Abstract

We have used the fundamental and frequency-doubled output of a single-frequency tunable laser locked to a precisely known transition in molecular iodine to provide calibration of a Fourier-transform spectrometer (FTS) in the visible and near-ultraviolet regions and to investigate the limiting uncertainty involved in calibrating spectra by using a single multiplicative correction to the entire optical frequency scale. An integrating sphere was used to introduce the laser light as a pseudoincoherent source and provide uniform illumination of the FTS field of view. The sphere also served to combine the laser beams with light from a series of mercury electrodeless discharge lamps containing argon carrier gas at selected pressures. Four strong lines in the spectrum of  198Hg were measured with these lamps to obtain precise wavelengths and argon-pressure-shift coefficients. These lines, emitted from lamps with argon pressures in the range 33 Pa (0.25 Torr) to 1330 Pa (10 Torr), are suitable for future calibration of FT spectra without need for the laser source. The limiting relative uncertainty component in the reported wavelengths is 6.19×10-9, as estimated from observed deviation of the frequency ratios of the calibration lasers from the exact value of 2. The adequacy of a single multiplicative correction factor for the absolute calibration of an individual FT spectrum is supported by our data, at the level of better than a part in 108.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Horlick and W. K. Yuen, “Atomic spectrochemical measurements with a Fourier transform spectrometer,” Anal. Chem. 47, 775A–781A (1975).
    [CrossRef]
  2. P. Luc and S. Gerstenkorn, “Fourier transform spectroscopy in the visible and ultraviolet range,” Appl. Opt. 17, 1327–1331 (1978).
    [CrossRef] [PubMed]
  3. J. W. Brault, “Fourier transform spectrometry in relation to other passive spectrometers,” Philos. Trans. R. Soc. London, Ser. A 307, 503–511 (1982).
    [CrossRef]
  4. L. M. Faires, “Fourier transforms for analytical atomic spectroscopy,” Anal. Chem. 58, 1023A–1034A (1986).
    [CrossRef]
  5. A. Thorne, “High-resolution Fourier transform atomic spectrometry,” J. Anal. At. Spectrom. 2, 227–232 (1987).
    [CrossRef]
  6. A. P. Thorne, “Fourier transform spectrometry in the ultraviolet,” Anal. Chem. 63, 57A–65A (1991).
    [CrossRef]
  7. R. C. M. Learner and A. P. Thorne, “Wavelength calibration of Fourier-transform emission spectra with applications to Fe I,” J. Opt. Soc. Am. B 5, 2045–2059 (1988).
    [CrossRef]
  8. A. P. Thorne and R. C. M. Learner, “High resolution FTS of atoms and molecules in the ultra-violet,” Mikrochim. Acta II, 445–448 (1988).
    [CrossRef]
  9. M. L. Salit, J. C. Travis, and M. R. Winchester, “Practical wavelength calibration considerations for UV-visible Fourier-transform spectroscopy,” Appl. Opt. 35, 2960–2970 (1996).
    [CrossRef] [PubMed]
  10. V. Kaufman, “Wavelengths, energy levels, and pressure shifts in mercury 198,” J. Opt. Soc. Am. 52, 866–870 (1962).
    [CrossRef]
  11. C. J. Sansonetti, “Precise measurements of hyperfine components in the spectrum of molecular iodine,” J. Opt. Soc. Am. B 14, 1913–1920 (1997).
    [CrossRef]
  12. F. C. Fehsenfeld, K. M. Evenson, and H. P. Broida, “Microwave discharge cavities operating at 2450 MHz,” Rev. Sci. Instrum. 36, 294–298 (1963).
    [CrossRef]
  13. To describe experimental procedures adequately, it is occasionally necessary to identify commercial products by manufacturer. In no instance does such identification imply endorsement by the National Institute of Standards and Technology, nor does it imply that the particular products or equipment are necessarily the best available for the purpose.
  14. A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Learner, and G. Cox, “A Fourier transform spectrometer for the ultraviolet: design and performance,” J. Phys. E 20, 54–60 (1987).
    [CrossRef]
  15. P. Saarinen and J. Kauppinen, “Spectral line-shape distortions in Michelson interferometers due to off-focus radiation source,” Appl. Opt. 31, 2353–2359 (1992).
    [CrossRef] [PubMed]
  16. J. Kauppinen and P. Saarinen, “Line-shape distortions in misaligned cube corner interferometers,” Appl. Opt. 31, 69–74 (1992).
    [CrossRef] [PubMed]
  17. J. W. Brault and M. C. Abrams, “DECOMP: a Fourier transform spectra decomposition program,” High Resolution Fourier Transform Spectroscopy, Vol. 6 of 1989 Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 118–121.
  18. R. C. M. Learner, A. P. Thorne, I. Wynne-Jones, J. W. Brault, and M. C. Abrams, “Phase correction of emission line Fourier transform spectra,” J. Opt. Soc. Am. A 12, 2165–2171 (1995).
    [CrossRef]
  19. J. Genest and P. Tremblay, “Instrument line shape of Fourier transform spectrometers: analytic solutions for nonuniformly illuminated off-axis detectors,” Appl. Opt. 38, 5438–5446 (1999).
    [CrossRef]

1999 (1)

1997 (1)

1996 (1)

1995 (1)

1992 (2)

1991 (1)

A. P. Thorne, “Fourier transform spectrometry in the ultraviolet,” Anal. Chem. 63, 57A–65A (1991).
[CrossRef]

1988 (2)

R. C. M. Learner and A. P. Thorne, “Wavelength calibration of Fourier-transform emission spectra with applications to Fe I,” J. Opt. Soc. Am. B 5, 2045–2059 (1988).
[CrossRef]

A. P. Thorne and R. C. M. Learner, “High resolution FTS of atoms and molecules in the ultra-violet,” Mikrochim. Acta II, 445–448 (1988).
[CrossRef]

1987 (2)

A. Thorne, “High-resolution Fourier transform atomic spectrometry,” J. Anal. At. Spectrom. 2, 227–232 (1987).
[CrossRef]

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Learner, and G. Cox, “A Fourier transform spectrometer for the ultraviolet: design and performance,” J. Phys. E 20, 54–60 (1987).
[CrossRef]

1986 (1)

L. M. Faires, “Fourier transforms for analytical atomic spectroscopy,” Anal. Chem. 58, 1023A–1034A (1986).
[CrossRef]

1982 (1)

J. W. Brault, “Fourier transform spectrometry in relation to other passive spectrometers,” Philos. Trans. R. Soc. London, Ser. A 307, 503–511 (1982).
[CrossRef]

1978 (1)

1975 (1)

G. Horlick and W. K. Yuen, “Atomic spectrochemical measurements with a Fourier transform spectrometer,” Anal. Chem. 47, 775A–781A (1975).
[CrossRef]

1963 (1)

F. C. Fehsenfeld, K. M. Evenson, and H. P. Broida, “Microwave discharge cavities operating at 2450 MHz,” Rev. Sci. Instrum. 36, 294–298 (1963).
[CrossRef]

1962 (1)

Abrams, M. C.

Brault, J. W.

R. C. M. Learner, A. P. Thorne, I. Wynne-Jones, J. W. Brault, and M. C. Abrams, “Phase correction of emission line Fourier transform spectra,” J. Opt. Soc. Am. A 12, 2165–2171 (1995).
[CrossRef]

J. W. Brault, “Fourier transform spectrometry in relation to other passive spectrometers,” Philos. Trans. R. Soc. London, Ser. A 307, 503–511 (1982).
[CrossRef]

Broida, H. P.

F. C. Fehsenfeld, K. M. Evenson, and H. P. Broida, “Microwave discharge cavities operating at 2450 MHz,” Rev. Sci. Instrum. 36, 294–298 (1963).
[CrossRef]

Cox, G.

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Learner, and G. Cox, “A Fourier transform spectrometer for the ultraviolet: design and performance,” J. Phys. E 20, 54–60 (1987).
[CrossRef]

Evenson, K. M.

F. C. Fehsenfeld, K. M. Evenson, and H. P. Broida, “Microwave discharge cavities operating at 2450 MHz,” Rev. Sci. Instrum. 36, 294–298 (1963).
[CrossRef]

Faires, L. M.

L. M. Faires, “Fourier transforms for analytical atomic spectroscopy,” Anal. Chem. 58, 1023A–1034A (1986).
[CrossRef]

Fehsenfeld, F. C.

F. C. Fehsenfeld, K. M. Evenson, and H. P. Broida, “Microwave discharge cavities operating at 2450 MHz,” Rev. Sci. Instrum. 36, 294–298 (1963).
[CrossRef]

Genest, J.

Gerstenkorn, S.

Harris, C. J.

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Learner, and G. Cox, “A Fourier transform spectrometer for the ultraviolet: design and performance,” J. Phys. E 20, 54–60 (1987).
[CrossRef]

Horlick, G.

G. Horlick and W. K. Yuen, “Atomic spectrochemical measurements with a Fourier transform spectrometer,” Anal. Chem. 47, 775A–781A (1975).
[CrossRef]

Kaufman, V.

Kauppinen, J.

Learner, R. C. M.

R. C. M. Learner, A. P. Thorne, I. Wynne-Jones, J. W. Brault, and M. C. Abrams, “Phase correction of emission line Fourier transform spectra,” J. Opt. Soc. Am. A 12, 2165–2171 (1995).
[CrossRef]

A. P. Thorne and R. C. M. Learner, “High resolution FTS of atoms and molecules in the ultra-violet,” Mikrochim. Acta II, 445–448 (1988).
[CrossRef]

R. C. M. Learner and A. P. Thorne, “Wavelength calibration of Fourier-transform emission spectra with applications to Fe I,” J. Opt. Soc. Am. B 5, 2045–2059 (1988).
[CrossRef]

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Learner, and G. Cox, “A Fourier transform spectrometer for the ultraviolet: design and performance,” J. Phys. E 20, 54–60 (1987).
[CrossRef]

Luc, P.

Saarinen, P.

Salit, M. L.

Sansonetti, C. J.

Thorne, A.

A. Thorne, “High-resolution Fourier transform atomic spectrometry,” J. Anal. At. Spectrom. 2, 227–232 (1987).
[CrossRef]

Thorne, A. P.

R. C. M. Learner, A. P. Thorne, I. Wynne-Jones, J. W. Brault, and M. C. Abrams, “Phase correction of emission line Fourier transform spectra,” J. Opt. Soc. Am. A 12, 2165–2171 (1995).
[CrossRef]

A. P. Thorne, “Fourier transform spectrometry in the ultraviolet,” Anal. Chem. 63, 57A–65A (1991).
[CrossRef]

R. C. M. Learner and A. P. Thorne, “Wavelength calibration of Fourier-transform emission spectra with applications to Fe I,” J. Opt. Soc. Am. B 5, 2045–2059 (1988).
[CrossRef]

A. P. Thorne and R. C. M. Learner, “High resolution FTS of atoms and molecules in the ultra-violet,” Mikrochim. Acta II, 445–448 (1988).
[CrossRef]

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Learner, and G. Cox, “A Fourier transform spectrometer for the ultraviolet: design and performance,” J. Phys. E 20, 54–60 (1987).
[CrossRef]

Travis, J. C.

Tremblay, P.

Winchester, M. R.

Wynne-Jones, I.

R. C. M. Learner, A. P. Thorne, I. Wynne-Jones, J. W. Brault, and M. C. Abrams, “Phase correction of emission line Fourier transform spectra,” J. Opt. Soc. Am. A 12, 2165–2171 (1995).
[CrossRef]

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Learner, and G. Cox, “A Fourier transform spectrometer for the ultraviolet: design and performance,” J. Phys. E 20, 54–60 (1987).
[CrossRef]

Yuen, W. K.

G. Horlick and W. K. Yuen, “Atomic spectrochemical measurements with a Fourier transform spectrometer,” Anal. Chem. 47, 775A–781A (1975).
[CrossRef]

Anal. Chem. (3)

G. Horlick and W. K. Yuen, “Atomic spectrochemical measurements with a Fourier transform spectrometer,” Anal. Chem. 47, 775A–781A (1975).
[CrossRef]

L. M. Faires, “Fourier transforms for analytical atomic spectroscopy,” Anal. Chem. 58, 1023A–1034A (1986).
[CrossRef]

A. P. Thorne, “Fourier transform spectrometry in the ultraviolet,” Anal. Chem. 63, 57A–65A (1991).
[CrossRef]

Appl. Opt. (5)

J. Anal. At. Spectrom. (1)

A. Thorne, “High-resolution Fourier transform atomic spectrometry,” J. Anal. At. Spectrom. 2, 227–232 (1987).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Phys. E (1)

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Learner, and G. Cox, “A Fourier transform spectrometer for the ultraviolet: design and performance,” J. Phys. E 20, 54–60 (1987).
[CrossRef]

Mikrochim. Acta (1)

A. P. Thorne and R. C. M. Learner, “High resolution FTS of atoms and molecules in the ultra-violet,” Mikrochim. Acta II, 445–448 (1988).
[CrossRef]

Philos. Trans. R. Soc. London, Ser. A (1)

J. W. Brault, “Fourier transform spectrometry in relation to other passive spectrometers,” Philos. Trans. R. Soc. London, Ser. A 307, 503–511 (1982).
[CrossRef]

Rev. Sci. Instrum. (1)

F. C. Fehsenfeld, K. M. Evenson, and H. P. Broida, “Microwave discharge cavities operating at 2450 MHz,” Rev. Sci. Instrum. 36, 294–298 (1963).
[CrossRef]

Other (2)

To describe experimental procedures adequately, it is occasionally necessary to identify commercial products by manufacturer. In no instance does such identification imply endorsement by the National Institute of Standards and Technology, nor does it imply that the particular products or equipment are necessarily the best available for the purpose.

J. W. Brault and M. C. Abrams, “DECOMP: a Fourier transform spectra decomposition program,” High Resolution Fourier Transform Spectroscopy, Vol. 6 of 1989 Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 118–121.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic representation of the experimental configuration.

Fig. 2
Fig. 2

Graphical summary of a single spectrum for a  198Hg electrodeless-discharge lamp. The solid circles represent the transform of the experimental interferogram zero filled to 222 data points. The solid curve through these points is the fitted profile. The residuals to the fit are shown vertically displaced and magnified by a factor of 10. The fit and the residuals are calculated from a fourfold Fourier interpolated spectral segment, as described in the text.

Fig. 3
Fig. 3

Distribution of the observed deviation of the ratio of the UV to visible laser frequencies from the expected value of 2.0. (a) Frequency-distribution histogram for all 107 specta. (b) Distribution of deviations by run order. The mean relative deviation of 6.16×10-9 is taken to be the limiting relative accuracy of this method of measuring wavelengths.

Fig. 4
Fig. 4

Ar-pressure dependence of  198Hg wave numbers observed in our measurements. Error bars are one standard deviation.

Fig. 5
Fig. 5

Comparison of our results with the  198Hg wave numbers reported by Kaufman.10 The data are presented as deviations from this work with uncertainties shown at a 95% confidence interval. Uncertainties for this work are represented as gray bars centered about zero.

Fig. 6
Fig. 6

Values of the correction factor keff calculated for spectra acquired using the same  198Hg lamp observed in Ref. 9. Open circles represent keff based on the 400-Pa results of Kaufman,10 solid circles represent keff based on the 400-Pa results of this work, and filled triangles represent keff based on  198Hg wave numbers calculated using the pressure-shift results of this work for an assumed Ar pressure of 670 Pa. Open triangles represent keff calculated from the red and UV calibration lasers. In this figure, the error bars represent random variation at the one standard deviation level. The horizontal line represents the average of the two laser values, which is regarded as the most reliable determination of the true value of keff.

Tables (3)

Tables Icon

Table 1 Measured Wave Numbers for Prominent Lines of  198Hg at Various Ar Carrier Gas Pressuresa

Tables Icon

Table 2 Ar-Pressure-Shift Rates and Zero-Pressure Wave Numbers for Prominent Lines of  198Hg a

Tables Icon

Table 3 Wave Numbers of Prominent Lines of  198Hg at Various Ar Pressures Calculated from the Pressure-Shift Results in Table 2 (σcalc) and Deviations from the Measured Values (Δ)a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σtrue=(1+keff)σapparent,
keff=(σtrue/σapparent)-1.

Metrics