Abstract

A Ti:sapphire-pumped idler-resonant femtosecond tandem optical parametric oscillator is reported that is based on periodically poled lithium niobate and operates with wavelength tuning from 2.1 to 4.2 µm (idlers) and 1.25 to 1.40 µm (signal). The configuration uses two cascaded gratings arranged so that the nonresonant signal from the first grating acts as a pump for the second grating. Novel phase-matching behavior is described and explained, including full tandem operation, degenerate parametric downconversion of the signal pulses, and simultaneous tandem operation with seeded optical parametric amplification. Signal spectra show characteristic depletion profiles, implying substantial conversion from the signal to the tandem idler output.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Dearborn, K. Koch, G. T. Moore, and J. C. Diels, “Greater than 100% photon-conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing,” Opt. Lett. 23, 759–761 (1998).
    [CrossRef]
  2. K. J. McEwan and J. A. C. Terry, “A tandem periodically-poled lithium niobate (PPLN) optical parametric oscillator (OPO),” Opt. Commun. 182, 423–432 (2000).
    [CrossRef]
  3. K. Koch, G. T. Moore, and E. C. Cheung, “Optical parametric oscillation with intracavity difference-frequency mixing,” J. Opt. Soc. Am. B 12, 2268–2273 (1995).
    [CrossRef]
  4. L. Becouarn, E. Lallier, D. Delacourt, and M. Papuchon, “Architecture for high-conversion-efficiency optical parametric oscillators,” J. Opt. Soc. Am. B 16, 1712–1718 (1999).
    [CrossRef]
  5. D. Artigas and D. T. Reid, “High idler conversion in femtosecond optical parametric oscillators,” Opt. Commun. 210, 113–120 (2002).
    [CrossRef]
  6. G. T. Moore and K. Koch, “Optical parametric oscillation with intracavity sum-frequency generation,” IEEE J. Quantum Electron. 29, 961–969 (1993).
    [CrossRef]
  7. E. C. Cheung, K. Koch, and G. T. Moore, “Frequency up-conversion by phase-matched sum-frequency generation in an optical parametric oscillator,” Opt. Lett. 19, 1967–1969 (1994).
    [CrossRef] [PubMed]
  8. W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23, 207–209 (1998).
    [CrossRef]
  9. K. J. McEwan, “Synchronously pumped tandem OPO and OPO/DFM devices based on a single PPLN crystal,” in Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications II, K. L. Schepler, D. D. Lowenthal, and J. W. Pierce, eds., Proc. SPIE 4972, 1–12 (2003).
    [CrossRef]
  10. G. T. Moore and K. Koch, “The tandem optical parametric oscillator,” IEEE J. Quantum Electron. 32, 2085–2094 (1996).
    [CrossRef]
  11. M. Vaidyanathan, R. C. Eckardt, V. Dominic, L. E. Myers, and T. P. Grayson, “Cascaded optical parametric oscillations,” Opt. Express 1 (2), 49–53 (1997).
    [CrossRef] [PubMed]
  12. G. T. Moore, K. Koch, M. E. Dearborn, and M. Vaidyanathan, “A simultaneously phase-matched tandem optical parametric oscillator,” IEEE J. Quantum Electron. 34, 803–810 (1998).
    [CrossRef]

2003 (1)

K. J. McEwan, “Synchronously pumped tandem OPO and OPO/DFM devices based on a single PPLN crystal,” in Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications II, K. L. Schepler, D. D. Lowenthal, and J. W. Pierce, eds., Proc. SPIE 4972, 1–12 (2003).
[CrossRef]

2002 (1)

D. Artigas and D. T. Reid, “High idler conversion in femtosecond optical parametric oscillators,” Opt. Commun. 210, 113–120 (2002).
[CrossRef]

2000 (1)

K. J. McEwan and J. A. C. Terry, “A tandem periodically-poled lithium niobate (PPLN) optical parametric oscillator (OPO),” Opt. Commun. 182, 423–432 (2000).
[CrossRef]

1999 (1)

1998 (3)

1997 (1)

1996 (1)

G. T. Moore and K. Koch, “The tandem optical parametric oscillator,” IEEE J. Quantum Electron. 32, 2085–2094 (1996).
[CrossRef]

1995 (1)

1994 (1)

1993 (1)

G. T. Moore and K. Koch, “Optical parametric oscillation with intracavity sum-frequency generation,” IEEE J. Quantum Electron. 29, 961–969 (1993).
[CrossRef]

Alexander, J. I.

Artigas, D.

D. Artigas and D. T. Reid, “High idler conversion in femtosecond optical parametric oscillators,” Opt. Commun. 210, 113–120 (2002).
[CrossRef]

Becouarn, L.

Bosenberg, W. R.

Cheung, E. C.

Dearborn, M. E.

M. E. Dearborn, K. Koch, G. T. Moore, and J. C. Diels, “Greater than 100% photon-conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing,” Opt. Lett. 23, 759–761 (1998).
[CrossRef]

G. T. Moore, K. Koch, M. E. Dearborn, and M. Vaidyanathan, “A simultaneously phase-matched tandem optical parametric oscillator,” IEEE J. Quantum Electron. 34, 803–810 (1998).
[CrossRef]

Delacourt, D.

Diels, J. C.

Dominic, V.

Eckardt, R. C.

Grayson, T. P.

Koch, K.

G. T. Moore, K. Koch, M. E. Dearborn, and M. Vaidyanathan, “A simultaneously phase-matched tandem optical parametric oscillator,” IEEE J. Quantum Electron. 34, 803–810 (1998).
[CrossRef]

M. E. Dearborn, K. Koch, G. T. Moore, and J. C. Diels, “Greater than 100% photon-conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing,” Opt. Lett. 23, 759–761 (1998).
[CrossRef]

G. T. Moore and K. Koch, “The tandem optical parametric oscillator,” IEEE J. Quantum Electron. 32, 2085–2094 (1996).
[CrossRef]

K. Koch, G. T. Moore, and E. C. Cheung, “Optical parametric oscillation with intracavity difference-frequency mixing,” J. Opt. Soc. Am. B 12, 2268–2273 (1995).
[CrossRef]

E. C. Cheung, K. Koch, and G. T. Moore, “Frequency up-conversion by phase-matched sum-frequency generation in an optical parametric oscillator,” Opt. Lett. 19, 1967–1969 (1994).
[CrossRef] [PubMed]

G. T. Moore and K. Koch, “Optical parametric oscillation with intracavity sum-frequency generation,” IEEE J. Quantum Electron. 29, 961–969 (1993).
[CrossRef]

Lallier, E.

McEwan, K. J.

K. J. McEwan, “Synchronously pumped tandem OPO and OPO/DFM devices based on a single PPLN crystal,” in Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications II, K. L. Schepler, D. D. Lowenthal, and J. W. Pierce, eds., Proc. SPIE 4972, 1–12 (2003).
[CrossRef]

K. J. McEwan and J. A. C. Terry, “A tandem periodically-poled lithium niobate (PPLN) optical parametric oscillator (OPO),” Opt. Commun. 182, 423–432 (2000).
[CrossRef]

Moore, G. T.

M. E. Dearborn, K. Koch, G. T. Moore, and J. C. Diels, “Greater than 100% photon-conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing,” Opt. Lett. 23, 759–761 (1998).
[CrossRef]

G. T. Moore, K. Koch, M. E. Dearborn, and M. Vaidyanathan, “A simultaneously phase-matched tandem optical parametric oscillator,” IEEE J. Quantum Electron. 34, 803–810 (1998).
[CrossRef]

G. T. Moore and K. Koch, “The tandem optical parametric oscillator,” IEEE J. Quantum Electron. 32, 2085–2094 (1996).
[CrossRef]

K. Koch, G. T. Moore, and E. C. Cheung, “Optical parametric oscillation with intracavity difference-frequency mixing,” J. Opt. Soc. Am. B 12, 2268–2273 (1995).
[CrossRef]

E. C. Cheung, K. Koch, and G. T. Moore, “Frequency up-conversion by phase-matched sum-frequency generation in an optical parametric oscillator,” Opt. Lett. 19, 1967–1969 (1994).
[CrossRef] [PubMed]

G. T. Moore and K. Koch, “Optical parametric oscillation with intracavity sum-frequency generation,” IEEE J. Quantum Electron. 29, 961–969 (1993).
[CrossRef]

Myers, L. E.

Papuchon, M.

Reid, D. T.

D. Artigas and D. T. Reid, “High idler conversion in femtosecond optical parametric oscillators,” Opt. Commun. 210, 113–120 (2002).
[CrossRef]

Terry, J. A. C.

K. J. McEwan and J. A. C. Terry, “A tandem periodically-poled lithium niobate (PPLN) optical parametric oscillator (OPO),” Opt. Commun. 182, 423–432 (2000).
[CrossRef]

Vaidyanathan, M.

G. T. Moore, K. Koch, M. E. Dearborn, and M. Vaidyanathan, “A simultaneously phase-matched tandem optical parametric oscillator,” IEEE J. Quantum Electron. 34, 803–810 (1998).
[CrossRef]

M. Vaidyanathan, R. C. Eckardt, V. Dominic, L. E. Myers, and T. P. Grayson, “Cascaded optical parametric oscillations,” Opt. Express 1 (2), 49–53 (1997).
[CrossRef] [PubMed]

Wallace, R. W.

IEEE J. Quantum Electron. (3)

G. T. Moore and K. Koch, “Optical parametric oscillation with intracavity sum-frequency generation,” IEEE J. Quantum Electron. 29, 961–969 (1993).
[CrossRef]

G. T. Moore and K. Koch, “The tandem optical parametric oscillator,” IEEE J. Quantum Electron. 32, 2085–2094 (1996).
[CrossRef]

G. T. Moore, K. Koch, M. E. Dearborn, and M. Vaidyanathan, “A simultaneously phase-matched tandem optical parametric oscillator,” IEEE J. Quantum Electron. 34, 803–810 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

D. Artigas and D. T. Reid, “High idler conversion in femtosecond optical parametric oscillators,” Opt. Commun. 210, 113–120 (2002).
[CrossRef]

K. J. McEwan and J. A. C. Terry, “A tandem periodically-poled lithium niobate (PPLN) optical parametric oscillator (OPO),” Opt. Commun. 182, 423–432 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (1)

K. J. McEwan, “Synchronously pumped tandem OPO and OPO/DFM devices based on a single PPLN crystal,” in Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications II, K. L. Schepler, D. D. Lowenthal, and J. W. Pierce, eds., Proc. SPIE 4972, 1–12 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic representations of idler-resonant OPO systems where each resonator is highly reflective (HR) at the idler wavelength: (a) One-stage process using a single crystal. (b) Two-stage cascaded conversion process with two cavities arranged in tandem. The signal output from the first cavity is the pump for the second cavity. (c) Alternative two-stage conversion process using an intracavity tandem configuration. A single cavity contains two crystals, each with a different grating, with the signal output from the first crystal pumping the second crystal.

Fig. 2
Fig. 2

Contour plot showing the theoretical efficiency of the tandem conversion process as a function of the lengths of the two gratings. The contour lines represent lines of equal conversion efficiency (defined as the ratio of output idler power to input pump power), and the peak represents the ratio of grating lengths giving the best conversion efficiency. The dashed line corresponds to the optimal combination of grating lengths for pump pulse durations higher than 100 fs according to the length ratio grating 2/grating 1=1.6.

Fig. 3
Fig. 3

Cavity design used in the tandem OPO illustrating the three-mirror V-cavity configuration used with the pump laser characteristics and the details of the seven double grating periods.

Fig. 4
Fig. 4

Quasi-phase-matching efficiency plots for four representative gratings showing how the conversion efficiency varies with wavelength and including the experimental data recorded. The gray-scale plots represent the efficiency of the conversion process based on the phase-matching function, sinc2(Δkl/2), where Δk=ks-ki-ki2 and the pump wavelength, λp, is fixed at 845 nm. Darker shading represents higher efficiency, with the black indicating maximum efficiency. The horizontal dashed lines indicate the reflectivity bandwidth of the cavity mirrors (2.1 µm–2.5 µm), and the solid curves represent the expected wavelength tuning predicted by applying conservation of photon energy to the waves interacting in the primary grating and secondary gratings. (a) Tuning data near degeneracy for Λ1=23.09 µm and Λ2=34.68 µm, and (b) tandem operation and simultaneous parametric down-conversion of the signal for Λ1=23.02 µm and Λ2=34.83 µm; (c) tuning data for Λ1=22.85 µm and Λ2=34.13 µm and (d) for Λ1=22.77 µm and Λ2=32.78 µm.

Fig. 5
Fig. 5

Normalized selected idler and idler(2) spectra indicating, first, nontandem operation (solid black curve) and progressing through the onset of tandem operation (solid gray curve and dotted black curve) into the approach to degenerate operation (dotted gray curve), where the two idler wavelengths are the same.

Fig. 6
Fig. 6

Logarithmic spectral intensity plot of idler and idler(2) outputs indicating low-efficiency, single-pass, optical parametric amplification seeded by the wings of the idler pulses and attributed to the high intracavity powers of the idler pulses.

Fig. 7
Fig. 7

Tuning data for the reverse crystal orientation for selected gratings. The dashed lines represent the reflectivity bandwidths of the mirrors (2.1 µm–2.5 µm), and the solid curves represent the idler and idler(2) tuning expected from applying the conversation of photon energy. (a) Tuning data for grating G (Λ1=23.09 µm), indicating low-power tandem operation; (b) data from grating F (Λ1=23.02 µm), also indicating low-power tandem operation; (c) data from grating D (Λ1=22.85 µm); (d) data from grating C (Λ1=22.77 µm).

Fig. 8
Fig. 8

Normalized idler spectrum recorded in the reverse crystal orientation indicating the difference in peak intensities between the idler output at around 2.4 µm with the idler(2) output at around 2.7 µm in the absence of phase-matched tandem operation. A comparison with Fig. 5 (black curve and symbols) shows that tandem operation is much less efficient in the reverse-crystal orientation.

Fig. 9
Fig. 9

(a) Interferometric autocorrelation and (b) intensity autocorrelation of the idler pulses with (c) a corresponding spectrum. Assuming a Gaussian intensity spectral profile, the autocorrelation measurements correspond to a pulse duration of 420 fs, and the shape of the interferometric autocorrelation indicates the presence of substantial frequency chirp in the idler pulse.

Fig. 10
Fig. 10

Spectra indicating a 78% depletion of the Ti:sapphire pump wave (λ=840 nm) when the OPO was operating in the tandem alignment and producing an average idler output power of 68 mW.

Fig. 11
Fig. 11

Idler slope-efficiency data taken from the system in both of the two possible crystal configurations. Data taken with the crystal in the forward direction implied a slope efficiency of 11% and are shown as circles, while data taken with the crystal in the reverse direction implied a value of 6.5% and are shown as crosses.

Fig. 12
Fig. 12

(a) Signal spectrum and (b) idler spectra recorded during tandem operation. The central wavelength of the signal spectrum corresponds with the maxima of the generated idler spectra, suggesting that the signal spectrum indicates depletion due to tandem conversion.

Tables (2)

Tables Icon

Table 1 Observable Phase-Matched Processes and Their Wavelength Coverage

Tables Icon

Table 2 Wavelengths Generated by Particular Conversion Processes

Metrics