Abstract

Nonlinear polarization rotation and generation of a polarization component orthogonal to the input beam were observed along fourfold axes of YVO4 and BaF2 crystals. We demonstrate experimentally that in both crystals the angle of rotation is proportional, at low intensities, to the square of the product of the input intensity and the crystal length and is the result of simultaneous action of two third-order processes. This type of nonlinear polarization rotation is driven by the real part of the cubic susceptibility. The recorded energy exchange between the two orthogonal components can exceed 10%. It is to our knowledge the highest energy-conversion efficiency achieved in a single beam nonresonant χ(3) interaction. A simple theoretical model is elaborated to describe the dependence of nonlinear polarization rotation and orthogonal polarization generation on the intensity of the input beam at both low- and high-intensity levels. It reveals the potential contributions from the real and the imaginary parts of the susceptibility tensor. Moreover, this kind of measurement is designed to permit the determination of the magnitude and the sign of the anisotropy of the real part of third-order nonlinearity in crystals with cubic or tetragonal symmetry on the basis of polarization-rotation measurements. The χxxxx(3) component of the third-order susceptibility tensor and its anisotropy sign and amplitude value for BaF2 and YVO4 crystals are estimated and discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Schroeder, D. S. McCallum, D. R. Harken, M. D. Dvorak, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Intrinsic and induced anisotropy of nonlinear absorption and refraction in zinc blende semiconductors,” J. Opt. Soc. Am. B 12, 401–415 (1995).
    [CrossRef]
  2. Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, New York, 1998).
  3. M. G. Dubenskaya, R. S. Zadoyan, and N. I. Zheludev, “Nonlinear polarization spectroscopy in GaAs crystals: one- and two-photon resonances, excitonic effects, and the saturation of nonlinear susceptibilities,” J. Opt. Soc. Am. B 2, 1174–1178 (1985).
    [CrossRef]
  4. A. I. Kovrigin, D. V. Yakovlev, B. V. Zhdanov, and N. I. Zheludev, “Self-induced optical activity in crystals,” Opt. Commun. 35, 92–95 (1980).
    [CrossRef]
  5. R. S. Zadoyan, N. I. Zheludev, and L. B. Meysner, “Nonlinear polarization spectroscopy of ions interaction potential in alkali halide crystals,” Solid State Commun. 55, 713–715 (1985).
    [CrossRef]
  6. A. D. Petrenko and N. I. Zheludev, “Physical mechanisms of nonlinear optical activity in crystals,” Opt. Acta 31, 1177–1184 (1984).
    [CrossRef]
  7. M. I. Dykman and G. G. Tarasov, “Self-induced change in the polarization of electromagnetic waves in cubic crystals,” Fiz. Tverd. Tela (Leningrad) 24, 2396–2402 (1982) [ Sov. Phys. Solid State 24, 1361–1364 (1982)].
  8. D. C. Hutchings, “Nonlinear-optical activity owing to anisotropy of ultrafast nonlinear refraction in cubic materials,” Opt. Lett. 20, 1607–1609 (1995).
    [CrossRef] [PubMed]
  9. D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, “Nonlinear refractive coupling and vector solitons in anisotropic cubic media,” J. Opt. Soc. Am. B 14, 869–879 (1997).
    [CrossRef]
  10. N. Minkovski, S. M. Saltiel, G. I. Petrov, O. Albert, and J. Etchepare, “Polarization rotation induced by cascaded third-order processes,” Opt. Lett. 27, 2025–2027 (2002).
    [CrossRef]
  11. M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two photon absorption coefficient in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–267 (1994).
    [CrossRef]
  12. R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  13. S. Akhmanov, V. Martinov, S. Saltiel, and V. Tunkin, “Nonresonant six photon process in calcite crystal,” Pis’ma Zh. Eksp. Teor. Fiz. 22, 143–147 (1975) [ JETP Lett. 22, 65–67 (1975)].
  14. S. Saltiel, S. Tanev, and A. D. Boardman, “High order nonlinear phase shift due to cascaded third order processes,” Opt. Lett. 22, 148–150 (1997).
    [CrossRef] [PubMed]
  15. V. Astinov, K. J. Kubarych, C. J. Milne, and R. J. D. Miller, “Diffractive optics implementation of six-wave mixing,” Opt. Lett. 25, 853–855 (2000).
    [CrossRef]
  16. L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
    [CrossRef] [PubMed]
  17. C. G. Durfee, L. Misoguti, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Phase matching in cascaded third-order processes,” J. Opt. Soc. Am. B 19, 822–831 (2002).
    [CrossRef]
  18. G. I. Petrov, O. Albert, J. Etchepare, and S. M. Saltiel, “Cross-polarized wave generation by effective cubic nonlinear optical interaction,” Opt. Lett. 26, 355–357 (2001).
    [CrossRef]
  19. J. H. Burnett, Z. H. Levine, and E. L. Shirley, “Intrinsic birefringence in calcium fluoride and barium fluoride,” Phys. Rev. B 64, 241102 (2001).
    [CrossRef]
  20. M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479–4487 (1996).
    [CrossRef]
  21. C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001).
    [CrossRef]
  22. Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Quasi-phase-matched harmonic generation through coupled parametric processes in a quasiperiodic optical superlattice,” J. Appl. Phys. 84, 6911–6916 (1998).
    [CrossRef]
  23. S. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasiperiodic optical superlattice,” Science 278, 843–846 (1997).
    [CrossRef]
  24. S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” in Progress in Optics Vol. 47, E. Wolf, ed. (Elsevier, Amsterdam, to be published).
  25. R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194–196 (1993).
    [CrossRef] [PubMed]
  26. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  27. T. D. Krauss, J. K. Ranka, F. W. Wise, and A. L. Gaeta, “Measurements of the tensor properties of third-order nonlinearities in wide-gap semiconductors,” Opt. Lett. 20, 1110–1112 (1995).
    [CrossRef] [PubMed]
  28. W. Koechner, Solid-State Laser Engineering, 5th ed., Vol. 1 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1999).
    [CrossRef]

2002 (2)

2001 (4)

G. I. Petrov, O. Albert, J. Etchepare, and S. M. Saltiel, “Cross-polarized wave generation by effective cubic nonlinear optical interaction,” Opt. Lett. 26, 355–357 (2001).
[CrossRef]

J. H. Burnett, Z. H. Levine, and E. L. Shirley, “Intrinsic birefringence in calcium fluoride and barium fluoride,” Phys. Rev. B 64, 241102 (2001).
[CrossRef]

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001).
[CrossRef]

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

2000 (1)

1998 (1)

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Quasi-phase-matched harmonic generation through coupled parametric processes in a quasiperiodic optical superlattice,” J. Appl. Phys. 84, 6911–6916 (1998).
[CrossRef]

1997 (3)

1996 (1)

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479–4487 (1996).
[CrossRef]

1995 (3)

1994 (1)

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two photon absorption coefficient in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–267 (1994).
[CrossRef]

1993 (1)

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

1985 (2)

M. G. Dubenskaya, R. S. Zadoyan, and N. I. Zheludev, “Nonlinear polarization spectroscopy in GaAs crystals: one- and two-photon resonances, excitonic effects, and the saturation of nonlinear susceptibilities,” J. Opt. Soc. Am. B 2, 1174–1178 (1985).
[CrossRef]

R. S. Zadoyan, N. I. Zheludev, and L. B. Meysner, “Nonlinear polarization spectroscopy of ions interaction potential in alkali halide crystals,” Solid State Commun. 55, 713–715 (1985).
[CrossRef]

1984 (1)

A. D. Petrenko and N. I. Zheludev, “Physical mechanisms of nonlinear optical activity in crystals,” Opt. Acta 31, 1177–1184 (1984).
[CrossRef]

1980 (1)

A. I. Kovrigin, D. V. Yakovlev, B. V. Zhdanov, and N. I. Zheludev, “Self-induced optical activity in crystals,” Opt. Commun. 35, 92–95 (1980).
[CrossRef]

Aitchison, J. S.

Albert, O.

Andersen, D. R.

W. A. Schroeder, D. S. McCallum, D. R. Harken, M. D. Dvorak, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Intrinsic and induced anisotropy of nonlinear absorption and refraction in zinc blende semiconductors,” J. Opt. Soc. Am. B 12, 401–415 (1995).
[CrossRef]

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two photon absorption coefficient in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–267 (1994).
[CrossRef]

Arnold, J. M.

Astinov, V.

Backus, S.

C. G. Durfee, L. Misoguti, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Phase matching in cascaded third-order processes,” J. Opt. Soc. Am. B 19, 822–831 (2002).
[CrossRef]

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

Bartels, R.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

Boardman, A. D.

Burnett, J. H.

J. H. Burnett, Z. H. Levine, and E. L. Shirley, “Intrinsic birefringence in calcium fluoride and barium fluoride,” Phys. Rev. B 64, 241102 (2001).
[CrossRef]

Dabbicco, M.

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479–4487 (1996).
[CrossRef]

DeSalvo, R.

Dubenskaya, M. G.

Durfee, C. G.

C. G. Durfee, L. Misoguti, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Phase matching in cascaded third-order processes,” J. Opt. Soc. Am. B 19, 822–831 (2002).
[CrossRef]

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

Dvorak, M. D.

W. A. Schroeder, D. S. McCallum, D. R. Harken, M. D. Dvorak, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Intrinsic and induced anisotropy of nonlinear absorption and refraction in zinc blende semiconductors,” J. Opt. Soc. Am. B 12, 401–415 (1995).
[CrossRef]

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two photon absorption coefficient in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–267 (1994).
[CrossRef]

Etchepare, J.

Fox, A. M.

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479–4487 (1996).
[CrossRef]

Gaeta, A. L.

Hagan, D. J.

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194–196 (1993).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Harken, D. R.

Hutchings, D. C.

Kapteyn, H. C.

C. G. Durfee, L. Misoguti, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Phase matching in cascaded third-order processes,” J. Opt. Soc. Am. B 19, 822–831 (2002).
[CrossRef]

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

Kovrigin, A. I.

A. I. Kovrigin, D. V. Yakovlev, B. V. Zhdanov, and N. I. Zheludev, “Self-induced optical activity in crystals,” Opt. Commun. 35, 92–95 (1980).
[CrossRef]

Krauss, T. D.

Kubarych, K. J.

Levine, Z. H.

J. H. Burnett, Z. H. Levine, and E. L. Shirley, “Intrinsic birefringence in calcium fluoride and barium fluoride,” Phys. Rev. B 64, 241102 (2001).
[CrossRef]

McCallum, D. S.

Meysner, L. B.

R. S. Zadoyan, N. I. Zheludev, and L. B. Meysner, “Nonlinear polarization spectroscopy of ions interaction potential in alkali halide crystals,” Solid State Commun. 55, 713–715 (1985).
[CrossRef]

Miller, R. J. D.

Milne, C. J.

Ming, N. B.

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001).
[CrossRef]

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Quasi-phase-matched harmonic generation through coupled parametric processes in a quasiperiodic optical superlattice,” J. Appl. Phys. 84, 6911–6916 (1998).
[CrossRef]

S. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasiperiodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

Minkovski, N.

Misoguti, L.

C. G. Durfee, L. Misoguti, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Phase matching in cascaded third-order processes,” J. Opt. Soc. Am. B 19, 822–831 (2002).
[CrossRef]

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

Murnane, M. M.

C. G. Durfee, L. Misoguti, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Phase matching in cascaded third-order processes,” J. Opt. Soc. Am. B 19, 822–831 (2002).
[CrossRef]

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

Petrenko, A. D.

A. D. Petrenko and N. I. Zheludev, “Physical mechanisms of nonlinear optical activity in crystals,” Opt. Acta 31, 1177–1184 (1984).
[CrossRef]

Petrov, G. I.

Qin, Y. Q.

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Quasi-phase-matched harmonic generation through coupled parametric processes in a quasiperiodic optical superlattice,” J. Appl. Phys. 84, 6911–6916 (1998).
[CrossRef]

Ranka, J. K.

Ryan, J. F.

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479–4487 (1996).
[CrossRef]

Said, A. A.

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194–196 (1993).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Saltiel, S.

Saltiel, S. M.

Schroeder, W. A.

W. A. Schroeder, D. S. McCallum, D. R. Harken, M. D. Dvorak, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Intrinsic and induced anisotropy of nonlinear absorption and refraction in zinc blende semiconductors,” J. Opt. Soc. Am. B 12, 401–415 (1995).
[CrossRef]

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two photon absorption coefficient in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–267 (1994).
[CrossRef]

Sheik-Bahae, M.

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194–196 (1993).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Shirley, E. L.

J. H. Burnett, Z. H. Levine, and E. L. Shirley, “Intrinsic birefringence in calcium fluoride and barium fluoride,” Phys. Rev. B 64, 241102 (2001).
[CrossRef]

Smirl, A. L.

W. A. Schroeder, D. S. McCallum, D. R. Harken, M. D. Dvorak, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Intrinsic and induced anisotropy of nonlinear absorption and refraction in zinc blende semiconductors,” J. Opt. Soc. Am. B 12, 401–415 (1995).
[CrossRef]

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two photon absorption coefficient in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–267 (1994).
[CrossRef]

Tanev, S.

Van Stryland, E. W.

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194–196 (1993).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

von Plessen, G.

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479–4487 (1996).
[CrossRef]

Wang, H. T.

Wei, H.

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Wherrett, B. S.

W. A. Schroeder, D. S. McCallum, D. R. Harken, M. D. Dvorak, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Intrinsic and induced anisotropy of nonlinear absorption and refraction in zinc blende semiconductors,” J. Opt. Soc. Am. B 12, 401–415 (1995).
[CrossRef]

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two photon absorption coefficient in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–267 (1994).
[CrossRef]

Wise, F. W.

Yakovlev, D. V.

A. I. Kovrigin, D. V. Yakovlev, B. V. Zhdanov, and N. I. Zheludev, “Self-induced optical activity in crystals,” Opt. Commun. 35, 92–95 (1980).
[CrossRef]

Zadoyan, R. S.

R. S. Zadoyan, N. I. Zheludev, and L. B. Meysner, “Nonlinear polarization spectroscopy of ions interaction potential in alkali halide crystals,” Solid State Commun. 55, 713–715 (1985).
[CrossRef]

M. G. Dubenskaya, R. S. Zadoyan, and N. I. Zheludev, “Nonlinear polarization spectroscopy in GaAs crystals: one- and two-photon resonances, excitonic effects, and the saturation of nonlinear susceptibilities,” J. Opt. Soc. Am. B 2, 1174–1178 (1985).
[CrossRef]

Zhang, C.

Zhdanov, B. V.

A. I. Kovrigin, D. V. Yakovlev, B. V. Zhdanov, and N. I. Zheludev, “Self-induced optical activity in crystals,” Opt. Commun. 35, 92–95 (1980).
[CrossRef]

Zheludev, N. I.

R. S. Zadoyan, N. I. Zheludev, and L. B. Meysner, “Nonlinear polarization spectroscopy of ions interaction potential in alkali halide crystals,” Solid State Commun. 55, 713–715 (1985).
[CrossRef]

M. G. Dubenskaya, R. S. Zadoyan, and N. I. Zheludev, “Nonlinear polarization spectroscopy in GaAs crystals: one- and two-photon resonances, excitonic effects, and the saturation of nonlinear susceptibilities,” J. Opt. Soc. Am. B 2, 1174–1178 (1985).
[CrossRef]

A. D. Petrenko and N. I. Zheludev, “Physical mechanisms of nonlinear optical activity in crystals,” Opt. Acta 31, 1177–1184 (1984).
[CrossRef]

A. I. Kovrigin, D. V. Yakovlev, B. V. Zhdanov, and N. I. Zheludev, “Self-induced optical activity in crystals,” Opt. Commun. 35, 92–95 (1980).
[CrossRef]

Zhu, S.

S. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasiperiodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

Zhu, S. N.

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001).
[CrossRef]

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Quasi-phase-matched harmonic generation through coupled parametric processes in a quasiperiodic optical superlattice,” J. Appl. Phys. 84, 6911–6916 (1998).
[CrossRef]

Zhu, Y. Y.

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001).
[CrossRef]

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Quasi-phase-matched harmonic generation through coupled parametric processes in a quasiperiodic optical superlattice,” J. Appl. Phys. 84, 6911–6916 (1998).
[CrossRef]

S. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasiperiodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two photon absorption coefficient in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–267 (1994).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. Appl. Phys. (1)

Y. Q. Qin, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Quasi-phase-matched harmonic generation through coupled parametric processes in a quasiperiodic optical superlattice,” J. Appl. Phys. 84, 6911–6916 (1998).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Acta (1)

A. D. Petrenko and N. I. Zheludev, “Physical mechanisms of nonlinear optical activity in crystals,” Opt. Acta 31, 1177–1184 (1984).
[CrossRef]

Opt. Commun. (1)

A. I. Kovrigin, D. V. Yakovlev, B. V. Zhdanov, and N. I. Zheludev, “Self-induced optical activity in crystals,” Opt. Commun. 35, 92–95 (1980).
[CrossRef]

Opt. Lett. (8)

N. Minkovski, S. M. Saltiel, G. I. Petrov, O. Albert, and J. Etchepare, “Polarization rotation induced by cascaded third-order processes,” Opt. Lett. 27, 2025–2027 (2002).
[CrossRef]

G. I. Petrov, O. Albert, J. Etchepare, and S. M. Saltiel, “Cross-polarized wave generation by effective cubic nonlinear optical interaction,” Opt. Lett. 26, 355–357 (2001).
[CrossRef]

S. Saltiel, S. Tanev, and A. D. Boardman, “High order nonlinear phase shift due to cascaded third order processes,” Opt. Lett. 22, 148–150 (1997).
[CrossRef] [PubMed]

V. Astinov, K. J. Kubarych, C. J. Milne, and R. J. D. Miller, “Diffractive optics implementation of six-wave mixing,” Opt. Lett. 25, 853–855 (2000).
[CrossRef]

D. C. Hutchings, “Nonlinear-optical activity owing to anisotropy of ultrafast nonlinear refraction in cubic materials,” Opt. Lett. 20, 1607–1609 (1995).
[CrossRef] [PubMed]

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001).
[CrossRef]

T. D. Krauss, J. K. Ranka, F. W. Wise, and A. L. Gaeta, “Measurements of the tensor properties of third-order nonlinearities in wide-gap semiconductors,” Opt. Lett. 20, 1110–1112 (1995).
[CrossRef] [PubMed]

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194–196 (1993).
[CrossRef] [PubMed]

Phys. Rev. B (2)

J. H. Burnett, Z. H. Levine, and E. L. Shirley, “Intrinsic birefringence in calcium fluoride and barium fluoride,” Phys. Rev. B 64, 241102 (2001).
[CrossRef]

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479–4487 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, “Generation of broadband VUV light using third-order cascaded processes,” Phys. Rev. Lett. 87, 013601 (2001).
[CrossRef] [PubMed]

Science (1)

S. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasiperiodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

Solid State Commun. (1)

R. S. Zadoyan, N. I. Zheludev, and L. B. Meysner, “Nonlinear polarization spectroscopy of ions interaction potential in alkali halide crystals,” Solid State Commun. 55, 713–715 (1985).
[CrossRef]

Other (6)

Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, New York, 1998).

M. I. Dykman and G. G. Tarasov, “Self-induced change in the polarization of electromagnetic waves in cubic crystals,” Fiz. Tverd. Tela (Leningrad) 24, 2396–2402 (1982) [ Sov. Phys. Solid State 24, 1361–1364 (1982)].

R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

S. Akhmanov, V. Martinov, S. Saltiel, and V. Tunkin, “Nonresonant six photon process in calcite crystal,” Pis’ma Zh. Eksp. Teor. Fiz. 22, 143–147 (1975) [ JETP Lett. 22, 65–67 (1975)].

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” in Progress in Optics Vol. 47, E. Wolf, ed. (Elsevier, Amsterdam, to be published).

W. Koechner, Solid-State Laser Engineering, 5th ed., Vol. 1 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Dependence of the efficiency of XPW generation on crystal rotation and (b) dependence of induced nonlinear polarization on crystal rotation for two intensity levels, Φ=0.4 and Φ=4, and two values of anisotropy, σ=1 and σ=-1. Each dashed line represents an angle for which the input polarization coincides with the indicated crystallographic axis.

Fig. 2
Fig. 2

Dependence of the efficiency of XPW generation on normalized input intensity Φ for a nonlinear medium with predominantly real cubic nonlinearity. Angle β=22.5°.

Fig. 3
Fig. 3

Experimentally measured evolution of the signal, through crossed polarizer and analyzer, as a function of a sample’s rotation about its [001] axis for two levels of intensity. Dashed lines, as in Fig. 1, correspond to input polarization parallel to the [100], [110], or [010] axis. Solid curves in (a) and (c) were plotted with theoretical formulas obtained in Subsection 2.A. The dotted curve in (b) is a guide for the eye. (a) YVO4, Φ1 (Win=0.7 µJ); (b) YVO4, Φ>1 (Win=11.5 µJ); (c) BaF2, Φ>1 (Win=39 µJ).

Fig. 4
Fig. 4

Variation of the efficiency of XPW generation measured at β=22.5° as a function of input laser energy. Solid curves are quadratic fits.

Fig. 5
Fig. 5

Experimentally measured nonlinear polarization rotation as a function of a sample’s rotation about its [001] axis for Φ1 for YVO4 (Win=4 µJ) and BaF2 (Win=15 µJ). The dashed lines have the same meaning as in Figs. 1 and 3. Solid curves were plotted with theoretical formulas obtained in Subsection 2.A by use of σ=-1.2 for the BaF2 curve and σ=1 for the YVO4 curve.

Fig. 6
Fig. 6

Variation of the measured nonlinear polarization rotation and induced ellipticity as a function of input laser energy as obtained with the YVO4 sample. β=22.5°. Solid curves are quadratic and linear fits.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

dAdz=-iγ|A|2A,
dBdz=-iγ|A|2A,
A=A0 exp(-iγA02L),
B=A0(γ/γ)[exp(-iγA02L)-1].
η=BA2=|D|2[1+exp(-2Φ)-2 exp(-Φ)cos(Φ)],
Φ=γA02L,D=γγ=-14 σ sin(4β)1-(σ/2)sin2(2β).
η=4γγ2 sin2(γA02L/2).
η=(γ)2A04L2.
ηmax=2σ4-σ2.
η=γγ2[1-exp(-γA02L)]2.
tan(2δ0)=2 Re(Γ)/(1-|Γ|2),
sin(2)=2 Im(Γ)/(1+|Γ|2),
tan(2δ0)
=2 Re(D)-[Re(D)cos Φ-Im(D)sin Φ]exp(-Φ)1-η,
sin(2)
=2 Im(D)-[Im(D)cos Φ+Re(D)sin Φ]exp(-Φ)1+η.
tan(2δ0)=4 (γ/γ)1-η sin2(Φ/2),
sin(2)=-2 (γ/γ)1+η sin Φ.
tan(2δ0)γγA04L2,sin(2)-2γA02L.
σ=4/(1-2δ0/2).
tan(2δ0)=2γγ [1-exp(-γA02L)]1-η.
tan(2δ0)=2γA02L.
χxxxx(3)(YVO4)=nYVO4nBaF2 ηYVO4ηBaF2LBaF2LYVO4 σBaF2YVO4χxxxx(3)(BaF2).

Metrics