Abstract

Electrically tunable laser action has been demonstrated in a dye-doped nematic liquid-crystal (NLC) waveguide by holographic excitation. The optical feedback was provided by the distributed feedback induced by two-beam interference by use of the Lloyd mirror configuration. Electrical tuning of the lasing wavelength was realized owing to the change of the effective refractive index of the NLC core layer caused by the reorientation of NLC molecules. On the basis of a waveguiding mode theory, numerical analysis of a TM guided mode in the presence of an applied electric field was performed, and field-induced tuning of the lasing wavelength was investigated in detail. Prospects for the realization of a single-mode operation and tuning of the lasing wavelength were also shown.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
    [CrossRef]
  2. A. Dodabalapur, E. A. Chandross, M. Berggren, and R. E. Slusher, “Organic solid-state lasers: past and future,” Science 277, 1787–1788 (1997).
    [CrossRef]
  3. V. I. Kopp, B. Fan, H. K. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
    [CrossRef]
  4. B. Taheri, A. F. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 73–82 (2001).
    [CrossRef]
  5. H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. (Weinheim, Ger.) 13, 1069–1072 (2001).
    [CrossRef]
  6. J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. (Weinheim, Ger.) 14, 746–749 (2002).
    [CrossRef]
  7. T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81, 3741–3743 (2002).
    [CrossRef]
  8. M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. (Weinheim, Ger.) 14, 306–309 (2002).
    [CrossRef]
  9. M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. (Weinheim, Ger.) 15, 974–977 (2003).
    [CrossRef]
  10. M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72, 410–411 (1998).
    [CrossRef]
  11. T. Matsui, M. Ozaki, K. Yoshino, and F. Kajzar, “Fabrication of flexible distributed feedback laser using photoinduced surface relief grating on azo-polymer film as a template,” 41, L1386–L1388 (2002).
  12. P. G. deGennes and J. Prost, The Physics of Liquid Crystals (Oxford U. Press, New York, 1993).
  13. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
    [CrossRef]
  14. T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable laser action in a dye-doped nematic liquid crystal waveguide under holographic excitation,” Appl. Phys. Lett. 83, 422–424 (2003).
    [CrossRef]
  15. C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
    [CrossRef]
  16. D. J. Channin, “Optical waveguide modulation using nematic liquid crystal,” Appl. Phys. Lett. 22, 365–366 (1973).
    [CrossRef]
  17. J. P. Sheridan and T. G. Giallorenzi, “Electro-optically induced deflection in liquid-crystal waveguides,” J. Appl. Phys. 45, 5160–5163 (1974).
    [CrossRef]
  18. H. J. Eichler, P. Gunter, and D. W. Pohl, Laser Induced Dynamic Gratings (Springer-Verlag, Berlin, 1985).
  19. N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. Part 1 38, 5928–5937 (1999).
    [CrossRef]
  20. E. Santamato, P. Maddalena, M. Settembre, M. Romagnoli, and B. Daino, “TM modes in a slab waveguide filled with nematic liquid crystal in an external magnetic field,” J. Opt. Soc. Am. B 6, 126–130 (1989).
    [CrossRef]
  21. H. Lin and P. Palffy-Muhoray, “Propagation of TM modes in a nonlinear liquid-crystal waveguide,” Opt. Lett. 19, 436–438 (1994).
    [CrossRef] [PubMed]
  22. G. Abbate, L. De Stefano, and E. Santamato, “Transverse-magnetic nonlinear modes in a nematic liquid-crystal slab waveguide,” J. Opt. Soc. Am. B 13, 1536–1541 (1996).
    [CrossRef]
  23. H. Gruler and G. Meier, “Electric field-induced deformations in oriented liquid crystals of the nematic type,” Mol. Cryst. Liq. Cryst. 16, 299–310 (1972).
    [CrossRef]
  24. W. H. Press, B. P. Flannery, S. A. Teukolosky, and W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1988).
  25. M. Marangoni, R. Osellame, R. Ramponi, M. Buscaglia, T. Bellini, and F. Mantegazza, “Field-controlled optical profile of a waveguide having a liquid-crystalline core,” Appl. Phys. Lett. 81, 2337–2339 (2002).
    [CrossRef]
  26. P. J. Bos, P. Johnson, and R. Koehler, “A liquid-crystal optical-switching device (π cell),” in SID 83 Digest (Society for Information Display, San Jose, Calif., 1983), pp. 30–31.
  27. T. Matsui, M. Ozaki, and K. Yoshino, “Single-mode operation of electrotunable laser in a dye-doped nematic liquid-crystal waveguide under holographic excitation,” Jpn. J. Appl. Phys. Part 2 42, L1462–L1464 (2003).
    [CrossRef]

2003

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. (Weinheim, Ger.) 15, 974–977 (2003).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable laser action in a dye-doped nematic liquid crystal waveguide under holographic excitation,” Appl. Phys. Lett. 83, 422–424 (2003).
[CrossRef]

T. Matsui, M. Ozaki, and K. Yoshino, “Single-mode operation of electrotunable laser in a dye-doped nematic liquid-crystal waveguide under holographic excitation,” Jpn. J. Appl. Phys. Part 2 42, L1462–L1464 (2003).
[CrossRef]

2002

M. Marangoni, R. Osellame, R. Ramponi, M. Buscaglia, T. Bellini, and F. Mantegazza, “Field-controlled optical profile of a waveguide having a liquid-crystalline core,” Appl. Phys. Lett. 81, 2337–2339 (2002).
[CrossRef]

T. Matsui, M. Ozaki, K. Yoshino, and F. Kajzar, “Fabrication of flexible distributed feedback laser using photoinduced surface relief grating on azo-polymer film as a template,” 41, L1386–L1388 (2002).

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. (Weinheim, Ger.) 14, 746–749 (2002).
[CrossRef]

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81, 3741–3743 (2002).
[CrossRef]

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. (Weinheim, Ger.) 14, 306–309 (2002).
[CrossRef]

2001

B. Taheri, A. F. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 73–82 (2001).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. (Weinheim, Ger.) 13, 1069–1072 (2001).
[CrossRef]

1999

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. Part 1 38, 5928–5937 (1999).
[CrossRef]

1998

V. I. Kopp, B. Fan, H. K. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
[CrossRef]

M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72, 410–411 (1998).
[CrossRef]

1997

A. Dodabalapur, E. A. Chandross, M. Berggren, and R. E. Slusher, “Organic solid-state lasers: past and future,” Science 277, 1787–1788 (1997).
[CrossRef]

1996

1994

1989

1974

J. P. Sheridan and T. G. Giallorenzi, “Electro-optically induced deflection in liquid-crystal waveguides,” J. Appl. Phys. 45, 5160–5163 (1974).
[CrossRef]

1973

D. J. Channin, “Optical waveguide modulation using nematic liquid crystal,” Appl. Phys. Lett. 22, 365–366 (1973).
[CrossRef]

1972

H. Gruler and G. Meier, “Electric field-induced deformations in oriented liquid crystals of the nematic type,” Mol. Cryst. Liq. Cryst. 16, 299–310 (1972).
[CrossRef]

1971

C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[CrossRef]

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[CrossRef]

Abbate, G.

Balasubramanian, S.

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. Part 1 38, 5928–5937 (1999).
[CrossRef]

Bellini, T.

M. Marangoni, R. Osellame, R. Ramponi, M. Buscaglia, T. Bellini, and F. Mantegazza, “Field-controlled optical profile of a waveguide having a liquid-crystalline core,” Appl. Phys. Lett. 81, 2337–2339 (2002).
[CrossRef]

Berggren, M.

M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72, 410–411 (1998).
[CrossRef]

A. Dodabalapur, E. A. Chandross, M. Berggren, and R. E. Slusher, “Organic solid-state lasers: past and future,” Science 277, 1787–1788 (1997).
[CrossRef]

Bjorkholm, J. E.

C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[CrossRef]

Buscaglia, M.

M. Marangoni, R. Osellame, R. Ramponi, M. Buscaglia, T. Bellini, and F. Mantegazza, “Field-controlled optical profile of a waveguide having a liquid-crystalline core,” Appl. Phys. Lett. 81, 2337–2339 (2002).
[CrossRef]

Chandross, E. A.

A. Dodabalapur, E. A. Chandross, M. Berggren, and R. E. Slusher, “Organic solid-state lasers: past and future,” Science 277, 1787–1788 (1997).
[CrossRef]

Channin, D. J.

D. J. Channin, “Optical waveguide modulation using nematic liquid crystal,” Appl. Phys. Lett. 22, 365–366 (1973).
[CrossRef]

Daino, B.

De Stefano, L.

Dodabalapur, A.

M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72, 410–411 (1998).
[CrossRef]

A. Dodabalapur, E. A. Chandross, M. Berggren, and R. E. Slusher, “Organic solid-state lasers: past and future,” Science 277, 1787–1788 (1997).
[CrossRef]

Fan, B.

Finkelmann, H.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. (Weinheim, Ger.) 14, 746–749 (2002).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. (Weinheim, Ger.) 13, 1069–1072 (2001).
[CrossRef]

Funamoto, K.

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81, 3741–3743 (2002).
[CrossRef]

Ganzke, D.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. (Weinheim, Ger.) 15, 974–977 (2003).
[CrossRef]

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. (Weinheim, Ger.) 14, 306–309 (2002).
[CrossRef]

Genack, A. Z.

Giallorenzi, T. G.

J. P. Sheridan and T. G. Giallorenzi, “Electro-optically induced deflection in liquid-crystal waveguides,” J. Appl. Phys. 45, 5160–5163 (1974).
[CrossRef]

Gruler, H.

H. Gruler and G. Meier, “Electric field-induced deformations in oriented liquid crystals of the nematic type,” Mol. Cryst. Liq. Cryst. 16, 299–310 (1972).
[CrossRef]

Haase, W.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. (Weinheim, Ger.) 15, 974–977 (2003).
[CrossRef]

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. (Weinheim, Ger.) 14, 306–309 (2002).
[CrossRef]

Kajzar, F.

T. Matsui, M. Ozaki, K. Yoshino, and F. Kajzar, “Fabrication of flexible distributed feedback laser using photoinduced surface relief grating on azo-polymer film as a template,” 41, L1386–L1388 (2002).

Kasano, M.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. (Weinheim, Ger.) 15, 974–977 (2003).
[CrossRef]

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. (Weinheim, Ger.) 14, 306–309 (2002).
[CrossRef]

Kim, S. T.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. (Weinheim, Ger.) 14, 746–749 (2002).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. (Weinheim, Ger.) 13, 1069–1072 (2001).
[CrossRef]

Kitasho, T.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. (Weinheim, Ger.) 15, 974–977 (2003).
[CrossRef]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[CrossRef]

C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[CrossRef]

Kopp, V. I.

Kumar, J.

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. Part 1 38, 5928–5937 (1999).
[CrossRef]

Li, L.

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. Part 1 38, 5928–5937 (1999).
[CrossRef]

Lin, H.

Maddalena, P.

Mantegazza, F.

M. Marangoni, R. Osellame, R. Ramponi, M. Buscaglia, T. Bellini, and F. Mantegazza, “Field-controlled optical profile of a waveguide having a liquid-crystalline core,” Appl. Phys. Lett. 81, 2337–2339 (2002).
[CrossRef]

Marangoni, M.

M. Marangoni, R. Osellame, R. Ramponi, M. Buscaglia, T. Bellini, and F. Mantegazza, “Field-controlled optical profile of a waveguide having a liquid-crystalline core,” Appl. Phys. Lett. 81, 2337–2339 (2002).
[CrossRef]

Matsui, T.

T. Matsui, M. Ozaki, and K. Yoshino, “Single-mode operation of electrotunable laser in a dye-doped nematic liquid-crystal waveguide under holographic excitation,” Jpn. J. Appl. Phys. Part 2 42, L1462–L1464 (2003).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable laser action in a dye-doped nematic liquid crystal waveguide under holographic excitation,” Appl. Phys. Lett. 83, 422–424 (2003).
[CrossRef]

T. Matsui, M. Ozaki, K. Yoshino, and F. Kajzar, “Fabrication of flexible distributed feedback laser using photoinduced surface relief grating on azo-polymer film as a template,” 41, L1386–L1388 (2002).

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81, 3741–3743 (2002).
[CrossRef]

Meier, G.

H. Gruler and G. Meier, “Electric field-induced deformations in oriented liquid crystals of the nematic type,” Mol. Cryst. Liq. Cryst. 16, 299–310 (1972).
[CrossRef]

Munoz, A.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. (Weinheim, Ger.) 13, 1069–1072 (2001).
[CrossRef]

Munoz, A. F.

B. Taheri, A. F. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 73–82 (2001).
[CrossRef]

Nalamasu, O.

M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72, 410–411 (1998).
[CrossRef]

Osellame, R.

M. Marangoni, R. Osellame, R. Ramponi, M. Buscaglia, T. Bellini, and F. Mantegazza, “Field-controlled optical profile of a waveguide having a liquid-crystalline core,” Appl. Phys. Lett. 81, 2337–2339 (2002).
[CrossRef]

Ozaki, M.

T. Matsui, M. Ozaki, and K. Yoshino, “Single-mode operation of electrotunable laser in a dye-doped nematic liquid-crystal waveguide under holographic excitation,” Jpn. J. Appl. Phys. Part 2 42, L1462–L1464 (2003).
[CrossRef]

T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable laser action in a dye-doped nematic liquid crystal waveguide under holographic excitation,” Appl. Phys. Lett. 83, 422–424 (2003).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. (Weinheim, Ger.) 15, 974–977 (2003).
[CrossRef]

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. (Weinheim, Ger.) 14, 306–309 (2002).
[CrossRef]

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81, 3741–3743 (2002).
[CrossRef]

T. Matsui, M. Ozaki, K. Yoshino, and F. Kajzar, “Fabrication of flexible distributed feedback laser using photoinduced surface relief grating on azo-polymer film as a template,” 41, L1386–L1388 (2002).

Ozaki, R.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81, 3741–3743 (2002).
[CrossRef]

Palffy-Muhoray, P.

B. Taheri, A. F. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 73–82 (2001).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. (Weinheim, Ger.) 13, 1069–1072 (2001).
[CrossRef]

H. Lin and P. Palffy-Muhoray, “Propagation of TM modes in a nonlinear liquid-crystal waveguide,” Opt. Lett. 19, 436–438 (1994).
[CrossRef] [PubMed]

Ramponi, R.

M. Marangoni, R. Osellame, R. Ramponi, M. Buscaglia, T. Bellini, and F. Mantegazza, “Field-controlled optical profile of a waveguide having a liquid-crystalline core,” Appl. Phys. Lett. 81, 2337–2339 (2002).
[CrossRef]

Romagnoli, M.

Santamato, E.

Schmidtke, J.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. (Weinheim, Ger.) 14, 746–749 (2002).
[CrossRef]

Settembre, M.

Shank, C. V.

C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[CrossRef]

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[CrossRef]

Sheridan, J. P.

J. P. Sheridan and T. G. Giallorenzi, “Electro-optically induced deflection in liquid-crystal waveguides,” J. Appl. Phys. 45, 5160–5163 (1974).
[CrossRef]

Slusher, R. E.

M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72, 410–411 (1998).
[CrossRef]

A. Dodabalapur, E. A. Chandross, M. Berggren, and R. E. Slusher, “Organic solid-state lasers: past and future,” Science 277, 1787–1788 (1997).
[CrossRef]

Stille, W.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. (Weinheim, Ger.) 14, 746–749 (2002).
[CrossRef]

Taheri, B.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. (Weinheim, Ger.) 13, 1069–1072 (2001).
[CrossRef]

B. Taheri, A. F. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 73–82 (2001).
[CrossRef]

Timko, A.

M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72, 410–411 (1998).
[CrossRef]

Tripathy, S. K.

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. Part 1 38, 5928–5937 (1999).
[CrossRef]

Twieg, R.

B. Taheri, A. F. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 73–82 (2001).
[CrossRef]

Viswanathan, N. K.

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. Part 1 38, 5928–5937 (1999).
[CrossRef]

Vithana, H. K.

Yoshino, K.

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. (Weinheim, Ger.) 15, 974–977 (2003).
[CrossRef]

T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable laser action in a dye-doped nematic liquid crystal waveguide under holographic excitation,” Appl. Phys. Lett. 83, 422–424 (2003).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

T. Matsui, M. Ozaki, and K. Yoshino, “Single-mode operation of electrotunable laser in a dye-doped nematic liquid-crystal waveguide under holographic excitation,” Jpn. J. Appl. Phys. Part 2 42, L1462–L1464 (2003).
[CrossRef]

T. Matsui, M. Ozaki, K. Yoshino, and F. Kajzar, “Fabrication of flexible distributed feedback laser using photoinduced surface relief grating on azo-polymer film as a template,” 41, L1386–L1388 (2002).

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81, 3741–3743 (2002).
[CrossRef]

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. (Weinheim, Ger.) 14, 306–309 (2002).
[CrossRef]

Adv. Mater. (Weinheim, Ger.)

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. (Weinheim, Ger.) 14, 306–309 (2002).
[CrossRef]

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, and K. Yoshino, “Electro-tunable liquid-crystal laser,” Adv. Mater. (Weinheim, Ger.) 15, 974–977 (2003).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. (Weinheim, Ger.) 13, 1069–1072 (2001).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. (Weinheim, Ger.) 14, 746–749 (2002).
[CrossRef]

Appl. Phys. Lett.

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81, 3741–3743 (2002).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable laser action in a dye-doped nematic liquid crystal waveguide under holographic excitation,” Appl. Phys. Lett. 83, 422–424 (2003).
[CrossRef]

C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971).
[CrossRef]

D. J. Channin, “Optical waveguide modulation using nematic liquid crystal,” Appl. Phys. Lett. 22, 365–366 (1973).
[CrossRef]

M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72, 410–411 (1998).
[CrossRef]

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971).
[CrossRef]

M. Marangoni, R. Osellame, R. Ramponi, M. Buscaglia, T. Bellini, and F. Mantegazza, “Field-controlled optical profile of a waveguide having a liquid-crystalline core,” Appl. Phys. Lett. 81, 2337–2339 (2002).
[CrossRef]

J. Appl. Phys.

J. P. Sheridan and T. G. Giallorenzi, “Electro-optically induced deflection in liquid-crystal waveguides,” J. Appl. Phys. 45, 5160–5163 (1974).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys. Part 1

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. Part 1 38, 5928–5937 (1999).
[CrossRef]

Jpn. J. Appl. Phys. Part 2

T. Matsui, M. Ozaki, and K. Yoshino, “Single-mode operation of electrotunable laser in a dye-doped nematic liquid-crystal waveguide under holographic excitation,” Jpn. J. Appl. Phys. Part 2 42, L1462–L1464 (2003).
[CrossRef]

Mol. Cryst. Liq. Cryst.

H. Gruler and G. Meier, “Electric field-induced deformations in oriented liquid crystals of the nematic type,” Mol. Cryst. Liq. Cryst. 16, 299–310 (1972).
[CrossRef]

B. Taheri, A. F. Munoz, P. Palffy-Muhoray, and R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 73–82 (2001).
[CrossRef]

Opt. Lett.

Science

A. Dodabalapur, E. A. Chandross, M. Berggren, and R. E. Slusher, “Organic solid-state lasers: past and future,” Science 277, 1787–1788 (1997).
[CrossRef]

Other

T. Matsui, M. Ozaki, K. Yoshino, and F. Kajzar, “Fabrication of flexible distributed feedback laser using photoinduced surface relief grating on azo-polymer film as a template,” 41, L1386–L1388 (2002).

P. G. deGennes and J. Prost, The Physics of Liquid Crystals (Oxford U. Press, New York, 1993).

H. J. Eichler, P. Gunter, and D. W. Pohl, Laser Induced Dynamic Gratings (Springer-Verlag, Berlin, 1985).

W. H. Press, B. P. Flannery, S. A. Teukolosky, and W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1988).

P. J. Bos, P. Johnson, and R. Koehler, “A liquid-crystal optical-switching device (π cell),” in SID 83 Digest (Society for Information Display, San Jose, Calif., 1983), pp. 30–31.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic representation of the cell structure used in this study for the electrical tuning of the laser emission on holographic excitation. (b) Definition of the tilt angle ϕ of the NLC molecule. PVA, polyvinyl alcohol; ITO, indium tin oxide.

Fig. 2
Fig. 2

Schematic representation of the experimental setup for emission measurement. Inset: the Lloyd mirror setup for the interferential illumination. PC, photonic crystal; THG, third-harmonic generation.

Fig. 3
Fig. 3

(a) Emission spectra of the dye-doped NLC waveguide on holographic excitation at various excitation angles (from 59.0° to 65.0° by 1.0°) above the threshold pump pulse energy without applied voltage. (b) Excitation-angle dependence of the lasing wavelength. The shaded region shows the tunable range of this laser. The dashed curves show the theoretical curves of the lasing wavelength under the first-order diffraction condition (m=1), assuming the effective refractive indices neff are 1.53 and 1.78.

Fig. 4
Fig. 4

(a) Emission spectra of the dye-doped NLC waveguide on holographic excitation at various applied voltages (θ=65.0°). (b) Applied voltage dependence of the lasing wavelength.

Fig. 5
Fig. 5

Distribution of the tilt angle of NLC molecules in the depth of the cell under various applied voltages (V=1.00, 1.50, 2.00, 4.00 and 6.00 V).

Fig. 6
Fig. 6

Applied voltage dependence of the effective refractive index of the zeroth-order TM guided mode with a wavelength of λ=600 nm.

Fig. 7
Fig. 7

Applied voltage dependence of the effective refractive indices of the zeroth- to fourth-order TM guided modes with wavelengths of λ=600 nm (circles) and λ=630 nm (triangles).

Fig. 8
Fig. 8

Applied voltage dependence of lasing wavelengths of the zeroth- to fourth-order TM guided modes.

Fig. 9
Fig. 9

Optical field profiles of TM guided modes (a) without and (b)–(f) with applied voltages of 1.00–1.40 V. Boundaries of the PVA clad layer (z<0 and z>2500 nm) and the NLC core layer (0<z<2500 nm) are also shown in dotted lines. For the calculation, wavelengths of the guided light were set as follows: (a) λm=0=600 nm; (b) λm=0=609 nm, λm=1=601 nm; (c) λm=0=627 nm, λm=1=615 nm, λm=2=604 nm; (d) λm=1=627 nm, λm=2=613 nm, λm=3=602 nm; (e) λm=2=621 nm, λm=3=607 nm; (f) λm=4=600 nm.

Fig. 10
Fig. 10

Optical field profiles of zeroth-order TM guided modes (a) without and (b)–(f) with applied voltages. The wavelength of the guided light is λ=600 nm. The distribution of the tilt angle ϕ(z) in depth is also shown in dotted lines for reference.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

λBragg=neffλexm sin θ,
g=12K11(·n)2+12K33[n×(×n)]2-120a(E·n)2,
dϕ(z)dz=0aE2K111/2sin2 ϕm-sin2 ϕ(z)cos2 ϕ(z)+(K33/K11)sin2 ϕ(z)1/2,
EEc=2π 0ϕm1+(K33/K11-1)sin2 ϕ(z)sin2 ϕm-sin2 ϕ(z)1/2dϕ.
(z)=111213212223313233=o000o+a cos2 ϕ(z)a cos ϕ(z)sin ϕ(z)0a cos ϕ(z)sin ϕ(z)o+a sin2 ϕ(z),
Hx(y, z, t)={R(z)exp[ψ(z)]}exp[i(k0Ny-ωt)],
332(z) d2R(z)dz2+33(z) d33(z)dz dR(z)dz
+k02oe[33(z)-N2]R(z)=0,

Metrics