Abstract

We investigate a four-level system in the Er3+-doped yttrium aluminum garnet crystal that can produce an absorption or gain doublet in the probe absorption spectrum when driven by a coherent field and incoherent pumping. It is found that the transparent linear positive or negative dispersion can occur between the doublet lines. We show that the group index of a probe pulse can be manipulated when we control the incoherent pumping and the coherent field.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
    [CrossRef] [PubMed]
  2. O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocities below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996).
    [CrossRef]
  3. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
    [CrossRef]
  4. D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
    [CrossRef]
  5. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
    [CrossRef]
  6. G. Muller, A. Wicht, R. Rinkle, and K. Danzmann, “A new kind of heterodyne measurement of coherent population trapping,” Opt. Commun. 127, 37–43 (1996).
    [CrossRef]
  7. S. E. Harris, “Pondermotive forces with slow light,” Phys. Rev. Lett. 85, 4032–4035 (2000).
    [CrossRef] [PubMed]
  8. A. B. Matsko, Y. V. Rostovtsev, H. Z. Cummins, and M. O. Scully, “Using slow light to enhance acousto-optical effects: application to squeezed light,” Phys. Rev. Lett. 84, 5752–5755 (2000).
    [CrossRef] [PubMed]
  9. U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62, 055801 (2000).
    [CrossRef]
  10. F. L. Kien and K. Hakuta, “Stimulated Raman scattering with slow light,” Can. J. Phys. 78, 543–559 (2000).
    [CrossRef]
  11. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature (London) 406, 277–279 (2000).
    [CrossRef]
  12. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
    [CrossRef] [PubMed]
  13. S. E. Harris, “Lasers without inversion: interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).
    [CrossRef] [PubMed]
  14. J. Y. Gao, H. Z. Zhang, H. F. Cui, X. Z. Guo, Y. Jiang, Q. W. Wang, G. X. Jin, and J. S. Li, “Inversionless light amplification in sodium,” Opt. Commun. 110, 590–594 (1994).
    [CrossRef]
  15. B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997).
    [CrossRef]
  16. A. V. Turukhin, V. S. Sudarshanam, and M. S. Shahriar, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
    [CrossRef] [PubMed]
  17. H. Xu, Z. Dai, and Z. Jiang, “Effect of concentration of the Er3+ ion on electromagnetically induced transparency in Er3+:YAG crystal,” Phys. Lett. A 294, 19–25 (2002).
    [CrossRef]
  18. H.-F. Zhang, J.-H. Wu, X.-M. Su, and J.-Y. Gao, “Quantum-interference effects on the index of refraction in an Er3+-doped yttrium aluminum garnet crystal,” Phys. Rev. A 66, 053816 (2002).
    [CrossRef]
  19. G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
    [CrossRef]
  20. A. D. Wilson-Gordon and H. Friedmann, “Positive and negative dispersion in a three-level A system driven by a single pump,” J. Mod. Opt. 49, 125–139 (2002).
    [CrossRef]
  21. D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
    [CrossRef]
  22. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
    [CrossRef] [PubMed]
  23. G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
    [CrossRef] [PubMed]
  24. A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071–2075 (1994).
    [CrossRef] [PubMed]
  25. M. W. Mitchell and R. Y. Chiao, “Causality and negative group delay in a simple bandpass amplifier,” Am. J. Phys. 66, 14–19 (1998).
    [CrossRef]
  26. A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
    [CrossRef]
  27. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2597 (1991).
    [CrossRef] [PubMed]
  28. Q. Y. Wang, S. Y. Zhang, and Y. Q. Jia, “Effect of the concentration of the Er3+ ion on the spectral intensity parameters of Er:YAG crystals,” J. Alloys Compd. 202, 1–5 (1993).
    [CrossRef]
  29. V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
    [CrossRef]
  30. Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, “Recent progress in developing new rare earth materials for hole burning and coherent transient applications,” J. Lumin. 98, 281–287 (2002).
    [CrossRef]
  31. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [CrossRef]
  32. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  33. A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Bouion, A. Breniir, and B. Di. Bartoio, “New laser properties and spectroscopy of orthorhombic crystals YalO3:Er3+,” Phys. Status Solidi A 151, 231–235 (1995).
    [CrossRef]
  34. K. A. Gschneidner and L. Eyring, Handbook on the Physics and Chemistry of Rare Earths (Elsevier Science, New York, 1984), Vol. 5, p. 320.

2003 (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

2002 (5)

A. D. Wilson-Gordon and H. Friedmann, “Positive and negative dispersion in a three-level A system driven by a single pump,” J. Mod. Opt. 49, 125–139 (2002).
[CrossRef]

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, “Recent progress in developing new rare earth materials for hole burning and coherent transient applications,” J. Lumin. 98, 281–287 (2002).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, and M. S. Shahriar, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

H. Xu, Z. Dai, and Z. Jiang, “Effect of concentration of the Er3+ ion on electromagnetically induced transparency in Er3+:YAG crystal,” Phys. Lett. A 294, 19–25 (2002).
[CrossRef]

H.-F. Zhang, J.-H. Wu, X.-M. Su, and J.-Y. Gao, “Quantum-interference effects on the index of refraction in an Er3+-doped yttrium aluminum garnet crystal,” Phys. Rev. A 66, 053816 (2002).
[CrossRef]

2001 (2)

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[CrossRef]

2000 (6)

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef] [PubMed]

S. E. Harris, “Pondermotive forces with slow light,” Phys. Rev. Lett. 85, 4032–4035 (2000).
[CrossRef] [PubMed]

A. B. Matsko, Y. V. Rostovtsev, H. Z. Cummins, and M. O. Scully, “Using slow light to enhance acousto-optical effects: application to squeezed light,” Phys. Rev. Lett. 84, 5752–5755 (2000).
[CrossRef] [PubMed]

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62, 055801 (2000).
[CrossRef]

F. L. Kien and K. Hakuta, “Stimulated Raman scattering with slow light,” Can. J. Phys. 78, 543–559 (2000).
[CrossRef]

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature (London) 406, 277–279 (2000).
[CrossRef]

1999 (4)

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
[CrossRef]

1998 (1)

M. W. Mitchell and R. Y. Chiao, “Causality and negative group delay in a simple bandpass amplifier,” Am. J. Phys. 66, 14–19 (1998).
[CrossRef]

1997 (1)

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997).
[CrossRef]

1996 (2)

O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocities below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996).
[CrossRef]

G. Muller, A. Wicht, R. Rinkle, and K. Danzmann, “A new kind of heterodyne measurement of coherent population trapping,” Opt. Commun. 127, 37–43 (1996).
[CrossRef]

1995 (2)

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef] [PubMed]

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Bouion, A. Breniir, and B. Di. Bartoio, “New laser properties and spectroscopy of orthorhombic crystals YalO3:Er3+,” Phys. Status Solidi A 151, 231–235 (1995).
[CrossRef]

1994 (2)

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071–2075 (1994).
[CrossRef] [PubMed]

J. Y. Gao, H. Z. Zhang, H. F. Cui, X. Z. Guo, Y. Jiang, Q. W. Wang, G. X. Jin, and J. S. Li, “Inversionless light amplification in sodium,” Opt. Commun. 110, 590–594 (1994).
[CrossRef]

1993 (1)

Q. Y. Wang, S. Y. Zhang, and Y. Q. Jia, “Effect of the concentration of the Er3+ ion on the spectral intensity parameters of Er:YAG crystals,” J. Alloys Compd. 202, 1–5 (1993).
[CrossRef]

1992 (1)

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[CrossRef] [PubMed]

1991 (1)

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2597 (1991).
[CrossRef] [PubMed]

1989 (1)

S. E. Harris, “Lasers without inversion: interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).
[CrossRef] [PubMed]

1986 (1)

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

Akulshin, A. M.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
[CrossRef]

Bagaev, S. N.

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Bouion, A. Breniir, and B. Di. Bartoio, “New laser properties and spectroscopy of orthorhombic crystals YalO3:Er3+,” Phys. Status Solidi A 151, 231–235 (1995).
[CrossRef]

Barreiro, S.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
[CrossRef]

Bartoio, B. Di.

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Bouion, A. Breniir, and B. Di. Bartoio, “New laser properties and spectroscopy of orthorhombic crystals YalO3:Er3+,” Phys. Status Solidi A 151, 231–235 (1995).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

Boller, K. J.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2597 (1991).
[CrossRef] [PubMed]

Bortman-Arbiv, D.

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[CrossRef]

Bouion, G.

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Bouion, A. Breniir, and B. Di. Bartoio, “New laser properties and spectroscopy of orthorhombic crystals YalO3:Er3+,” Phys. Status Solidi A 151, 231–235 (1995).
[CrossRef]

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

Breniir, A.

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Bouion, A. Breniir, and B. Di. Bartoio, “New laser properties and spectroscopy of orthorhombic crystals YalO3:Er3+,” Phys. Status Solidi A 151, 231–235 (1995).
[CrossRef]

Budker, D.

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

Chiao, R. Y.

M. W. Mitchell and R. Y. Chiao, “Causality and negative group delay in a simple bandpass amplifier,” Am. J. Phys. 66, 14–19 (1998).
[CrossRef]

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071–2075 (1994).
[CrossRef] [PubMed]

Cone, R. L.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, “Recent progress in developing new rare earth materials for hole burning and coherent transient applications,” J. Lumin. 98, 281–287 (2002).
[CrossRef]

Cui, H. F.

J. Y. Gao, H. Z. Zhang, H. F. Cui, X. Z. Guo, Y. Jiang, Q. W. Wang, G. X. Jin, and J. S. Li, “Inversionless light amplification in sodium,” Opt. Commun. 110, 590–594 (1994).
[CrossRef]

Cummins, H. Z.

A. B. Matsko, Y. V. Rostovtsev, H. Z. Cummins, and M. O. Scully, “Using slow light to enhance acousto-optical effects: application to squeezed light,” Phys. Rev. Lett. 84, 5752–5755 (2000).
[CrossRef] [PubMed]

Dai, Z.

H. Xu, Z. Dai, and Z. Jiang, “Effect of concentration of the Er3+ ion on electromagnetically induced transparency in Er3+:YAG crystal,” Phys. Lett. A 294, 19–25 (2002).
[CrossRef]

Danzmann, K.

G. Muller, A. Wicht, R. Rinkle, and K. Danzmann, “A new kind of heterodyne measurement of coherent population trapping,” Opt. Commun. 127, 37–43 (1996).
[CrossRef]

Dey, T. N.

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature (London) 406, 277–279 (2000).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

Equall, R. W.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, “Recent progress in developing new rare earth materials for hole burning and coherent transient applications,” J. Lumin. 98, 281–287 (2002).
[CrossRef]

Field, J. E.

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[CrossRef] [PubMed]

Friedmann, H.

A. D. Wilson-Gordon and H. Friedmann, “Positive and negative dispersion in a three-level A system driven by a single pump,” J. Mod. Opt. 49, 125–139 (2002).
[CrossRef]

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[CrossRef]

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Gao, J. Y.

J. Y. Gao, H. Z. Zhang, H. F. Cui, X. Z. Guo, Y. Jiang, Q. W. Wang, G. X. Jin, and J. S. Li, “Inversionless light amplification in sodium,” Opt. Commun. 110, 590–594 (1994).
[CrossRef]

Gao, J.-Y.

H.-F. Zhang, J.-H. Wu, X.-M. Su, and J.-Y. Gao, “Quantum-interference effects on the index of refraction in an Er3+-doped yttrium aluminum garnet crystal,” Phys. Rev. A 66, 053816 (2002).
[CrossRef]

Georgescu, S.

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

Guo, X. Z.

J. Y. Gao, H. Z. Zhang, H. F. Cui, X. Z. Guo, Y. Jiang, Q. W. Wang, G. X. Jin, and J. S. Li, “Inversionless light amplification in sodium,” Opt. Commun. 110, 590–594 (1994).
[CrossRef]

Hakuta, K.

F. L. Kien and K. Hakuta, “Stimulated Raman scattering with slow light,” Can. J. Phys. 78, 543–559 (2000).
[CrossRef]

Ham, B. S.

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997).
[CrossRef]

Harris, S. E.

S. E. Harris, “Pondermotive forces with slow light,” Phys. Rev. Lett. 85, 4032–4035 (2000).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2597 (1991).
[CrossRef] [PubMed]

S. E. Harris, “Lasers without inversion: interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).
[CrossRef] [PubMed]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

Hemmer, P. R.

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997).
[CrossRef]

Hollberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Hussein, Z.

O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocities below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996).
[CrossRef]

Hutcheson, R. L.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, “Recent progress in developing new rare earth materials for hole burning and coherent transient applications,” J. Lumin. 98, 281–287 (2002).
[CrossRef]

Imamoglu, A.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2597 (1991).
[CrossRef] [PubMed]

Jain, M.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef] [PubMed]

Jia, Y. Q.

Q. Y. Wang, S. Y. Zhang, and Y. Q. Jia, “Effect of the concentration of the Er3+ ion on the spectral intensity parameters of Er:YAG crystals,” J. Alloys Compd. 202, 1–5 (1993).
[CrossRef]

Jiang, Y.

J. Y. Gao, H. Z. Zhang, H. F. Cui, X. Z. Guo, Y. Jiang, Q. W. Wang, G. X. Jin, and J. S. Li, “Inversionless light amplification in sodium,” Opt. Commun. 110, 590–594 (1994).
[CrossRef]

Jiang, Z.

H. Xu, Z. Dai, and Z. Jiang, “Effect of concentration of the Er3+ ion on electromagnetically induced transparency in Er3+:YAG crystal,” Phys. Lett. A 294, 19–25 (2002).
[CrossRef]

Jin, G. X.

J. Y. Gao, H. Z. Zhang, H. F. Cui, X. Z. Guo, Y. Jiang, Q. W. Wang, G. X. Jin, and J. S. Li, “Inversionless light amplification in sodium,” Opt. Commun. 110, 590–594 (1994).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Bouion, A. Breniir, and B. Di. Bartoio, “New laser properties and spectroscopy of orthorhombic crystals YalO3:Er3+,” Phys. Status Solidi A 151, 231–235 (1995).
[CrossRef]

Kasapi, A.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[CrossRef] [PubMed]

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Kien, F. L.

F. L. Kien and K. Hakuta, “Stimulated Raman scattering with slow light,” Can. J. Phys. 78, 543–559 (2000).
[CrossRef]

Kimball, D. F.

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

Kornienko, A.

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Bouion, A. Breniir, and B. Di. Bartoio, “New laser properties and spectroscopy of orthorhombic crystals YalO3:Er3+,” Phys. Status Solidi A 151, 231–235 (1995).
[CrossRef]

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature (London) 406, 277–279 (2000).
[CrossRef]

Leonhardt, U.

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62, 055801 (2000).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

Lezama, A.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
[CrossRef]

Li, J. S.

J. Y. Gao, H. Z. Zhang, H. F. Cui, X. Z. Guo, Y. Jiang, Q. W. Wang, G. X. Jin, and J. S. Li, “Inversionless light amplification in sodium,” Opt. Commun. 110, 590–594 (1994).
[CrossRef]

Lukin, M. D.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Lupei, V.

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

Matsko, A. B.

A. B. Matsko, Y. V. Rostovtsev, H. Z. Cummins, and M. O. Scully, “Using slow light to enhance acousto-optical effects: application to squeezed light,” Phys. Rev. Lett. 84, 5752–5755 (2000).
[CrossRef] [PubMed]

Menon, S.

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

Meschede, D.

O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocities below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996).
[CrossRef]

Mironov, V. S.

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Bouion, A. Breniir, and B. Di. Bartoio, “New laser properties and spectroscopy of orthorhombic crystals YalO3:Er3+,” Phys. Status Solidi A 151, 231–235 (1995).
[CrossRef]

Mitchell, M. W.

M. W. Mitchell and R. Y. Chiao, “Causality and negative group delay in a simple bandpass amplifier,” Am. J. Phys. 66, 14–19 (1998).
[CrossRef]

Muller, G.

G. Muller, A. Wicht, R. Rinkle, and K. Danzmann, “A new kind of heterodyne measurement of coherent population trapping,” Opt. Commun. 127, 37–43 (1996).
[CrossRef]

Murina, T. M.

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Paspalakis, E.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef] [PubMed]

Phillips, C. C.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef] [PubMed]

Piwnicki, P.

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62, 055801 (2000).
[CrossRef]

Prokhorov, A. M.

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

Rinkle, R.

G. Muller, A. Wicht, R. Rinkle, and K. Danzmann, “A new kind of heterodyne measurement of coherent population trapping,” Opt. Commun. 127, 37–43 (1996).
[CrossRef]

Rochester, S. M.

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

Rostovsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Rostovtsev, Y. V.

A. B. Matsko, Y. V. Rostovtsev, H. Z. Cummins, and M. O. Scully, “Using slow light to enhance acousto-optical effects: application to squeezed light,” Phys. Rev. Lett. 84, 5752–5755 (2000).
[CrossRef] [PubMed]

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Schmidt, O.

O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocities below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996).
[CrossRef]

Scully, M. O.

A. B. Matsko, Y. V. Rostovtsev, H. Z. Cummins, and M. O. Scully, “Using slow light to enhance acousto-optical effects: application to squeezed light,” Phys. Rev. Lett. 84, 5752–5755 (2000).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Serapiglia, G. B.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef] [PubMed]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, and M. S. Shahriar, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997).
[CrossRef]

Sirtori, C.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef] [PubMed]

Steinberg, A. M.

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071–2075 (1994).
[CrossRef] [PubMed]

Studenikin, M. I.

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

Su, X.-M.

H.-F. Zhang, J.-H. Wu, X.-M. Su, and J.-Y. Gao, “Quantum-interference effects on the index of refraction in an Er3+-doped yttrium aluminum garnet crystal,” Phys. Rev. A 66, 053816 (2002).
[CrossRef]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, and M. S. Shahriar, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Sun, Y.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, “Recent progress in developing new rare earth materials for hole burning and coherent transient applications,” J. Lumin. 98, 281–287 (2002).
[CrossRef]

Thiel, C. W.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, “Recent progress in developing new rare earth materials for hole burning and coherent transient applications,” J. Lumin. 98, 281–287 (2002).
[CrossRef]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, and M. S. Shahriar, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Ursu, I.

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

Vodopyanov, K. L.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef] [PubMed]

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature (London) 406, 277–279 (2000).
[CrossRef]

Wang, Q. W.

J. Y. Gao, H. Z. Zhang, H. F. Cui, X. Z. Guo, Y. Jiang, Q. W. Wang, G. X. Jin, and J. S. Li, “Inversionless light amplification in sodium,” Opt. Commun. 110, 590–594 (1994).
[CrossRef]

Wang, Q. Y.

Q. Y. Wang, S. Y. Zhang, and Y. Q. Jia, “Effect of the concentration of the Er3+ ion on the spectral intensity parameters of Er:YAG crystals,” J. Alloys Compd. 202, 1–5 (1993).
[CrossRef]

Welch, G. R.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Wicht, A.

G. Muller, A. Wicht, R. Rinkle, and K. Danzmann, “A new kind of heterodyne measurement of coherent population trapping,” Opt. Commun. 127, 37–43 (1996).
[CrossRef]

Wilson-Gordon, A. D.

A. D. Wilson-Gordon and H. Friedmann, “Positive and negative dispersion in a three-level A system driven by a single pump,” J. Mod. Opt. 49, 125–139 (2002).
[CrossRef]

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[CrossRef]

Wu, J.-H.

H.-F. Zhang, J.-H. Wu, X.-M. Su, and J.-Y. Gao, “Quantum-interference effects on the index of refraction in an Er3+-doped yttrium aluminum garnet crystal,” Phys. Rev. A 66, 053816 (2002).
[CrossRef]

Wynands, R.

O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocities below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996).
[CrossRef]

Xu, H.

H. Xu, Z. Dai, and Z. Jiang, “Effect of concentration of the Er3+ ion on electromagnetically induced transparency in Er3+:YAG crystal,” Phys. Lett. A 294, 19–25 (2002).
[CrossRef]

Yashchuk, V. V.

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

Yin, G. Y.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef] [PubMed]

Zhang, H. Z.

J. Y. Gao, H. Z. Zhang, H. F. Cui, X. Z. Guo, Y. Jiang, Q. W. Wang, G. X. Jin, and J. S. Li, “Inversionless light amplification in sodium,” Opt. Commun. 110, 590–594 (1994).
[CrossRef]

Zhang, H.-F.

H.-F. Zhang, J.-H. Wu, X.-M. Su, and J.-Y. Gao, “Quantum-interference effects on the index of refraction in an Er3+-doped yttrium aluminum garnet crystal,” Phys. Rev. A 66, 053816 (2002).
[CrossRef]

Zhang, S. Y.

Q. Y. Wang, S. Y. Zhang, and Y. Q. Jia, “Effect of the concentration of the Er3+ ion on the spectral intensity parameters of Er:YAG crystals,” J. Alloys Compd. 202, 1–5 (1993).
[CrossRef]

Zhekov, V. I.

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

Zibrov, A. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Am. J. Phys. (1)

M. W. Mitchell and R. Y. Chiao, “Causality and negative group delay in a simple bandpass amplifier,” Am. J. Phys. 66, 14–19 (1998).
[CrossRef]

Can. J. Phys. (1)

F. L. Kien and K. Hakuta, “Stimulated Raman scattering with slow light,” Can. J. Phys. 78, 543–559 (2000).
[CrossRef]

J. Alloys Compd. (1)

Q. Y. Wang, S. Y. Zhang, and Y. Q. Jia, “Effect of the concentration of the Er3+ ion on the spectral intensity parameters of Er:YAG crystals,” J. Alloys Compd. 202, 1–5 (1993).
[CrossRef]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

J. Lumin. (1)

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, “Recent progress in developing new rare earth materials for hole burning and coherent transient applications,” J. Lumin. 98, 281–287 (2002).
[CrossRef]

J. Mod. Opt. (1)

A. D. Wilson-Gordon and H. Friedmann, “Positive and negative dispersion in a three-level A system driven by a single pump,” J. Mod. Opt. 49, 125–139 (2002).
[CrossRef]

Nature (London) (2)

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature (London) 406, 277–279 (2000).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

Opt. Commun. (3)

G. Muller, A. Wicht, R. Rinkle, and K. Danzmann, “A new kind of heterodyne measurement of coherent population trapping,” Opt. Commun. 127, 37–43 (1996).
[CrossRef]

J. Y. Gao, H. Z. Zhang, H. F. Cui, X. Z. Guo, Y. Jiang, Q. W. Wang, G. X. Jin, and J. S. Li, “Inversionless light amplification in sodium,” Opt. Commun. 110, 590–594 (1994).
[CrossRef]

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227–230 (1997).
[CrossRef]

Phys. Lett. A (1)

H. Xu, Z. Dai, and Z. Jiang, “Effect of concentration of the Er3+ ion on electromagnetically induced transparency in Er3+:YAG crystal,” Phys. Lett. A 294, 19–25 (2002).
[CrossRef]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Phys. Rev. A (7)

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071–2075 (1994).
[CrossRef] [PubMed]

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[CrossRef]

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62, 055801 (2000).
[CrossRef]

H.-F. Zhang, J.-H. Wu, X.-M. Su, and J.-Y. Gao, “Quantum-interference effects on the index of refraction in an Er3+-doped yttrium aluminum garnet crystal,” Phys. Rev. A 66, 053816 (2002).
[CrossRef]

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[CrossRef] [PubMed]

O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocities below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996).
[CrossRef]

Phys. Rev. Lett. (10)

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

S. E. Harris, “Pondermotive forces with slow light,” Phys. Rev. Lett. 85, 4032–4035 (2000).
[CrossRef] [PubMed]

A. B. Matsko, Y. V. Rostovtsev, H. Z. Cummins, and M. O. Scully, “Using slow light to enhance acousto-optical effects: application to squeezed light,” Phys. Rev. Lett. 84, 5752–5755 (2000).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, and M. S. Shahriar, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef] [PubMed]

S. E. Harris, “Lasers without inversion: interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).
[CrossRef] [PubMed]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000).
[CrossRef] [PubMed]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
[CrossRef]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2597 (1991).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Bouion, A. Breniir, and B. Di. Bartoio, “New laser properties and spectroscopy of orthorhombic crystals YalO3:Er3+,” Phys. Status Solidi A 151, 231–235 (1995).
[CrossRef]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef] [PubMed]

Sov. J. Quantum Electron. (1)

V. I. Zhekov, T. M. Murina, A. M. Prokhorov, M. I. Studenikin, S. Georgescu, V. Lupei, and I. Ursu, “Cooperative process in Y3Al5O12:Er3+ crystals,” Sov. J. Quantum Electron. 16, 274–276 (1986).
[CrossRef]

Other (1)

K. A. Gschneidner and L. Eyring, Handbook on the Physics and Chemistry of Rare Earths (Elsevier Science, New York, 1984), Vol. 5, p. 320.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of a four-level system where levels |1〉, |2〉, |3〉, and |4〉 correspond to energy levels of Er3+ ions in an Er3+:YAG crystal  4I15/2,  4I13/2,  4I11/2, and  4I9/2, respectively.

Fig. 2
Fig. 2

Plots of the dimensionless absorptive Im ρ21 (dashed curves) and dispersive Re ρ21 (solid curves) parts of polarization versus probe detuning Δp/Γ21 at the detuning of the coherent field Δc=0. (a) Ωc=80Γ21. The curves m and n correspond to Λ=0 and Λ=0.5Γ21, respectively. (b) Ωc=80Γ21. The curves m and n correspond to Λ=4.0Γ21 and Λ=3.0Γ21, respectively. The other parameters used are Γ21=239.1, Γ31=0.80Γ21, Γ32=10.0Γ21, Γ41=0.86Γ21, Γ42=0.29Γ21, Γ43=0.04Γ21, Ωp=1.0Γ21 s-1.

Fig. 3
Fig. 3

Same as Fig. 2. (a) Λ=0.5Γ21. The curves m and n correspond to Ωc=80Γ21 and Ωc=120Γ21, respectively. (b) Λ=4.0Γ21. The curves m and n correspond to Ωc=80Γ21 and Ωc=120Γ21 respectively. The other parameters used are the same as those in Fig. 2.

Fig. 4
Fig. 4

Plot of group index (×1013) versus the incoherent pumping rate Λ/Γ21 at the Rabi frequency of the coherent field Ωc=120Γ21 and the detunings Δp=Δc=0. The parameters for the 0.52-at.% Er3+-doped YAG crystal are chosen as the density of doped Er3+ ions N=1.7×1025 m-3, and the dipole matrix element μ21=3.16×10-32 cm. The other parameters used are same as those in Fig. 2.

Fig. 5
Fig. 5

Plot of group index (×1013) versus the Rabi frequency of the coherent field Ωc/Γ21 at the detunings Δp=Δc=0. The solid and dashed curves correspond to Λ=0.5Γ21 and Λ=4.0Γ21, respectively. The other parameters used are same as those in Fig. 4.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

HI=-Δp|22|-(Δp+Δc)|44|-(Ωp|21|+Ωc|42|+c.c.),
ρt=-i(HI, ρ)+Λρ.
ρ11=Λ(ρ33-ρ11)+Γ21ρ22+Γ31ρ33+Γ41ρ44+iΩp*ρ21-iΩpρ12,
ρ22=-Γ21ρ22+Γ32ρ33+Γ42ρ44+iΩpρ12-iΩp*ρ21+iΩc*ρ42-iΩcρ24,
ρ33=-Λ(ρ33-ρ11)-Γ31ρ33-Γ32ρ33+Γ43ρ44,
ρ41=-[γ41-i(Δp+Δc)]ρ41+iΩcρ21-iΩρρ42,
ρ42=-(γ42-iΔc)ρ42+iΩc(ρ22-ρ44)-iΩp*ρ41,
ρ43=-[γ43-i(Δp+Δc)]ρ43+iΩcρ23,
ρ32=-(γ32+iΔp)ρ32-iΩp*ρ31-iΩcρ34,
ρ31=-γ31ρ31-iΩpρ32,
ρ21=-(γ21-iΔp)ρ21+iΩp(ρ11-ρ22)+iΩc*ρ41,
ρ11+ρ22+ρ33+ρ44=1,
ρij=ρji*,
γ41=(Γ41+Γ42+Γ43+Λ+γ41dph)/2,
γ42=(Γ41+Γ42+Γ43+Γ21+γ42dph)/2,
γ43=(Γ41+Γ42+Γ43+Γ31+Γ32+Λ+γ43dph)/2,
γ32=(Γ32+Γ31+Γ21+Λ+γ32dph)/2,
γ31=(Γ32+Γ31+Λ+Λ+γ31dph)/2,
γ21=(Γ21+Λ+γ21dph)/2,
ρ12=ρ21 *=iΩp(ρ22-ρ11)-i|Ωc|2Ωp(ρ22-ρ44)[γ41+i(Δp+Δc)](γ42+iΔc)γ21+iΔp+|Ωc|2γ41+i(Δp+Δc).
P=2Nμ21ρ12,
Im P=2Nμ21 Im(ρ12),
Re P=2Nμ21 Re(ρ12),
Vg=cn+ωp dndωω=ωp,
μij2=e2 2(2J+1) 2(2J+1) i=2,4,6Ωi|Ut|2,

Metrics