Abstract

Femtosecond laser pulses that are tunable from 380 to 460 nm were directly generated from a 405-nm-pumped type I β-BaB2O4 noncollinear optical parametric amplifier (NOPA). A white-light supercontinuum from a CaF2 plate excited by 810-nm pulses was seeded into the NOPA. A theoretical analysis showed that the near-UV-to-blue radiation generated is attributable to cascaded sum-frequency generation (SFG) of the output of the NOPA and the residual fundamental beam at 810 nm. One can tune the blue–UV light by either changing the orientation of the NOPA crystal or adjusting the angle between the pump and the seeding pulse. The optical conversion efficiency from the 405-nm pump to the tunable SFG radiation is more than 5%.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For an overview of the state of the art of ultrafast spectroscopy, see, for example, T. Elsaesser, S. Mukamel, M. M. Murnane, and N. F. Scherer, eds., Ultrafast Phenomena XII, Vol. 66 of Springer Verlag Series in Chemical Physics (Springer-Verlag, Berlin, 2001).
  2. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
    [CrossRef]
  3. A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. 104, 5660–5694 (2000).
    [CrossRef]
  4. N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, C. V. Shank, and J. K. McCusker, “Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+,” Science 275, 54–57 (1997).
    [CrossRef] [PubMed]
  5. T. Elsaesser, S. Mukamel, M. Murnane, and N. F. Scherer, “Ultrafast phenomena XII,” in Proceedings of the 12th International Conference (Springer-Verlag, New York, 2000).
  6. V. Petrov, F. Seifer, O. Kittelmann, J. Ringling, and F. Noack, “Extension of the tuning range of a femtosecond Ti:sapphire laser-amplifier through cascaded 2nd-order nonlinear frequency-conversion,” J. Appl. Phys. 76, 7704–7712 (1994).
    [CrossRef]
  7. K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, and I. N. Ross, “Demonstration of high gain amplification of femtosecond ultraviolet laser pulses,” Appl. Phys. Lett. 80, 1704–1706 (2002).
    [CrossRef]
  8. K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, I. N. Ross, E. J. Divall, C. H. J. Hooker, and A. J. Langley, “Broadband amplification of ultraviolet laser pulses,” Appl. Phys. B 74, S163–S169 (2002).
    [CrossRef]
  9. K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, I. N. Ross, E. J. Divall, C. H. J. Hooker, and A. J. Langley, “Noncollinear optical parametric amplification of femtosecond UV pulses,” presented at the Conference on Lasers and Electro-optics, Munich, Germany, June 18–22, 2001.
  10. P. Tzankov, T. Fiebig, and I. Buchvarov, “Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband parametric amplification,” Appl. Phys. Lett. 82, 517–519 (2003).
    [CrossRef]
  11. P. Tzankov, I. Buchvarov, and T. Fiebig, “Broadband optical parametric amplification in the near UV–vis,” Opt. Commun. 203, 107–113 (2002).
    [CrossRef]
  12. C.-K. Lee, J.-Y. Zhang, J. Y. Huang, and C.-L. Pan, “Generation of femtosecond laser pulses tunable from 380 nm to 465 nm via cascaded nonlinear optical mixing in a noncollinear optical parametric amplifier with a type-I phase matched BBO crystal,” Opt. Express 11, 1702–1708 (2003), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  13. A. Baltuska, T. Fuji, and T. Kobayashi, “Self-referencing of the carrier-envelope slip in a 6-fs visible parametric amplifier,” Opt. Lett. 27, 1241–1243 (2002).
    [CrossRef]
  14. Y. R. Shen, Principals of Nonlinear Optics (Wiley, New York, 1984).
  15. J. Y. Zhang, A. P. Shreenath, M. Kimmel, E. Zeek, R. Trebino, and S. Link, “Measurement of the intensity and phase of attojoule femtosecond light pulses using optical-parametric-amplification cross-correlation frequency-resolved optical gating,” Opt. Express 11, 601–609 (2003), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  16. J.-Y. Zhang, C.-K. Lee, J.-Y. J. Huang, and C.-L. Pan, “Sub femto-joule sensitive single-shot OPA-XFROG and its application in study of white-light supercontinuum generation,” Opt. Express 12, 574–581 (2004).
    [CrossRef] [PubMed]

2004 (1)

2003 (3)

2002 (4)

P. Tzankov, I. Buchvarov, and T. Fiebig, “Broadband optical parametric amplification in the near UV–vis,” Opt. Commun. 203, 107–113 (2002).
[CrossRef]

A. Baltuska, T. Fuji, and T. Kobayashi, “Self-referencing of the carrier-envelope slip in a 6-fs visible parametric amplifier,” Opt. Lett. 27, 1241–1243 (2002).
[CrossRef]

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, and I. N. Ross, “Demonstration of high gain amplification of femtosecond ultraviolet laser pulses,” Appl. Phys. Lett. 80, 1704–1706 (2002).
[CrossRef]

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, I. N. Ross, E. J. Divall, C. H. J. Hooker, and A. J. Langley, “Broadband amplification of ultraviolet laser pulses,” Appl. Phys. B 74, S163–S169 (2002).
[CrossRef]

2000 (2)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[CrossRef]

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. 104, 5660–5694 (2000).
[CrossRef]

1997 (1)

N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, C. V. Shank, and J. K. McCusker, “Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+,” Science 275, 54–57 (1997).
[CrossRef] [PubMed]

1994 (1)

V. Petrov, F. Seifer, O. Kittelmann, J. Ringling, and F. Noack, “Extension of the tuning range of a femtosecond Ti:sapphire laser-amplifier through cascaded 2nd-order nonlinear frequency-conversion,” J. Appl. Phys. 76, 7704–7712 (1994).
[CrossRef]

Baltuska, A.

Boussie, T. R.

N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, C. V. Shank, and J. K. McCusker, “Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+,” Science 275, 54–57 (1997).
[CrossRef] [PubMed]

Brabec, T.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[CrossRef]

Buchvarov, I.

P. Tzankov, T. Fiebig, and I. Buchvarov, “Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband parametric amplification,” Appl. Phys. Lett. 82, 517–519 (2003).
[CrossRef]

P. Tzankov, I. Buchvarov, and T. Fiebig, “Broadband optical parametric amplification in the near UV–vis,” Opt. Commun. 203, 107–113 (2002).
[CrossRef]

Cerullo, G.

N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, C. V. Shank, and J. K. McCusker, “Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+,” Science 275, 54–57 (1997).
[CrossRef] [PubMed]

Csatari, M.

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, I. N. Ross, E. J. Divall, C. H. J. Hooker, and A. J. Langley, “Broadband amplification of ultraviolet laser pulses,” Appl. Phys. B 74, S163–S169 (2002).
[CrossRef]

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, and I. N. Ross, “Demonstration of high gain amplification of femtosecond ultraviolet laser pulses,” Appl. Phys. Lett. 80, 1704–1706 (2002).
[CrossRef]

Damrauer, N. H.

N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, C. V. Shank, and J. K. McCusker, “Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+,” Science 275, 54–57 (1997).
[CrossRef] [PubMed]

Divall, E. J.

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, I. N. Ross, E. J. Divall, C. H. J. Hooker, and A. J. Langley, “Broadband amplification of ultraviolet laser pulses,” Appl. Phys. B 74, S163–S169 (2002).
[CrossRef]

Fiebig, T.

P. Tzankov, T. Fiebig, and I. Buchvarov, “Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband parametric amplification,” Appl. Phys. Lett. 82, 517–519 (2003).
[CrossRef]

P. Tzankov, I. Buchvarov, and T. Fiebig, “Broadband optical parametric amplification in the near UV–vis,” Opt. Commun. 203, 107–113 (2002).
[CrossRef]

Fuji, T.

Hooker, C. H. J.

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, I. N. Ross, E. J. Divall, C. H. J. Hooker, and A. J. Langley, “Broadband amplification of ultraviolet laser pulses,” Appl. Phys. B 74, S163–S169 (2002).
[CrossRef]

Huang, J. Y.

Huang, J.-Y. J.

Kimmel, M.

Kittelmann, O.

V. Petrov, F. Seifer, O. Kittelmann, J. Ringling, and F. Noack, “Extension of the tuning range of a femtosecond Ti:sapphire laser-amplifier through cascaded 2nd-order nonlinear frequency-conversion,” J. Appl. Phys. 76, 7704–7712 (1994).
[CrossRef]

Klebniczki, J.

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, I. N. Ross, E. J. Divall, C. H. J. Hooker, and A. J. Langley, “Broadband amplification of ultraviolet laser pulses,” Appl. Phys. B 74, S163–S169 (2002).
[CrossRef]

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, and I. N. Ross, “Demonstration of high gain amplification of femtosecond ultraviolet laser pulses,” Appl. Phys. Lett. 80, 1704–1706 (2002).
[CrossRef]

Kobayashi, T.

Krausz, F.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[CrossRef]

Kurdi, G.

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, I. N. Ross, E. J. Divall, C. H. J. Hooker, and A. J. Langley, “Broadband amplification of ultraviolet laser pulses,” Appl. Phys. B 74, S163–S169 (2002).
[CrossRef]

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, and I. N. Ross, “Demonstration of high gain amplification of femtosecond ultraviolet laser pulses,” Appl. Phys. Lett. 80, 1704–1706 (2002).
[CrossRef]

Langley, A. J.

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, I. N. Ross, E. J. Divall, C. H. J. Hooker, and A. J. Langley, “Broadband amplification of ultraviolet laser pulses,” Appl. Phys. B 74, S163–S169 (2002).
[CrossRef]

Lee, C.-K.

Link, S.

McCusker, J. K.

N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, C. V. Shank, and J. K. McCusker, “Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+,” Science 275, 54–57 (1997).
[CrossRef] [PubMed]

Noack, F.

V. Petrov, F. Seifer, O. Kittelmann, J. Ringling, and F. Noack, “Extension of the tuning range of a femtosecond Ti:sapphire laser-amplifier through cascaded 2nd-order nonlinear frequency-conversion,” J. Appl. Phys. 76, 7704–7712 (1994).
[CrossRef]

Osvay, K.

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, I. N. Ross, E. J. Divall, C. H. J. Hooker, and A. J. Langley, “Broadband amplification of ultraviolet laser pulses,” Appl. Phys. B 74, S163–S169 (2002).
[CrossRef]

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, and I. N. Ross, “Demonstration of high gain amplification of femtosecond ultraviolet laser pulses,” Appl. Phys. Lett. 80, 1704–1706 (2002).
[CrossRef]

Pan, C.-L.

Petrov, V.

V. Petrov, F. Seifer, O. Kittelmann, J. Ringling, and F. Noack, “Extension of the tuning range of a femtosecond Ti:sapphire laser-amplifier through cascaded 2nd-order nonlinear frequency-conversion,” J. Appl. Phys. 76, 7704–7712 (1994).
[CrossRef]

Ringling, J.

V. Petrov, F. Seifer, O. Kittelmann, J. Ringling, and F. Noack, “Extension of the tuning range of a femtosecond Ti:sapphire laser-amplifier through cascaded 2nd-order nonlinear frequency-conversion,” J. Appl. Phys. 76, 7704–7712 (1994).
[CrossRef]

Ross, I. N.

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, I. N. Ross, E. J. Divall, C. H. J. Hooker, and A. J. Langley, “Broadband amplification of ultraviolet laser pulses,” Appl. Phys. B 74, S163–S169 (2002).
[CrossRef]

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, and I. N. Ross, “Demonstration of high gain amplification of femtosecond ultraviolet laser pulses,” Appl. Phys. Lett. 80, 1704–1706 (2002).
[CrossRef]

Seifer, F.

V. Petrov, F. Seifer, O. Kittelmann, J. Ringling, and F. Noack, “Extension of the tuning range of a femtosecond Ti:sapphire laser-amplifier through cascaded 2nd-order nonlinear frequency-conversion,” J. Appl. Phys. 76, 7704–7712 (1994).
[CrossRef]

Shank, C. V.

N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, C. V. Shank, and J. K. McCusker, “Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+,” Science 275, 54–57 (1997).
[CrossRef] [PubMed]

Shreenath, A. P.

Trebino, R.

Tzankov, P.

P. Tzankov, T. Fiebig, and I. Buchvarov, “Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband parametric amplification,” Appl. Phys. Lett. 82, 517–519 (2003).
[CrossRef]

P. Tzankov, I. Buchvarov, and T. Fiebig, “Broadband optical parametric amplification in the near UV–vis,” Opt. Commun. 203, 107–113 (2002).
[CrossRef]

Yeh, A.

N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, C. V. Shank, and J. K. McCusker, “Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+,” Science 275, 54–57 (1997).
[CrossRef] [PubMed]

Zeek, E.

Zewail, A. H.

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. 104, 5660–5694 (2000).
[CrossRef]

Zhang, J. Y.

Zhang, J.-Y.

Appl. Phys. B (1)

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, I. N. Ross, E. J. Divall, C. H. J. Hooker, and A. J. Langley, “Broadband amplification of ultraviolet laser pulses,” Appl. Phys. B 74, S163–S169 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, and I. N. Ross, “Demonstration of high gain amplification of femtosecond ultraviolet laser pulses,” Appl. Phys. Lett. 80, 1704–1706 (2002).
[CrossRef]

P. Tzankov, T. Fiebig, and I. Buchvarov, “Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband parametric amplification,” Appl. Phys. Lett. 82, 517–519 (2003).
[CrossRef]

J. Appl. Phys. (1)

V. Petrov, F. Seifer, O. Kittelmann, J. Ringling, and F. Noack, “Extension of the tuning range of a femtosecond Ti:sapphire laser-amplifier through cascaded 2nd-order nonlinear frequency-conversion,” J. Appl. Phys. 76, 7704–7712 (1994).
[CrossRef]

J. Phys. Chem. (1)

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. 104, 5660–5694 (2000).
[CrossRef]

Opt. Commun. (1)

P. Tzankov, I. Buchvarov, and T. Fiebig, “Broadband optical parametric amplification in the near UV–vis,” Opt. Commun. 203, 107–113 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Rev. Mod. Phys. (1)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[CrossRef]

Science (1)

N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, C. V. Shank, and J. K. McCusker, “Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+,” Science 275, 54–57 (1997).
[CrossRef] [PubMed]

Other (4)

T. Elsaesser, S. Mukamel, M. Murnane, and N. F. Scherer, “Ultrafast phenomena XII,” in Proceedings of the 12th International Conference (Springer-Verlag, New York, 2000).

For an overview of the state of the art of ultrafast spectroscopy, see, for example, T. Elsaesser, S. Mukamel, M. M. Murnane, and N. F. Scherer, eds., Ultrafast Phenomena XII, Vol. 66 of Springer Verlag Series in Chemical Physics (Springer-Verlag, Berlin, 2001).

K. Osvay, G. Kurdi, J. Klebniczki, M. Csatari, I. N. Ross, E. J. Divall, C. H. J. Hooker, and A. J. Langley, “Noncollinear optical parametric amplification of femtosecond UV pulses,” presented at the Conference on Lasers and Electro-optics, Munich, Germany, June 18–22, 2001.

Y. R. Shen, Principals of Nonlinear Optics (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic showing the noncollinear phase-matching conditions for an optical OPA and the cascading SFG of the OPA and a residual 810-nm pump beam. (b) Beam configuration in the noncollinearly phase-matched BBO crystal.

Fig. 2
Fig. 2

Calculated GVM between the residual pump beam of WLC at 810 nm and the idler beam of a NOPA along the direction of SFG with δ=-3°.

Fig. 3
Fig. 3

Theoretical tuning curves of the cascading SFG at various seeding angles α between the OPA and the residual 810-nm laser beam in a 405-nm-pumped type I BBO NOPA.

Fig. 4
Fig. 4

Experimental setup of the NOPA and the cascading SFG employed in this study: DM-1, DM-2, dielectric mirrors; SM1–SM3, spherical mirrors. Inset, beam pattern of the NOPA output projected onto a white screen. The image was taken with a seeding angle of -8°.

Fig. 5
Fig. 5

Calculated curves of the phase-matching angle of the cascading SFG (left-hand y axis) and the SHG of a NOPA idler wave (right-hand y axis) as a function of the optical wavelength of an OPA (x axis, bottom) and of a SFG (x axis, top).

Fig. 6
Fig. 6

(a) Spectrum of the cascading SFG with various orientations of BBO at seeding angle α-14°. (b) Pulse energies of SFG output at various wavelengths with a pump energy of 120 µJ at 405 nm.

Fig. 7
Fig. 7

Theoretical tuning range and the cascading SFG wavelength with maximum gain for various values of α. Experimental data for SFG wavelengths with seeding angles of -8.4° and -14° are included for comparison.

Fig. 8
Fig. 8

Output power of the cascading SFG at 444 nm as a function of the average power of the residual 810-nm pump beam.

Fig. 9
Fig. 9

(a) Measured OPA FROG trace of the NOPA output at 571 nm. (b) Retrieved pulse profile (solid curve) and phase of the NOPA output.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ωp=ωs+ωi,
kp=ks+ki,
ωSFG=ωi+ω810,
kSFG(e)=ki(o)+k810(o),
δ=tan-1|k810(o)|sin δ|k810(o)|cos δ+|ki(o)|,
δ=θi-θs,
θ=θi-δ.
nSFG(e)=nSFG(o)nSFG(e){[nSFG(o) sin θ]2[nSFG(e) cos θ]2}1/2.
Δk=kp-ks-ki,
Δk=kSFG-k810-ki.

Metrics