Abstract

A small-signal analysis of all-optical switches based on a single semiconductor optical amplifier followed by an optical filter is presented. Using the asymmetric Mach–Zehnder interferometer, which is the filter employed in the delayed-interference signal converter, as an example, we explain the principle of modulation bandwidth enhancement using optical filtering. We obtain analytical expressions for the optimum phase bias of the Mach–Zehnder interferometer filter and the resulting optical modulation bandwidth. By adopting a spectral approach, where the small-signal modulated field envelope is analyzed, we are able to generalize these results and calculate the bandwidth enhancement provided by an arbitrary filter.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technol. Lett. 5, 787–790 (1993).
    [CrossRef]
  2. K. Tajima, “All-optical switch with switch-off time unrestricted by carrier lifetime,” Jpn. J. Appl. Phys., Part 1 32, L1746–L1749 (1993).
    [CrossRef]
  3. S. Nakamura, Y. Ueno, and K. Tajima, “Error-free demultiplexing at 336 Gb/s with a hybrid-integrated symmetric Mach–Zehnder switch,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper FD3–1.
  4. Y. Ueno, S. Nakamura, H. Hatakeyama, T. Tamanuki, T. Sasaki, and K. Tajima, “168 Gb/s OTDM wavelength conversion using an SMZ-type all-optical switch,” in Proceedings of European Conference on Optical Communication (VDE, Frankfurt, Germany, 2000), Vol. 1, pp. 13–14.
  5. Y. Ueno, S. Nakamura, and K. Tajima, “Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s with symmetrical-Mach–Zehnder-type regenerator,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper MG5–1.
  6. Y. Ueno, S. Nakamura, K. Tajima, and S. Kitamura, “3.8 THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC),” IEEE Photonics Technol. Lett. 10, 346–348 (1998).
    [CrossRef]
  7. J. Leuthold, B. Mikkelsen, G. Raybon, C. H. Joyner, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and R. Behringer, “All-optical wavelength conversion between 10 and 100 Gb/s with SOA delayed-interference configuration,” Opt. Quantum Electron. 33, 939–952 (2001).
    [CrossRef]
  8. H.-Y. Yu, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” J. Lightwave Technol. 17, 308–315 (1999).
    [CrossRef]
  9. P. Öhlen and E. Berglind, “Noise accumulation and BER estimates in concatenated nonlinear optoelectronic repeaters,” IEEE Photonics Technol. Lett. 9, 1011–1013 (1997).
    [CrossRef]
  10. J. Mørk, F. Öhman, and S. Bischoff, “Analytical expression for the bit-error-rate of cascaded all-optical regenerators,” IEEE Photonics Technol. Lett. 15, 1479–1481 (2003).
    [CrossRef]
  11. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
    [CrossRef]
  12. D. Marcenac and A. Mecozzi, “Switches and frequency converters based on cross-gain modulation in semiconductoroptical amplifiers,” IEEE Photonics Technol. Lett. 9, 749–751 (1997).
    [CrossRef]
  13. T. Durhuus, B. Mikkelsen, C. Jørgensen, S. L. Danielsen, and K. E. Stubkjær, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14, 942–954 (1996).
    [CrossRef]
  14. D. D. Marcenac, A. E. Kelly, and D. Nesset, “Nonlinear optical amplifiers for ultrahigh speed all-optical wavelength conversion,” in Optical Amplifiers and Their Applications, Vol. 5 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 230–235.
  15. R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, “Semiconductor laser amplifiers for ultrafast all-optical signal processing,” J. Opt. Soc. Am. B 14, 3204–3216 (1997).
    [CrossRef]
  16. S. Bischoff and J. Mørk, “Reduction of patterning effects in SOA-based all optical switches by using cross-gain modulated holding signal,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), Vol. 1, p. 353.
  17. J. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol. Lett. 14, 12–14 (2002).
    [CrossRef]
  18. D. Marcenac, “Travelling wave effects for wavelength conversion by cross-gain modulation and cross-phase modulation in optical amplifiers,” Int. J. Optoelectron. 10, 325–329 (1995).
  19. A. Mecozzi, “Small-signal theory of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 8, 1471–1473 (1996).
    [CrossRef]
  20. M. L. Nielsen, D. J. Blumenthal, and J. Mørk, “A transfer function approach to the small-signal frequency response of saturated semiconductor optical amplifiers,” J. Lightwave Technol. 18, 2151–2157 (2000).
    [CrossRef]
  21. F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifiers,” Opt. Commun. 199, 111–115 (2001).
    [CrossRef]
  22. J. Mørk and A. Mecozzi, “Theory of the ultrafast optical response of active semiconductor waveguides,” J. Opt. Soc. Am. B 13, 1803–1816 (1996).
    [CrossRef]
  23. J. Leuthold, D. Marom, S. Cabot, R. Ryf, P. Bernasconi, F. Baumann, J. Jaques, D. T. Nielson, and C. R. Giles, “All-optical wavelength converter based on a pulse reformatting optical filter,” in Optical Fiber Communication Conference, Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper PD41–1.
  24. P. S. Cho, D. Mahgerefteh, J. Goldhar, and G. L. Burdge, “Wavelength conversion using a noninterferometric semiconductor-optical-amplifier/fiber Bragg grating device,” in Conference on Lasers and Electro-optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 477.
  25. M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gb/s using band-pass filtering,” Electron. Lett. 39, 1334–1335 (2003).
    [CrossRef]
  26. Y. Ueno, S. Nakamura, and K. Tajima, “Spectral phase-locking in ultrafast all-optical Mach–Zehnder-type semiconductor wavelength converter,” Jpn. J. Appl. Phys., Part 1 38, 1243–1245 (1999).
    [CrossRef]

2003 (2)

J. Mørk, F. Öhman, and S. Bischoff, “Analytical expression for the bit-error-rate of cascaded all-optical regenerators,” IEEE Photonics Technol. Lett. 15, 1479–1481 (2003).
[CrossRef]

M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gb/s using band-pass filtering,” Electron. Lett. 39, 1334–1335 (2003).
[CrossRef]

2002 (1)

J. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol. Lett. 14, 12–14 (2002).
[CrossRef]

2001 (2)

F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifiers,” Opt. Commun. 199, 111–115 (2001).
[CrossRef]

J. Leuthold, B. Mikkelsen, G. Raybon, C. H. Joyner, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and R. Behringer, “All-optical wavelength conversion between 10 and 100 Gb/s with SOA delayed-interference configuration,” Opt. Quantum Electron. 33, 939–952 (2001).
[CrossRef]

2000 (1)

1999 (2)

H.-Y. Yu, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” J. Lightwave Technol. 17, 308–315 (1999).
[CrossRef]

Y. Ueno, S. Nakamura, and K. Tajima, “Spectral phase-locking in ultrafast all-optical Mach–Zehnder-type semiconductor wavelength converter,” Jpn. J. Appl. Phys., Part 1 38, 1243–1245 (1999).
[CrossRef]

1998 (1)

Y. Ueno, S. Nakamura, K. Tajima, and S. Kitamura, “3.8 THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC),” IEEE Photonics Technol. Lett. 10, 346–348 (1998).
[CrossRef]

1997 (3)

R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, “Semiconductor laser amplifiers for ultrafast all-optical signal processing,” J. Opt. Soc. Am. B 14, 3204–3216 (1997).
[CrossRef]

P. Öhlen and E. Berglind, “Noise accumulation and BER estimates in concatenated nonlinear optoelectronic repeaters,” IEEE Photonics Technol. Lett. 9, 1011–1013 (1997).
[CrossRef]

D. Marcenac and A. Mecozzi, “Switches and frequency converters based on cross-gain modulation in semiconductoroptical amplifiers,” IEEE Photonics Technol. Lett. 9, 749–751 (1997).
[CrossRef]

1996 (3)

T. Durhuus, B. Mikkelsen, C. Jørgensen, S. L. Danielsen, and K. E. Stubkjær, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14, 942–954 (1996).
[CrossRef]

A. Mecozzi, “Small-signal theory of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 8, 1471–1473 (1996).
[CrossRef]

J. Mørk and A. Mecozzi, “Theory of the ultrafast optical response of active semiconductor waveguides,” J. Opt. Soc. Am. B 13, 1803–1816 (1996).
[CrossRef]

1995 (1)

D. Marcenac, “Travelling wave effects for wavelength conversion by cross-gain modulation and cross-phase modulation in optical amplifiers,” Int. J. Optoelectron. 10, 325–329 (1995).

1993 (2)

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technol. Lett. 5, 787–790 (1993).
[CrossRef]

K. Tajima, “All-optical switch with switch-off time unrestricted by carrier lifetime,” Jpn. J. Appl. Phys., Part 1 32, L1746–L1749 (1993).
[CrossRef]

1989 (1)

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

Behringer, R.

J. Leuthold, B. Mikkelsen, G. Raybon, C. H. Joyner, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and R. Behringer, “All-optical wavelength conversion between 10 and 100 Gb/s with SOA delayed-interference configuration,” Opt. Quantum Electron. 33, 939–952 (2001).
[CrossRef]

Berglind, E.

P. Öhlen and E. Berglind, “Noise accumulation and BER estimates in concatenated nonlinear optoelectronic repeaters,” IEEE Photonics Technol. Lett. 9, 1011–1013 (1997).
[CrossRef]

Bischoff, S.

J. Mørk, F. Öhman, and S. Bischoff, “Analytical expression for the bit-error-rate of cascaded all-optical regenerators,” IEEE Photonics Technol. Lett. 15, 1479–1481 (2003).
[CrossRef]

Blow, K. J.

Blumenthal, D. J.

Burrus, C.

J. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol. Lett. 14, 12–14 (2002).
[CrossRef]

Cho, P. S.

Dagens, B.

M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gb/s using band-pass filtering,” Electron. Lett. 39, 1334–1335 (2003).
[CrossRef]

Danielsen, S. L.

T. Durhuus, B. Mikkelsen, C. Jørgensen, S. L. Danielsen, and K. E. Stubkjær, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14, 942–954 (1996).
[CrossRef]

Dentai, A. G.

J. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol. Lett. 14, 12–14 (2002).
[CrossRef]

Dreyer, K.

J. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol. Lett. 14, 12–14 (2002).
[CrossRef]

J. Leuthold, B. Mikkelsen, G. Raybon, C. H. Joyner, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and R. Behringer, “All-optical wavelength conversion between 10 and 100 Gb/s with SOA delayed-interference configuration,” Opt. Quantum Electron. 33, 939–952 (2001).
[CrossRef]

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Jørgensen, S. L. Danielsen, and K. E. Stubkjær, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14, 942–954 (1996).
[CrossRef]

Ellis, A. D.

Ginovart, F.

F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifiers,” Opt. Commun. 199, 111–115 (2001).
[CrossRef]

Glesk, I.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technol. Lett. 5, 787–790 (1993).
[CrossRef]

Goldhar, J.

Jørgensen, C.

T. Durhuus, B. Mikkelsen, C. Jørgensen, S. L. Danielsen, and K. E. Stubkjær, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14, 942–954 (1996).
[CrossRef]

Joyner, C. H.

J. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol. Lett. 14, 12–14 (2002).
[CrossRef]

J. Leuthold, B. Mikkelsen, G. Raybon, C. H. Joyner, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and R. Behringer, “All-optical wavelength conversion between 10 and 100 Gb/s with SOA delayed-interference configuration,” Opt. Quantum Electron. 33, 939–952 (2001).
[CrossRef]

Kane, M.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technol. Lett. 5, 787–790 (1993).
[CrossRef]

Kauer, M.

J. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol. Lett. 14, 12–14 (2002).
[CrossRef]

Kitamura, S.

Y. Ueno, S. Nakamura, K. Tajima, and S. Kitamura, “3.8 THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC),” IEEE Photonics Technol. Lett. 10, 346–348 (1998).
[CrossRef]

Lavigne, B.

M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gb/s using band-pass filtering,” Electron. Lett. 39, 1334–1335 (2003).
[CrossRef]

Leuthold, J.

J. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol. Lett. 14, 12–14 (2002).
[CrossRef]

J. Leuthold, B. Mikkelsen, G. Raybon, C. H. Joyner, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and R. Behringer, “All-optical wavelength conversion between 10 and 100 Gb/s with SOA delayed-interference configuration,” Opt. Quantum Electron. 33, 939–952 (2001).
[CrossRef]

Mahgerefteh, D.

Manning, R. J.

Marcenac, D.

D. Marcenac and A. Mecozzi, “Switches and frequency converters based on cross-gain modulation in semiconductoroptical amplifiers,” IEEE Photonics Technol. Lett. 9, 749–751 (1997).
[CrossRef]

D. Marcenac, “Travelling wave effects for wavelength conversion by cross-gain modulation and cross-phase modulation in optical amplifiers,” Int. J. Optoelectron. 10, 325–329 (1995).

Mecozzi, A.

D. Marcenac and A. Mecozzi, “Switches and frequency converters based on cross-gain modulation in semiconductoroptical amplifiers,” IEEE Photonics Technol. Lett. 9, 749–751 (1997).
[CrossRef]

A. Mecozzi, “Small-signal theory of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 8, 1471–1473 (1996).
[CrossRef]

J. Mørk and A. Mecozzi, “Theory of the ultrafast optical response of active semiconductor waveguides,” J. Opt. Soc. Am. B 13, 1803–1816 (1996).
[CrossRef]

Mikkelsen, B.

J. Leuthold, B. Mikkelsen, G. Raybon, C. H. Joyner, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and R. Behringer, “All-optical wavelength conversion between 10 and 100 Gb/s with SOA delayed-interference configuration,” Opt. Quantum Electron. 33, 939–952 (2001).
[CrossRef]

T. Durhuus, B. Mikkelsen, C. Jørgensen, S. L. Danielsen, and K. E. Stubkjær, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14, 942–954 (1996).
[CrossRef]

Miller, B. I.

J. Leuthold, B. Mikkelsen, G. Raybon, C. H. Joyner, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and R. Behringer, “All-optical wavelength conversion between 10 and 100 Gb/s with SOA delayed-interference configuration,” Opt. Quantum Electron. 33, 939–952 (2001).
[CrossRef]

Mørk, J.

Nakamura, S.

Y. Ueno, S. Nakamura, and K. Tajima, “Spectral phase-locking in ultrafast all-optical Mach–Zehnder-type semiconductor wavelength converter,” Jpn. J. Appl. Phys., Part 1 38, 1243–1245 (1999).
[CrossRef]

Y. Ueno, S. Nakamura, K. Tajima, and S. Kitamura, “3.8 THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC),” IEEE Photonics Technol. Lett. 10, 346–348 (1998).
[CrossRef]

Nielsen, M. L.

M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gb/s using band-pass filtering,” Electron. Lett. 39, 1334–1335 (2003).
[CrossRef]

M. L. Nielsen, D. J. Blumenthal, and J. Mørk, “A transfer function approach to the small-signal frequency response of saturated semiconductor optical amplifiers,” J. Lightwave Technol. 18, 2151–2157 (2000).
[CrossRef]

Öhlen, P.

P. Öhlen and E. Berglind, “Noise accumulation and BER estimates in concatenated nonlinear optoelectronic repeaters,” IEEE Photonics Technol. Lett. 9, 1011–1013 (1997).
[CrossRef]

Öhman, F.

J. Mørk, F. Öhman, and S. Bischoff, “Analytical expression for the bit-error-rate of cascaded all-optical regenerators,” IEEE Photonics Technol. Lett. 15, 1479–1481 (2003).
[CrossRef]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

Pleumeekers, J.

J. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol. Lett. 14, 12–14 (2002).
[CrossRef]

Pleumeekers, J. L.

J. Leuthold, B. Mikkelsen, G. Raybon, C. H. Joyner, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and R. Behringer, “All-optical wavelength conversion between 10 and 100 Gb/s with SOA delayed-interference configuration,” Opt. Quantum Electron. 33, 939–952 (2001).
[CrossRef]

Poustie, A. J.

Prucnal, P. R.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technol. Lett. 5, 787–790 (1993).
[CrossRef]

Raybon, G.

J. Leuthold, B. Mikkelsen, G. Raybon, C. H. Joyner, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and R. Behringer, “All-optical wavelength conversion between 10 and 100 Gb/s with SOA delayed-interference configuration,” Opt. Quantum Electron. 33, 939–952 (2001).
[CrossRef]

Shunk, S.

J. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol. Lett. 14, 12–14 (2002).
[CrossRef]

Simon, J. C.

F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifiers,” Opt. Commun. 199, 111–115 (2001).
[CrossRef]

Sokoloff, J. P.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technol. Lett. 5, 787–790 (1993).
[CrossRef]

Stubkjær, K. E.

T. Durhuus, B. Mikkelsen, C. Jørgensen, S. L. Danielsen, and K. E. Stubkjær, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14, 942–954 (1996).
[CrossRef]

Tajima, K.

Y. Ueno, S. Nakamura, and K. Tajima, “Spectral phase-locking in ultrafast all-optical Mach–Zehnder-type semiconductor wavelength converter,” Jpn. J. Appl. Phys., Part 1 38, 1243–1245 (1999).
[CrossRef]

Y. Ueno, S. Nakamura, K. Tajima, and S. Kitamura, “3.8 THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC),” IEEE Photonics Technol. Lett. 10, 346–348 (1998).
[CrossRef]

K. Tajima, “All-optical switch with switch-off time unrestricted by carrier lifetime,” Jpn. J. Appl. Phys., Part 1 32, L1746–L1749 (1993).
[CrossRef]

Ueno, Y.

Y. Ueno, S. Nakamura, and K. Tajima, “Spectral phase-locking in ultrafast all-optical Mach–Zehnder-type semiconductor wavelength converter,” Jpn. J. Appl. Phys., Part 1 38, 1243–1245 (1999).
[CrossRef]

Y. Ueno, S. Nakamura, K. Tajima, and S. Kitamura, “3.8 THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC),” IEEE Photonics Technol. Lett. 10, 346–348 (1998).
[CrossRef]

Valiente, I.

F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifiers,” Opt. Commun. 199, 111–115 (2001).
[CrossRef]

Yu, H.-Y.

Electron. Lett. (1)

M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gb/s using band-pass filtering,” Electron. Lett. 39, 1334–1335 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

IEEE Photonics Technol. Lett. (7)

D. Marcenac and A. Mecozzi, “Switches and frequency converters based on cross-gain modulation in semiconductoroptical amplifiers,” IEEE Photonics Technol. Lett. 9, 749–751 (1997).
[CrossRef]

J. Pleumeekers, M. Kauer, K. Dreyer, C. Burrus, A. G. Dentai, S. Shunk, J. Leuthold, and C. H. Joyner, “Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength,” IEEE Photonics Technol. Lett. 14, 12–14 (2002).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photonics Technol. Lett. 5, 787–790 (1993).
[CrossRef]

Y. Ueno, S. Nakamura, K. Tajima, and S. Kitamura, “3.8 THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC),” IEEE Photonics Technol. Lett. 10, 346–348 (1998).
[CrossRef]

P. Öhlen and E. Berglind, “Noise accumulation and BER estimates in concatenated nonlinear optoelectronic repeaters,” IEEE Photonics Technol. Lett. 9, 1011–1013 (1997).
[CrossRef]

J. Mørk, F. Öhman, and S. Bischoff, “Analytical expression for the bit-error-rate of cascaded all-optical regenerators,” IEEE Photonics Technol. Lett. 15, 1479–1481 (2003).
[CrossRef]

A. Mecozzi, “Small-signal theory of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 8, 1471–1473 (1996).
[CrossRef]

Int. J. Optoelectron. (1)

D. Marcenac, “Travelling wave effects for wavelength conversion by cross-gain modulation and cross-phase modulation in optical amplifiers,” Int. J. Optoelectron. 10, 325–329 (1995).

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys., Part 1 (2)

K. Tajima, “All-optical switch with switch-off time unrestricted by carrier lifetime,” Jpn. J. Appl. Phys., Part 1 32, L1746–L1749 (1993).
[CrossRef]

Y. Ueno, S. Nakamura, and K. Tajima, “Spectral phase-locking in ultrafast all-optical Mach–Zehnder-type semiconductor wavelength converter,” Jpn. J. Appl. Phys., Part 1 38, 1243–1245 (1999).
[CrossRef]

Opt. Commun. (1)

F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifiers,” Opt. Commun. 199, 111–115 (2001).
[CrossRef]

Opt. Quantum Electron. (1)

J. Leuthold, B. Mikkelsen, G. Raybon, C. H. Joyner, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and R. Behringer, “All-optical wavelength conversion between 10 and 100 Gb/s with SOA delayed-interference configuration,” Opt. Quantum Electron. 33, 939–952 (2001).
[CrossRef]

Other (7)

S. Nakamura, Y. Ueno, and K. Tajima, “Error-free demultiplexing at 336 Gb/s with a hybrid-integrated symmetric Mach–Zehnder switch,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper FD3–1.

Y. Ueno, S. Nakamura, H. Hatakeyama, T. Tamanuki, T. Sasaki, and K. Tajima, “168 Gb/s OTDM wavelength conversion using an SMZ-type all-optical switch,” in Proceedings of European Conference on Optical Communication (VDE, Frankfurt, Germany, 2000), Vol. 1, pp. 13–14.

Y. Ueno, S. Nakamura, and K. Tajima, “Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s with symmetrical-Mach–Zehnder-type regenerator,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper MG5–1.

S. Bischoff and J. Mørk, “Reduction of patterning effects in SOA-based all optical switches by using cross-gain modulated holding signal,” in Conference on Lasers and Electro-Optics, Vol. 73 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), Vol. 1, p. 353.

D. D. Marcenac, A. E. Kelly, and D. Nesset, “Nonlinear optical amplifiers for ultrahigh speed all-optical wavelength conversion,” in Optical Amplifiers and Their Applications, Vol. 5 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 230–235.

J. Leuthold, D. Marom, S. Cabot, R. Ryf, P. Bernasconi, F. Baumann, J. Jaques, D. T. Nielson, and C. R. Giles, “All-optical wavelength converter based on a pulse reformatting optical filter,” in Optical Fiber Communication Conference, Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper PD41–1.

P. S. Cho, D. Mahgerefteh, J. Goldhar, and G. L. Burdge, “Wavelength conversion using a noninterferometric semiconductor-optical-amplifier/fiber Bragg grating device,” in Conference on Lasers and Electro-optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 477.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Temporal evolution of the probe phase including the nonlinear term of rate equation (7) (dashed curve), and without the nonlinear term (solid curve). Simulation parameters: P¯p=1 mW, L=500 µm, A=0.7 µm×0.4 µm, Γ=0.6, I=70 mA (20 kA/cm2), a=5×10-20 m2, Ntr=1×1024 m-3, τsp=0.5 ns, α=5, and ω=0.8 eV. Phase shifts induced by the first and the second pulse are indicated, and the input data signal is illustrated in the top of the figure.

Fig. 2
Fig. 2

Schematic of the DISC configuration, consisting of an SOA, an asymmetric MZI, and a filter at the output to suppress the data signal. Notice that the phase shifter and delay are located in the same arm of the MZI.

Fig. 3
Fig. 3

(a) Temporal evolution of probe phase in lower arm ΦpNL(t) (solid) and upper arm ΦpNL(t-τ) (dashed) of the asymmetric MZI, including the nonlinear term of Eq. (7). (b) The corresponding phase difference ΔΦpNL(t)=ΦpNL(t)-ΦpNL(t-τ). (c), (d) Equivalent to (a) and (b), except that the nonlinear term in Eq. (7) is neglected. Differential delay τ=5 ps in (b) and (d).

Fig. 4
Fig. 4

Extinction ratio owing to XPM of the asymmetric MZI in decibels as a function of the phase bias Φ0, with the differential phase shift ΔΦp as a parameter.

Fig. 5
Fig. 5

(a) Magnitude of the XGM (solid) and XPM (dashed) filter functions, and the resulting magnitude of the equalizer function for γ=10, 20, and 40. The normalized carrier-density response (CDR) is shown as a reference (dash-dotted). (b) The normalized SSFR corresponding to the three equalizer functions in (a): γ=10 (solid), γ=20 (dashed), and γ=40 (dotted), with the normalized CDR for τe=50 ps as reference (dash-dotted). α=5 and τ=5 ps in both plots.

Fig. 6
Fig. 6

The bandwidth-enhancement factor γ as a function of the phase bias Φ0 of the asymmetric MZI, with the linewidth-enhancement factor as a parameter: α=3 (solid), α=5 (dashed).

Fig. 7
Fig. 7

Phase of the asymmetric MZI filter (solid) as a function of normalized frequency ωτ/π. In the frequency ranges D1 and D2, Eq. (45) is satisfied, whereas Eq. (46) is satisfied in C1. The dashed line is a continuous extension of the phase.

Fig. 8
Fig. 8

(a) Magnitude of the equalizer functions of the asymmetric MZI filter, assuming a continuous-phase response (solid), the physical MZI filter (dashed), and the optimum filter (dash-dotted) as a reference. (b) The normalized SSFRs corresponding to the asymmetric MZI filter with continuous phase response (solid), and the physical MZI filter (dashed). The normalized CDR for τe=50 ps is shown as a reference. α=5 and τ=5 in both plots, and the frequency ranges D1, D2, and C1 are indicated.

Fig. 9
Fig. 9

(a) Magnitude of the equalizer functions of the Lorentzian BPF (solid), the asymmetric MZI with τ=5 ps (short dashed) and τ=10 ps (dashed), and the optimum filter (dash-dotted). (b) the normalized SSFRs corresponding to the Lorentzian BPF (solid), the asymmetric MZI filter with τ=5 ps (short dashed) and τ=10 ps (dashed), and the normalized CDR for τe=50 ps. α=5 in both plots.

Fig. 10
Fig. 10

Comparison of amplitude responses for different filters giving rise to a flat overall SSFR: Lorentzian BPF (solid) and asymmetric MZI filters with τ=10 ps (dashed) and τ=5 ps (short dashed). The straight lines indicate that all three filters have equal slopes at ω=0.

Fig. 11
Fig. 11

Sketch of amplitude response with a constant slope K given by Eq. (56) in the entire dynamic range. K<0 (solid), K>0 (dashed), and ω and ω indicate the boundaries of the dynamic range.

Equations (62)

Equations on this page are rendered with MathJax. Learn more.

dN(t)dt=IeV-N(t)τsp-Γg(N)ωA[Pp(z, t)+Pc(z, t)],
dPi(z, t)dz=ΓgPi(z, t),
dσdt=-σ(t)-σ0τsp-exp{Γa[σ(t)-NtrL]}-1ωA×[P¯p+Pc(0, t)].
σ(t)=0LN(z, t)dz,
G(t)=exp{Γa[σ(t)-NtrL]},
Φ(t)=-α2Γa[σ(t)-NtrL],
dΔσdt=-Δσ(t)τe-1ωA(G¯-1)ΔPc(t)-1ωAΓaGΔ¯σ(t)ΔPc(t).
τe-1=τsp-1+ΓaG¯ωA(P¯p+P¯c),
dΔσdt=-Δσ(t)τe-1ωA(G¯-1)ΔPc(t).
Eout(t)=12[Ep(t)+Ep(t-τ)exp(jΦ0)]=12{Pp(t)  exp[jΦp(t)]+Pp(t-τ)×exp[jΦp(t-τ)]exp(jΦ0)},
Pout(t)=|Eout(t)|2=14{Pp(t)+Pp(t-τ)+2Pp(t)Pp(t-τ)×cos[Φp(t)-Φp(t-τ)-Φ0]}.
ER=Pout(ΔΦp)Pout(ΔΦp=0)=1+cos(ΔΦp-Φ0)1+cos(Φ0).
X(t)=X¯+ΔX(t)=X¯+x(Ω)exp(-jΩt)+x*(Ω)exp(jΩt),
Pout(t)=P¯out+ΔPout(t)=P¯p2[1+cos(Φ0)]+14[1+cos(Φ0)]×[ΔPp(t)+ΔPp(t-τ)]+12P¯p sin(Φ0)[Δϕp(t)-Δϕp(t-τ)].
P¯out=P¯p2[1+cos(Φ0)],
ΔPout(t)=14[1+cos(Φ0)][ΔPp(t)+ΔPp(t-τ)]+12P¯p sin(Φ0)[ΔΦp(t)-ΔΦp(t-τ)]=14[1+cos(Φ0)]{pp(Ω)[1+exp(jΩτ)]×exp(-jΩt)+c.c.}+12P¯p sin(Φ0){ϕp(Ω)[1-exp(jΩτ)]×exp(-jΩt)+c.c.},
pout(Ω)=14[1+cos(Φ0)]pp(Ω)[1+exp(jΩτ)]+12P¯p sin(Φ0)ϕp(Ω)[1-exp(jΩτ)].
pp(Ω)=-(G¯-1)P¯pτe/(Psatτs)-jΩτe+1pc(Ω),
ϕp(Ω)=-α2P¯ppp(Ω),
T(Ω)=pout(Ω)pc(Ω)=pp(Ω)4pc(Ω){[cos(Φ0)+1][1+exp(jΩτ)]-α sin(Φ0)[1-exp(jΩτ)]}.
TNAMZ(Ω)=T(Ω)T(0)=TNCDR(Ω)TAMZ(Ω),
TNCDR=1-jΩτe+1,
TAMZ(Ω)=12[1+exp(jΩτ)]-α sin(Φ0)1+cos(Φ0)×[1-exp(jΩτ)]=12[TAMZXGM(Ω)+TAMZXPM(Ω)].
γ=α sin(Φ0)1+cos(Φ0)=α tanΦ02,
|TNAMZ(Ω)|=|TNCDR(Ω)||TAMZ(Ω)|=|TNCDR(Ω)|1+γ2-(γ2-1)cos(Ωτ)2.
γ2forΦ0π.
γf=4τe2τ-2+12τeτ-1.
|TNAMZ(Ω=π/τ)|=γf|TNCDR(Ω=π/τ)|=γf1+(πτe/τ)22π=-1.96dB,
Ω2 dBπ23γfΩ3 dBCDR0.9γfΩ3 dBCDR.
HAMZ(ω)=Eout(ω)Ep(ω)=12{1+exp[j(ωτ+Φ0)]},
|HAMZ(ω)|2=12[1+cos(ωτ+Φ0)],
Ep(t)=P¯p+[pp(Ω)exp(-jΩt)+c.c.] exp[j({Φ¯p+[ϕp(Ω)exp(-jΩt)+c.c.]})].
Ep(t)=P¯p exp(jΦ¯p)1+jϕp*(Ω)+pp*(Ω)2P¯pexp(jΩt)+jϕp(Ω)+pp(Ω)2P¯pexp(-jΩt).
Ep(ω)=Ep,0δ(ω)+Ep,-1δ(ω+Ω)+Ep,1δ(ω-Ω),
Ep,0Ep,-1Ep,+1=P¯p exp(jΦ¯p)11-jα2P¯ppp*(Ω)1-jα2P¯ppp(Ω).
Eout(ω)=HAMZ(ω)Ep(ω)=E0δ(ω)+E-1δ(ω+Ω)+E1δ(ω-Ω),
E0E-1E+1=12 Ep,0[1+exp(jΦ0)]Ep,-1{1+exp[j(-Ωτ+Φ0)]}Ep,+1{1+exp[j(Ωτ+Φ0)]}.
Eout(t)=E0+E-1 exp(jΩt)+E+1 exp(-jΩt).
pout(Ω)=E0E-1*+E+1E0*,
Eout(ω)=Hopt(ω)Ep(ω),
TNH(Ω)=pout(Ω)pout(0)=P¯ppp(0) E-1*E0*+E+1E0=TNCDR(Ω)TH(Ω),
TH(Ω)=12 (1+jα) H*(-Ω)H*(0)+(1-jα) H(Ω)H(0).
|TH(Ω)|=|THopt(Ω)|=|TNCDR(Ω)|-1=1+Ω2τe2
TH(Ω)=12|H(0)| ((1+jα)|H(-Ω)|×exp{-j[ψ(-Ω)-ψ(0)]}+(1-jα)|H(Ω)|exp{j[ψ(Ω)-ψ(0)]}),
(destructive)ψ(Ω)+ψ(-Ω)-2ψ(0)=0,
(constructive)ψ(+Ω)+ψ(-Ω)-2ψ(0)=±π.
TH(Ω)=exp{-j[ψ(-Ω)-ψ(0)]}2|H(0)|{|H(-Ω)|±|H(Ω)|+jα[|H(-Ω)||H(Ω)|]},
|TAMZDEST(Ω)|α21+cos(Φ0)[1+cos(-Ωτ+Φ0)-1+cos(Ωτ+Φ0)],
Ω3dBDEST2ΩmaxDEST=2 π-Φ0τ=2 π-2 arctan(γf/α)τ.
ΩmaxDEST<1/ττeατ>12 tanπ-120.92.
Ω3 dBDEST2α/τe=2α3Ω3 dBCDR,τ0,
HL(ω)=ΔωΔω+2j(ω-ωm),
|H(ω)|Kω+|H(0)|,
ψ(ω)Kψω+ψ(0).
|TH(Ω)|12 2 exp(jKψω)1-jα KΩ|H(0)|=1+α2K2Ω2|H(0)|2,
K=±τe|H(0)|α,
d log|H(ω)|dωω=0=Kln(10)|H(0)|=±τeln(10)α,
ω=|HLIN(0)|/|K|,
ω=[1-|HLIN(0)|]/|K|.
TLIN(Ω)=exp(jKψΩ)[1-jαKΩ/|HLIN(0)|].
Ωmin(ω, ω)=ατe|HLIN(0)| 12-HLIN(0)-12.
|TNLIN(Ω3dBLIN)|=|TNCDR(Ω3dBLIN)||TLIN(Ω3dBLIN)|=12Ω3dBLIN=1τe 4α2+32ατe=2α3Ω3dBCDR1.15αΩ3dBCDR.

Metrics