Abstract

Optical selectivities have been calculated by use of the density matrix approach for ns2 1S0-nsnp 1P10-nsms (or np2) 1S0 double-resonance photoionization pathways to establish the possibility of selective ionization of rare calcium and strontium isotopes for continuous-wave laser excitation. Numerical integration of the density matrix equations for double-resonance ionization has been carried out by incorporation of the effects of Doppler broadening, velocity-dependent interaction times, time-varying Rabi frequencies, and laser bandwidths. The conditions for obtaining optimum selectivities have been evaluated. This study results in five new photoionization pathways (two for calcium and three for strontium) whose optical selectivities were found to be a few orders higher than the previously studied photoionization schemes. The effect of laser linewidth of the excitation lasers and Doppler width have also been investigated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. D. A. Wendt, C. Geppert, M. Miyabe, P. Mueller, W. Noertershaeuser, and N. Trautmann, “Ultratrace isotope determination in environmental, bio-medical and fundamental research by high resolution laser-mass spectrometry,” J. Nucl. Sci. Technol. 39, 303–307 (2002).
    [CrossRef]
  2. I. D. Moore, K. Bailey, Z.-T. Lu, P. Müller, T. P. O’Connor, and L. Young, “Towards ultrahigh sensitivity analysis of 41Ca,” Nucl. Instrum. Methods Phys. Res. B 204, 701–704 (2003).
    [CrossRef]
  3. P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of 41Ca in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487–493 (2000).
    [CrossRef]
  4. M. Eisenbud, Environmental Radioactivity (Academic, Orlando, Fla., 1987).
  5. B. A. Bushaw and W. Nörtershäuser, “Resonance ionization spectroscopy of stable strontium isotopes and 90Sr via 5s21S0→λ15s5p 1P10→λ25s5d 1D2→λ35s11f 1F3→λ4Sr+,” Spectrochim. Acta, Part B 55, 1679–1692 (2000).
    [CrossRef]
  6. B. A. Bushaw and B. D. Cannon, “Diode laser based resonance ionization mass spectrometric measurement of strontium-90,” Spectrochim. Acta, Part B 52, 1839–1854 (1997).
    [CrossRef]
  7. B. A. Bushaw, W. Nörtershäuser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
    [CrossRef]
  8. W. Nörtershäuser, B. A. Bushaw, P. Müller, and K. Wendt, “Line shapes in triple-resonance ionization spectroscopy,” Appl. Opt. 39, 5590–5600 (2000).
    [CrossRef]
  9. G. M. Raisbeck and F. Yiou, “Possible use of 41Ca for radioactive dating,” Nature 277, 42–44 (1979).
    [CrossRef]
  10. W. C. Magno, R. L. Cavasso Filho, and F. C. Cruz, “Two-photon Doppler cooling of alkaline–earth–metal and ytterbium atoms,” Phys. Rev. A 67, 043407 (2003).
    [CrossRef]
  11. P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547–L551 (1979).
    [CrossRef]
  12. H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248–1260 (1992).
    [CrossRef] [PubMed]
  13. R. L. Kurucz and B. Bell, 1995 Atomic Line Data Kurucz CD-ROM No. 23 (Smithsonian Astrophysical Observatory, Cambridge, Mass., 1995).
  14. W. H. King, Isotope Shifts in Atomic Spectra (Plenum, New York, 1984).
  15. F. Buchinger, R. Corriveau, E. B. Ramsey, D. Berdichevsky, and D. W. L. Sprung, “Influence of the N=50 shell closure on mean square charge radii of strontium,” Phys. Rev. C 32, 2058–2066 (1985).
    [CrossRef]
  16. A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in Ca I and Sr I,” J. Phys. B 24, 4077–4099 (1991).
    [CrossRef]
  17. C.-J. Lorenzen, K. Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051–2058 (1983).
    [CrossRef]

2003 (2)

I. D. Moore, K. Bailey, Z.-T. Lu, P. Müller, T. P. O’Connor, and L. Young, “Towards ultrahigh sensitivity analysis of 41Ca,” Nucl. Instrum. Methods Phys. Res. B 204, 701–704 (2003).
[CrossRef]

W. C. Magno, R. L. Cavasso Filho, and F. C. Cruz, “Two-photon Doppler cooling of alkaline–earth–metal and ytterbium atoms,” Phys. Rev. A 67, 043407 (2003).
[CrossRef]

2002 (1)

K. D. A. Wendt, C. Geppert, M. Miyabe, P. Mueller, W. Noertershaeuser, and N. Trautmann, “Ultratrace isotope determination in environmental, bio-medical and fundamental research by high resolution laser-mass spectrometry,” J. Nucl. Sci. Technol. 39, 303–307 (2002).
[CrossRef]

2000 (3)

W. Nörtershäuser, B. A. Bushaw, P. Müller, and K. Wendt, “Line shapes in triple-resonance ionization spectroscopy,” Appl. Opt. 39, 5590–5600 (2000).
[CrossRef]

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of 41Ca in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487–493 (2000).
[CrossRef]

B. A. Bushaw and W. Nörtershäuser, “Resonance ionization spectroscopy of stable strontium isotopes and 90Sr via 5s21S0→λ15s5p 1P10→λ25s5d 1D2→λ35s11f 1F3→λ4Sr+,” Spectrochim. Acta, Part B 55, 1679–1692 (2000).
[CrossRef]

1999 (1)

B. A. Bushaw, W. Nörtershäuser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
[CrossRef]

1997 (1)

B. A. Bushaw and B. D. Cannon, “Diode laser based resonance ionization mass spectrometric measurement of strontium-90,” Spectrochim. Acta, Part B 52, 1839–1854 (1997).
[CrossRef]

1992 (1)

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248–1260 (1992).
[CrossRef] [PubMed]

1991 (1)

A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in Ca I and Sr I,” J. Phys. B 24, 4077–4099 (1991).
[CrossRef]

1985 (1)

F. Buchinger, R. Corriveau, E. B. Ramsey, D. Berdichevsky, and D. W. L. Sprung, “Influence of the N=50 shell closure on mean square charge radii of strontium,” Phys. Rev. C 32, 2058–2066 (1985).
[CrossRef]

1983 (1)

C.-J. Lorenzen, K. Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051–2058 (1983).
[CrossRef]

1979 (2)

P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547–L551 (1979).
[CrossRef]

G. M. Raisbeck and F. Yiou, “Possible use of 41Ca for radioactive dating,” Nature 277, 42–44 (1979).
[CrossRef]

Aspect, A.

A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in Ca I and Sr I,” J. Phys. B 24, 4077–4099 (1991).
[CrossRef]

Bailey, K.

I. D. Moore, K. Bailey, Z.-T. Lu, P. Müller, T. P. O’Connor, and L. Young, “Towards ultrahigh sensitivity analysis of 41Ca,” Nucl. Instrum. Methods Phys. Res. B 204, 701–704 (2003).
[CrossRef]

Bauche, J.

A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in Ca I and Sr I,” J. Phys. B 24, 4077–4099 (1991).
[CrossRef]

Berdichevsky, D.

F. Buchinger, R. Corriveau, E. B. Ramsey, D. Berdichevsky, and D. W. L. Sprung, “Influence of the N=50 shell closure on mean square charge radii of strontium,” Phys. Rev. C 32, 2058–2066 (1985).
[CrossRef]

Blaum, K.

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of 41Ca in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487–493 (2000).
[CrossRef]

Buchinger, F.

F. Buchinger, R. Corriveau, E. B. Ramsey, D. Berdichevsky, and D. W. L. Sprung, “Influence of the N=50 shell closure on mean square charge radii of strontium,” Phys. Rev. C 32, 2058–2066 (1985).
[CrossRef]

Bushaw, B. A.

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of 41Ca in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487–493 (2000).
[CrossRef]

B. A. Bushaw and W. Nörtershäuser, “Resonance ionization spectroscopy of stable strontium isotopes and 90Sr via 5s21S0→λ15s5p 1P10→λ25s5d 1D2→λ35s11f 1F3→λ4Sr+,” Spectrochim. Acta, Part B 55, 1679–1692 (2000).
[CrossRef]

W. Nörtershäuser, B. A. Bushaw, P. Müller, and K. Wendt, “Line shapes in triple-resonance ionization spectroscopy,” Appl. Opt. 39, 5590–5600 (2000).
[CrossRef]

B. A. Bushaw, W. Nörtershäuser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
[CrossRef]

B. A. Bushaw and B. D. Cannon, “Diode laser based resonance ionization mass spectrometric measurement of strontium-90,” Spectrochim. Acta, Part B 52, 1839–1854 (1997).
[CrossRef]

Cannon, B. D.

B. A. Bushaw and B. D. Cannon, “Diode laser based resonance ionization mass spectrometric measurement of strontium-90,” Spectrochim. Acta, Part B 52, 1839–1854 (1997).
[CrossRef]

Corriveau, R.

F. Buchinger, R. Corriveau, E. B. Ramsey, D. Berdichevsky, and D. W. L. Sprung, “Influence of the N=50 shell closure on mean square charge radii of strontium,” Phys. Rev. C 32, 2058–2066 (1985).
[CrossRef]

Cruz, F. C.

W. C. Magno, R. L. Cavasso Filho, and F. C. Cruz, “Two-photon Doppler cooling of alkaline–earth–metal and ytterbium atoms,” Phys. Rev. A 67, 043407 (2003).
[CrossRef]

Diel, S.

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of 41Ca in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487–493 (2000).
[CrossRef]

Filho, R. L. Cavasso

W. C. Magno, R. L. Cavasso Filho, and F. C. Cruz, “Two-photon Doppler cooling of alkaline–earth–metal and ytterbium atoms,” Phys. Rev. A 67, 043407 (2003).
[CrossRef]

Gallagher, A.

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248–1260 (1992).
[CrossRef] [PubMed]

Geppert, C.

K. D. A. Wendt, C. Geppert, M. Miyabe, P. Mueller, W. Noertershaeuser, and N. Trautmann, “Ultratrace isotope determination in environmental, bio-medical and fundamental research by high resolution laser-mass spectrometry,” J. Nucl. Sci. Technol. 39, 303–307 (2002).
[CrossRef]

Geppert, Ch.

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of 41Ca in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487–493 (2000).
[CrossRef]

Godefroid, M.

A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in Ca I and Sr I,” J. Phys. B 24, 4077–4099 (1991).
[CrossRef]

Grangier, P.

A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in Ca I and Sr I,” J. Phys. B 24, 4077–4099 (1991).
[CrossRef]

Greene, C. H.

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248–1260 (1992).
[CrossRef] [PubMed]

Hansen, J. E.

A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in Ca I and Sr I,” J. Phys. B 24, 4077–4099 (1991).
[CrossRef]

Lambropoulos, P.

P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547–L551 (1979).
[CrossRef]

Lorenzen, C.-J.

C.-J. Lorenzen, K. Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051–2058 (1983).
[CrossRef]

Lu, Z.-T.

I. D. Moore, K. Bailey, Z.-T. Lu, P. Müller, T. P. O’Connor, and L. Young, “Towards ultrahigh sensitivity analysis of 41Ca,” Nucl. Instrum. Methods Phys. Res. B 204, 701–704 (2003).
[CrossRef]

Magno, W. C.

W. C. Magno, R. L. Cavasso Filho, and F. C. Cruz, “Two-photon Doppler cooling of alkaline–earth–metal and ytterbium atoms,” Phys. Rev. A 67, 043407 (2003).
[CrossRef]

Miyabe, M.

K. D. A. Wendt, C. Geppert, M. Miyabe, P. Mueller, W. Noertershaeuser, and N. Trautmann, “Ultratrace isotope determination in environmental, bio-medical and fundamental research by high resolution laser-mass spectrometry,” J. Nucl. Sci. Technol. 39, 303–307 (2002).
[CrossRef]

Moore, I. D.

I. D. Moore, K. Bailey, Z.-T. Lu, P. Müller, T. P. O’Connor, and L. Young, “Towards ultrahigh sensitivity analysis of 41Ca,” Nucl. Instrum. Methods Phys. Res. B 204, 701–704 (2003).
[CrossRef]

Mueller, P.

K. D. A. Wendt, C. Geppert, M. Miyabe, P. Mueller, W. Noertershaeuser, and N. Trautmann, “Ultratrace isotope determination in environmental, bio-medical and fundamental research by high resolution laser-mass spectrometry,” J. Nucl. Sci. Technol. 39, 303–307 (2002).
[CrossRef]

Muller, P.

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of 41Ca in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487–493 (2000).
[CrossRef]

Müller, P.

I. D. Moore, K. Bailey, Z.-T. Lu, P. Müller, T. P. O’Connor, and L. Young, “Towards ultrahigh sensitivity analysis of 41Ca,” Nucl. Instrum. Methods Phys. Res. B 204, 701–704 (2003).
[CrossRef]

W. Nörtershäuser, B. A. Bushaw, P. Müller, and K. Wendt, “Line shapes in triple-resonance ionization spectroscopy,” Appl. Opt. 39, 5590–5600 (2000).
[CrossRef]

Nahler, A.

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of 41Ca in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487–493 (2000).
[CrossRef]

Niemax, K.

C.-J. Lorenzen, K. Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051–2058 (1983).
[CrossRef]

Noertershaeuser, W.

K. D. A. Wendt, C. Geppert, M. Miyabe, P. Mueller, W. Noertershaeuser, and N. Trautmann, “Ultratrace isotope determination in environmental, bio-medical and fundamental research by high resolution laser-mass spectrometry,” J. Nucl. Sci. Technol. 39, 303–307 (2002).
[CrossRef]

Nortershauser, W.

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of 41Ca in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487–493 (2000).
[CrossRef]

Nörtershäuser, W.

B. A. Bushaw and W. Nörtershäuser, “Resonance ionization spectroscopy of stable strontium isotopes and 90Sr via 5s21S0→λ15s5p 1P10→λ25s5d 1D2→λ35s11f 1F3→λ4Sr+,” Spectrochim. Acta, Part B 55, 1679–1692 (2000).
[CrossRef]

W. Nörtershäuser, B. A. Bushaw, P. Müller, and K. Wendt, “Line shapes in triple-resonance ionization spectroscopy,” Appl. Opt. 39, 5590–5600 (2000).
[CrossRef]

B. A. Bushaw, W. Nörtershäuser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
[CrossRef]

O’Connor, T. P.

I. D. Moore, K. Bailey, Z.-T. Lu, P. Müller, T. P. O’Connor, and L. Young, “Towards ultrahigh sensitivity analysis of 41Ca,” Nucl. Instrum. Methods Phys. Res. B 204, 701–704 (2003).
[CrossRef]

Pendrill, L. R.

C.-J. Lorenzen, K. Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051–2058 (1983).
[CrossRef]

Raisbeck, G. M.

G. M. Raisbeck and F. Yiou, “Possible use of 41Ca for radioactive dating,” Nature 277, 42–44 (1979).
[CrossRef]

Ramsey, E. B.

F. Buchinger, R. Corriveau, E. B. Ramsey, D. Berdichevsky, and D. W. L. Sprung, “Influence of the N=50 shell closure on mean square charge radii of strontium,” Phys. Rev. C 32, 2058–2066 (1985).
[CrossRef]

Sprung, D. W. L.

F. Buchinger, R. Corriveau, E. B. Ramsey, D. Berdichevsky, and D. W. L. Sprung, “Influence of the N=50 shell closure on mean square charge radii of strontium,” Phys. Rev. C 32, 2058–2066 (1985).
[CrossRef]

Theodosiou, C. E.

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248–1260 (1992).
[CrossRef] [PubMed]

Trautmann, N.

K. D. A. Wendt, C. Geppert, M. Miyabe, P. Mueller, W. Noertershaeuser, and N. Trautmann, “Ultratrace isotope determination in environmental, bio-medical and fundamental research by high resolution laser-mass spectrometry,” J. Nucl. Sci. Technol. 39, 303–307 (2002).
[CrossRef]

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of 41Ca in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487–493 (2000).
[CrossRef]

Vaeck, N.

A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in Ca I and Sr I,” J. Phys. B 24, 4077–4099 (1991).
[CrossRef]

Wendt, K.

W. Nörtershäuser, B. A. Bushaw, P. Müller, and K. Wendt, “Line shapes in triple-resonance ionization spectroscopy,” Appl. Opt. 39, 5590–5600 (2000).
[CrossRef]

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of 41Ca in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487–493 (2000).
[CrossRef]

B. A. Bushaw, W. Nörtershäuser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
[CrossRef]

Wendt, K. D. A.

K. D. A. Wendt, C. Geppert, M. Miyabe, P. Mueller, W. Noertershaeuser, and N. Trautmann, “Ultratrace isotope determination in environmental, bio-medical and fundamental research by high resolution laser-mass spectrometry,” J. Nucl. Sci. Technol. 39, 303–307 (2002).
[CrossRef]

Werij, H. G. C.

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248–1260 (1992).
[CrossRef] [PubMed]

Yiou, F.

G. M. Raisbeck and F. Yiou, “Possible use of 41Ca for radioactive dating,” Nature 277, 42–44 (1979).
[CrossRef]

Young, L.

I. D. Moore, K. Bailey, Z.-T. Lu, P. Müller, T. P. O’Connor, and L. Young, “Towards ultrahigh sensitivity analysis of 41Ca,” Nucl. Instrum. Methods Phys. Res. B 204, 701–704 (2003).
[CrossRef]

Zoller, P.

P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547–L551 (1979).
[CrossRef]

Appl. Opt. (1)

J. Nucl. Sci. Technol. (1)

K. D. A. Wendt, C. Geppert, M. Miyabe, P. Mueller, W. Noertershaeuser, and N. Trautmann, “Ultratrace isotope determination in environmental, bio-medical and fundamental research by high resolution laser-mass spectrometry,” J. Nucl. Sci. Technol. 39, 303–307 (2002).
[CrossRef]

J. Phys. B (2)

A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in Ca I and Sr I,” J. Phys. B 24, 4077–4099 (1991).
[CrossRef]

P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547–L551 (1979).
[CrossRef]

Nature (1)

G. M. Raisbeck and F. Yiou, “Possible use of 41Ca for radioactive dating,” Nature 277, 42–44 (1979).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

I. D. Moore, K. Bailey, Z.-T. Lu, P. Müller, T. P. O’Connor, and L. Young, “Towards ultrahigh sensitivity analysis of 41Ca,” Nucl. Instrum. Methods Phys. Res. B 204, 701–704 (2003).
[CrossRef]

Phys. Rev. A (3)

W. C. Magno, R. L. Cavasso Filho, and F. C. Cruz, “Two-photon Doppler cooling of alkaline–earth–metal and ytterbium atoms,” Phys. Rev. A 67, 043407 (2003).
[CrossRef]

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248–1260 (1992).
[CrossRef] [PubMed]

C.-J. Lorenzen, K. Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051–2058 (1983).
[CrossRef]

Phys. Rev. C (1)

F. Buchinger, R. Corriveau, E. B. Ramsey, D. Berdichevsky, and D. W. L. Sprung, “Influence of the N=50 shell closure on mean square charge radii of strontium,” Phys. Rev. C 32, 2058–2066 (1985).
[CrossRef]

Radiochim. Acta (1)

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of 41Ca in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487–493 (2000).
[CrossRef]

Spectrochim. Acta, Part B (3)

B. A. Bushaw and W. Nörtershäuser, “Resonance ionization spectroscopy of stable strontium isotopes and 90Sr via 5s21S0→λ15s5p 1P10→λ25s5d 1D2→λ35s11f 1F3→λ4Sr+,” Spectrochim. Acta, Part B 55, 1679–1692 (2000).
[CrossRef]

B. A. Bushaw and B. D. Cannon, “Diode laser based resonance ionization mass spectrometric measurement of strontium-90,” Spectrochim. Acta, Part B 52, 1839–1854 (1997).
[CrossRef]

B. A. Bushaw, W. Nörtershäuser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
[CrossRef]

Other (3)

M. Eisenbud, Environmental Radioactivity (Academic, Orlando, Fla., 1987).

R. L. Kurucz and B. Bell, 1995 Atomic Line Data Kurucz CD-ROM No. 23 (Smithsonian Astrophysical Observatory, Cambridge, Mass., 1995).

W. H. King, Isotope Shifts in Atomic Spectra (Plenum, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the double-resonance photoionization scheme.

Fig. 2
Fig. 2

Ion yield as a function of relative laser frequency for the scheme 1 (a) and scheme 2 (b). In both cases the first excitation laser is detuned to -206.2 MHz relative to  88Sr and the angular divergence of the atomic beam is 1.5°. The resonance position of the rare  90Sr isotope is marked by an asterisk.

Fig. 3
Fig. 3

Ion yield as a function of relative laser frequency for the scheme 1 (a) and scheme 2 (b). In both cases the first excitation laser is detuned to -206.2 MHz relative to  88Sr and both excitation lasers are considered to be monochromatic. The resonant position of the rare  90Sr isotope is marked by an asterisk.

Fig. 4
Fig. 4

Ion yield as a function of relative laser frequency for the scheme 5 (a) and scheme 6 (b). In both cases the first excitation laser is detuned to 155.5 MHz relative to  40Ca and both excitation lasers are considered to be monochromatic. The resonance position of the rare  41Ca isotope is marked by an asterisk.

Tables (6)

Tables Icon

Table 1 Decay Rates for the Levels Relevant to the Investigated Photoionization Schemes for Ca and Sr

Tables Icon

Table 2 Isotope Shift and Resonance Position of the Most Intense Hyperfine Component (for Ca) for the Photoionization Schemes Studied

Tables Icon

Table 3 Optimum Laser Powers and the Corresponding Rabi Frequencies and Optical Selectivities for the Photoionization Schemes Studieda

Tables Icon

Table 4 Effect of Linewidth of Excitation Lasers on the Optical Selectivity for the Photoionization Schemes Studieda

Tables Icon

Table 5 Effect of Full Angle Divergence (θ) on Optical Selectivity for the Photoionization Schemes Studieda

Tables Icon

Table 6 Frequency Position of the Incoherent Excitation Peak for All the Photoionization Schemes Investigated

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

Ei(t)=[εi(t)exp(iωit)+εi*(t)exp(-iωit)]ei,
ρ˙11=i2(Ω1*ρ21-Ω1ρ12)+2(γ21ρ22+γ41ρ44+γ51ρ55),
ρ˙22=i2(ρ12Ω1-ρ21Ω1*)+i2(ρ32Ω2*-ρ23Ω2)+2γ32ρ33-2γ21ρ22,
ρ˙33=i2(ρ23Ω2-ρ32Ω2*)-2γ32+γ34+γ35+γI2ρ33,
ρ˙12=iρ12Δ1-ρ13 Ω12+i Ω1*2(ρ22-ρ11)-γ21+2γL1 β12Δ12+β12ρ12,
ρ˙21=-iρ21Δ1-ρ31 Ω1*2-i Ω12(ρ22-ρ11)-γ21+2γL1 β12Δ12+β12ρ21,
ρ˙13=iρ13(Δ1+Δ2)+i2ρ23Ω1*-i2ρ12Ω2*-γ32+2γL1 β12Δ12+β12+2γL2 β22Δ22+β22+γI2ρ13,
ρ˙31=-iρ31(Δ1+Δ2)-i2ρ32Ω1+i2ρ21Ω2-γ32+2γL1 β12Δ12+β12+2γL2 β22Δ22+β22+γI2ρ31,
ρ˙23=iρ23Δ2+i2ρ13Ω1+i2Ω2*(ρ33-ρ22)-γ21+γ32+2γL2 β22Δ22+β22+γI2ρ23,
ρ˙32=-iρ32Δ2+i2ρ31Ω1*-i2Ω2(ρ33-ρ22)-γ21+γ32+2γL2 β22Δ22+β22+γI2ρ32,
ρ˙44=2(γ34ρ33-γ41ρ44),
ρ˙55=2(γ35ρ33-γ51ρ55).
ΔiD=Δi+ωV sin θc,
Φ(V)=2V0-4V3 exp-VV02,
2γLi βi2ΔiD2+βi2,i=1, 2.
Pion(t)=1-ρii(t),
S=P(0)P(Δ),
δνA,A=F×δr2A,A+M×A-AAA,
5s2 1S0460.7nm5s5p 1P10767.3nm5s5d 1D2nonresonantSr+;
5s2 1S0460.7nm5s5p 1P10516.5nm5s8s 1S0nonresonantSr+;
5s2 1S0460.7nm5s5p 1P101124.1nm5s6s 1S0nonresonantSr+;
5s2 1S0460.7nm5s5p 1P10597.0nm5s7s 1S0nonresonantSr+;
4s2 1S0422.7nm4s4p 1P10551.5nm4s6s 1S0nonresonantCa+;
4s2 1S0422.7nm4s4p 1P10586.9nm4p2 1S0nonresonantCa+.
Ωeven=23(g2/g1)γλ38πhc1/2J1J-mqmI,
J1J-mqm
Γmm=J1J-mqm2AJJ,
5s2 1S0460.7 nm5s5p 1P10767.3 nm5s5d 1D2nonresonantSr+
4s21S0422.7 nm4s4p1P10732.6 nm4s4d1D2nonresonantCa+

Metrics