an intense polarized laser light,” Nucl. Instrum. Methods Phys. Res. A 428, 556–569 (1999).
[CrossRef]

Opt. Commun. (2)

P. Tournois, “Acusto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser system,” Opt. Commun. 140, 245–249 (1997).
[CrossRef]

D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” Opt. Commun. 138, 345–348 (1997).
[CrossRef]

Rev. Sci. Instrum. (2)

S. Backus, C. G. Durfee III, M. M. Murname, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Other (7)

M. Ferrario, M. Boscolo, V. Fusco, C. Vaccarezza, C. Roncisvalle, J. B. Rosenzweig, and L. Serafini, “Recent advances and novel ideas for high brightness electron beam production based on photo-injectors,” presented at the International Committee for Future Accelerators workshop on the physics and application of high brightness electron beams, Chia Laguna, Sardinia, Italy, July 1–6, 2002.

SPARC Group (Sorgente Pulsata e Amplificata di Radiazione Coerente), “Conceptual design of a high-brightness linac for soft x-ray SASE FEL source,” presented at the European Particle Accelerator Conference 2002 meeting, La Villette, Paris, June 5, 2002, http://www.Inf.infn.it/acceleratori/sparc/PUBS/fe/2002palumbo1.pdf.

LCLS design study group, “Linac coherent light source (LCLS) design study report,” Stanford University–University of California Rep., SLAC-R-521/UC-414, http://www.ssrl.slac.stanford.edu/lcls/lcls_pubs.html.

F. Richard, J. R. Schneider, D. Trines, and A. Wagner, “TESLA, the superconducting electron-positron linear collider with an integrated X-ray laser laboratory, technical design report,” Desy Rep. DESY2001–011, http://tesla.desy.de/tdr (2001).

P. T. Springer, S. Anderson, W. Brown, C. Barty, R. Cauble, J. Crane, H. Cynn, C. Ebbers, D. Fittinghoff, D. Gibson, F. Hartemann, I. Javanovich, J. Kuba, G. LeSage, A. McMahan, R. Minich, J. Moriarty, B. Remington, D. Slaughter, F. H. Steitz, A. Tremaine, Choon-shik Yoo, J. Rosenzweig, and T. Ditmire, “Ultrafast material probing with the Falcon/Linac Thomson x-ray source,” Lawrence Livermore National Laboratory Rep. UCRL-JC-150440, http://www.llnl.gov/tid/lof/documents/pdf/240996.pdf.

W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1999).

X. Alesini, M. E. Biagini, M. Boscolo, M. Ferrario, V. Fusco, S. Guiducci, M. Migloiorati, L. Palumbo, B. Spataro, C. Vaccarezza, A. Bacci, L. Serafini, R. Bartolini, L. Giannessi, L. Mezi, L. Picardi, M. Quattromini, C. Ronsivalle, and J. Rosenzweig, “Status of the beam dynamics studies for the SPARC project,” SPARC-BD-03/001, D note (Laboratorio Nazionate Frascati-LNF, Italy), http://www.frascati.enea.it/SPARC/SPARC_BD_03_001.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Sketch of the system’s layout with the pulse shaper insert: RF-Gun, radio-frequency electron gun.

Fig. 2
Fig. 2

Flowchart, iterative Fourier-transform algorithm.

Fig. 3
Fig. 3

Simulated pulses out of the shaper obtained with the iterative algorithm: The signals of (a1), (b1) refer to the fundamental harmonic and were obtained with cost functions (cost-f) C1 and C2, respectively; (a2), (b2) refer to the third harmonic. (a3), (b3) behavior of the two cost functions relative to the number of iterations.

Fig. 4
Fig. 4

Pattern of the spectral phases as calculated by the computer program.

Fig. 5
Fig. 5

(a) Ratio of the spiking amplitude at the flat top over the mean value; i.e., (Imax-Imin)/Iaverage as a function of the rise time. (b) Ratio of the two standard deviations to the mean, i.e., [2σ/Iav], as a function of the rise time.

Fig. 6
Fig. 6

Calculated output pulses as the beam waist varies at the mask: left, fundamental harmonic; right, third harmonic. In the calculation we considered only the lowest Hermite–Gaussian mode. It is worth reporting, for completeness, that the replicas are at 42 ps and thus outside the reported time interval. They are, anyway, so small as to be negligible.

Fig. 7
Fig. 7

a1, b1, Variation of the output pulse (calculated after conversion to the third harmonic) versus a1, variation of the pulse length, and b1, the shift from the centered position of the mask. a2, b2, Relative behavior of the spiking amplitude over the mean value, i.e., (Imax-Imin)/Iaverage, as a function of deviations in the length and in the position of the mask.

Fig. 8
Fig. 8

Left and right, output pulses for the fundamental and the third harmonics, respectively, assuming a hyperbolic secant function instead of a Gaussian function for the input pulse. In these signals, compared with those of Fig. 3, we may say that the flatness is practically lost.

Fig. 9
Fig. 9

Left, variation in the plateau’s flatness with the perturbation of the pulse length for the reference 30π rad/ps through the mask (curves with circles) and for a reduced acceptance of 3/4 of that reference acceptance (curve with squares). The latter is less sensitive to the perturbation. The curves at the right refer to the perturbations in the mask position. No sensible change occurs.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

eout(t)=h(t)*ein(t).
Eout(ω)=H(ω)Ein(ω).
eout(t)nht-n 1δν*ein(t) sin(πδνt)πδνt.
H(ω)=2α2/πw02HSLM(ω)*exp-2 α2w02ω2.
HSLM(ω)=M(ω)exp[iΦ(ω)].
C1=n|In-Intarget|,
C2=n(In-Intarget)2.
I(x)=exp-τ22(1.177)2 x2α2,

Metrics