Abstract

We study experimentally and theoretically collisions between photorefractive spatial solitons propagating in opposite directions and show that each of the interacting solitons significantly affects the self-bending of the other, exhibiting effective attraction for one beam and repulsion for the other.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
    [CrossRef] [PubMed]
  2. E. DelRe, A. Ciattoni, B. Crosignani, and P. DiPorto, “Nonlinear optical propagation phenomena in near-transition centrosymmetric photorefractive crystals,” J. Nonlinear Opt. Phys. Mater. 8, 1–20 (1999).
    [CrossRef]
  3. O. Cohen, R. Uzdin, T. Carmon, J. W. Fleischer, M. Segev, and S. Odoulov, “Collisions between optical spatial solitons propagating in opposite directions,” Phys. Rev. Lett. 89, 133901 (2002).
    [CrossRef] [PubMed]
  4. M. Belic, Ph. Jander, A. Strinic, A. Desyatnikov, and C. Denz, “Self-trapped bidirectional waveguides in saturable photorefractive medium,” Phys. Rev. E 68, 025601 (2003).
    [CrossRef]
  5. D. Kip, C. Herden, and M. Wesner, “All-optical signal routing using interaction of mutually incoherent spatial solitons,” Ferroelectrics 135, 274–278 (2002).
  6. Similar experiments were carried out in the photorefractive KLTN crystals considered in Ref. 2, but the effects were small because self-bending in such centrosymmetric crystals is tiny (E. DelRe, Universita dell’Aquila, L’Aquila, Italy, personal communication, 2004).
  7. S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, “Higher-order space charge field effects on the evolution of spatial solitons in biased photorefractive crystals,” Opt. Commun. 130, 288–294 (1996).
    [CrossRef]
  8. M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
    [CrossRef] [PubMed]
  9. D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12, 1628–1633 (1995).
    [CrossRef]
  10. M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. DiPorto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995).
    [CrossRef]
  11. K. Kos, H. Meng, G. Salamo, M.-F. Shih, M. Segev, and G. C. Valley, “One-dimensional steady-state photorefractive screening solitons,” Phys. Rev. E 53, R4330–R4333 (1996).
    [CrossRef]
  12. M. Shih, P. Leach, M. Segev, M. H. Garrett, G. J. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996).
    [CrossRef] [PubMed]
  13. M. Shih, Z. Chen, M. Segev, T. Coskun, and D. N. Christodoulides, “Incoherent collisions between one-dimensional steady-state photorefractive screening solitons,” Appl. Phys. Lett. 69, 4151–4153 (1996).
    [CrossRef]
  14. W. Krolikowski and S. A. Holmstrom, “Fusion and birth of spatial solitons upon collision,” Opt. Lett. 22, 369–371 (1997).
    [CrossRef] [PubMed]
  15. H. Meng, G. Salamo, M. Shih, and M. Segev, “Coherent collisions of photorefractive solitons,” Opt. Lett. 22, 448–450 (1997).
    [CrossRef] [PubMed]
  16. D. Anderson and M. Lisak, “Bandwidth limits due to incoherent soliton interaction in optical-fiber communication systems,” Phys. Rev. A 32, 2270–2274 (1995).
    [CrossRef]
  17. O. Cohen, S. Lan, T. Carmon, J. A. Giordmaine, and M. Segev, “Spatial vector solitons consisting of counterpropagating fields,” Opt. Lett. 27, 2013–2015 (2002).
    [CrossRef]
  18. C. Denz, Institute of Applied Physics, Westfalische-Wilhelms-Universitat, Munster, Germany (personal communication, 2003).
  19. M. Haelterman, A. P. Sheppard, and A. W. Snyder, “Bimodal counterpropagating spatial solitary waves,” Opt. Commun. 10, 145–152 (1993).
    [CrossRef]
  20. K. Y. Kolossovski, A. V. Buryak, and R. A. Sammut, “Quadratic solitary waves in a counterpropagating quasi-phase-matched configuration,” Opt. Lett. 24, 835–837 (1999).
    [CrossRef]
  21. K. Motzek, Ph. Jander, A. Desyatnikov, M. Belic, C. Denz, and F. Kaiser, “Dynamic counterpropagating vector solitons in saturable self-focusing media,” Phys. Rev. E 68, 06611–06614 (2003).
    [CrossRef]
  22. O. Cohen, T. Carmon, M. Segev, and S. Odoulov, “Holographic solitons,” Opt. Lett. 27, 2031–2033 (2002).
    [CrossRef]

2003

M. Belic, Ph. Jander, A. Strinic, A. Desyatnikov, and C. Denz, “Self-trapped bidirectional waveguides in saturable photorefractive medium,” Phys. Rev. E 68, 025601 (2003).
[CrossRef]

K. Motzek, Ph. Jander, A. Desyatnikov, M. Belic, C. Denz, and F. Kaiser, “Dynamic counterpropagating vector solitons in saturable self-focusing media,” Phys. Rev. E 68, 06611–06614 (2003).
[CrossRef]

2002

D. Kip, C. Herden, and M. Wesner, “All-optical signal routing using interaction of mutually incoherent spatial solitons,” Ferroelectrics 135, 274–278 (2002).

O. Cohen, R. Uzdin, T. Carmon, J. W. Fleischer, M. Segev, and S. Odoulov, “Collisions between optical spatial solitons propagating in opposite directions,” Phys. Rev. Lett. 89, 133901 (2002).
[CrossRef] [PubMed]

O. Cohen, S. Lan, T. Carmon, J. A. Giordmaine, and M. Segev, “Spatial vector solitons consisting of counterpropagating fields,” Opt. Lett. 27, 2013–2015 (2002).
[CrossRef]

O. Cohen, T. Carmon, M. Segev, and S. Odoulov, “Holographic solitons,” Opt. Lett. 27, 2031–2033 (2002).
[CrossRef]

1999

K. Y. Kolossovski, A. V. Buryak, and R. A. Sammut, “Quadratic solitary waves in a counterpropagating quasi-phase-matched configuration,” Opt. Lett. 24, 835–837 (1999).
[CrossRef]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[CrossRef] [PubMed]

E. DelRe, A. Ciattoni, B. Crosignani, and P. DiPorto, “Nonlinear optical propagation phenomena in near-transition centrosymmetric photorefractive crystals,” J. Nonlinear Opt. Phys. Mater. 8, 1–20 (1999).
[CrossRef]

1997

1996

K. Kos, H. Meng, G. Salamo, M.-F. Shih, M. Segev, and G. C. Valley, “One-dimensional steady-state photorefractive screening solitons,” Phys. Rev. E 53, R4330–R4333 (1996).
[CrossRef]

M. Shih, Z. Chen, M. Segev, T. Coskun, and D. N. Christodoulides, “Incoherent collisions between one-dimensional steady-state photorefractive screening solitons,” Appl. Phys. Lett. 69, 4151–4153 (1996).
[CrossRef]

S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, “Higher-order space charge field effects on the evolution of spatial solitons in biased photorefractive crystals,” Opt. Commun. 130, 288–294 (1996).
[CrossRef]

M. Shih, P. Leach, M. Segev, M. H. Garrett, G. J. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996).
[CrossRef] [PubMed]

1995

M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. DiPorto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995).
[CrossRef]

D. Anderson and M. Lisak, “Bandwidth limits due to incoherent soliton interaction in optical-fiber communication systems,” Phys. Rev. A 32, 2270–2274 (1995).
[CrossRef]

D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12, 1628–1633 (1995).
[CrossRef]

1994

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

1993

M. Haelterman, A. P. Sheppard, and A. W. Snyder, “Bimodal counterpropagating spatial solitary waves,” Opt. Commun. 10, 145–152 (1993).
[CrossRef]

Anderson, D.

D. Anderson and M. Lisak, “Bandwidth limits due to incoherent soliton interaction in optical-fiber communication systems,” Phys. Rev. A 32, 2270–2274 (1995).
[CrossRef]

Belic, M.

M. Belic, Ph. Jander, A. Strinic, A. Desyatnikov, and C. Denz, “Self-trapped bidirectional waveguides in saturable photorefractive medium,” Phys. Rev. E 68, 025601 (2003).
[CrossRef]

K. Motzek, Ph. Jander, A. Desyatnikov, M. Belic, C. Denz, and F. Kaiser, “Dynamic counterpropagating vector solitons in saturable self-focusing media,” Phys. Rev. E 68, 06611–06614 (2003).
[CrossRef]

Buryak, A. V.

Carmon, T.

Carvalho, M. I.

S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, “Higher-order space charge field effects on the evolution of spatial solitons in biased photorefractive crystals,” Opt. Commun. 130, 288–294 (1996).
[CrossRef]

D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12, 1628–1633 (1995).
[CrossRef]

Chen, Z.

M. Shih, Z. Chen, M. Segev, T. Coskun, and D. N. Christodoulides, “Incoherent collisions between one-dimensional steady-state photorefractive screening solitons,” Appl. Phys. Lett. 69, 4151–4153 (1996).
[CrossRef]

Christodoulides, D. N.

M. Shih, Z. Chen, M. Segev, T. Coskun, and D. N. Christodoulides, “Incoherent collisions between one-dimensional steady-state photorefractive screening solitons,” Appl. Phys. Lett. 69, 4151–4153 (1996).
[CrossRef]

S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, “Higher-order space charge field effects on the evolution of spatial solitons in biased photorefractive crystals,” Opt. Commun. 130, 288–294 (1996).
[CrossRef]

D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12, 1628–1633 (1995).
[CrossRef]

Ciattoni, A.

E. DelRe, A. Ciattoni, B. Crosignani, and P. DiPorto, “Nonlinear optical propagation phenomena in near-transition centrosymmetric photorefractive crystals,” J. Nonlinear Opt. Phys. Mater. 8, 1–20 (1999).
[CrossRef]

Cohen, O.

Coskun, T.

M. Shih, Z. Chen, M. Segev, T. Coskun, and D. N. Christodoulides, “Incoherent collisions between one-dimensional steady-state photorefractive screening solitons,” Appl. Phys. Lett. 69, 4151–4153 (1996).
[CrossRef]

Crosignani, B.

E. DelRe, A. Ciattoni, B. Crosignani, and P. DiPorto, “Nonlinear optical propagation phenomena in near-transition centrosymmetric photorefractive crystals,” J. Nonlinear Opt. Phys. Mater. 8, 1–20 (1999).
[CrossRef]

M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. DiPorto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995).
[CrossRef]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

DelRe, E.

E. DelRe, A. Ciattoni, B. Crosignani, and P. DiPorto, “Nonlinear optical propagation phenomena in near-transition centrosymmetric photorefractive crystals,” J. Nonlinear Opt. Phys. Mater. 8, 1–20 (1999).
[CrossRef]

Denz, C.

K. Motzek, Ph. Jander, A. Desyatnikov, M. Belic, C. Denz, and F. Kaiser, “Dynamic counterpropagating vector solitons in saturable self-focusing media,” Phys. Rev. E 68, 06611–06614 (2003).
[CrossRef]

M. Belic, Ph. Jander, A. Strinic, A. Desyatnikov, and C. Denz, “Self-trapped bidirectional waveguides in saturable photorefractive medium,” Phys. Rev. E 68, 025601 (2003).
[CrossRef]

Desyatnikov, A.

M. Belic, Ph. Jander, A. Strinic, A. Desyatnikov, and C. Denz, “Self-trapped bidirectional waveguides in saturable photorefractive medium,” Phys. Rev. E 68, 025601 (2003).
[CrossRef]

K. Motzek, Ph. Jander, A. Desyatnikov, M. Belic, C. Denz, and F. Kaiser, “Dynamic counterpropagating vector solitons in saturable self-focusing media,” Phys. Rev. E 68, 06611–06614 (2003).
[CrossRef]

DiPorto, P.

E. DelRe, A. Ciattoni, B. Crosignani, and P. DiPorto, “Nonlinear optical propagation phenomena in near-transition centrosymmetric photorefractive crystals,” J. Nonlinear Opt. Phys. Mater. 8, 1–20 (1999).
[CrossRef]

M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. DiPorto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995).
[CrossRef]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

Fleischer, J. W.

O. Cohen, R. Uzdin, T. Carmon, J. W. Fleischer, M. Segev, and S. Odoulov, “Collisions between optical spatial solitons propagating in opposite directions,” Phys. Rev. Lett. 89, 133901 (2002).
[CrossRef] [PubMed]

Garrett, M. H.

Giordmaine, J. A.

Haelterman, M.

M. Haelterman, A. P. Sheppard, and A. W. Snyder, “Bimodal counterpropagating spatial solitary waves,” Opt. Commun. 10, 145–152 (1993).
[CrossRef]

Herden, C.

D. Kip, C. Herden, and M. Wesner, “All-optical signal routing using interaction of mutually incoherent spatial solitons,” Ferroelectrics 135, 274–278 (2002).

Holmstrom, S. A.

Jander, Ph.

K. Motzek, Ph. Jander, A. Desyatnikov, M. Belic, C. Denz, and F. Kaiser, “Dynamic counterpropagating vector solitons in saturable self-focusing media,” Phys. Rev. E 68, 06611–06614 (2003).
[CrossRef]

M. Belic, Ph. Jander, A. Strinic, A. Desyatnikov, and C. Denz, “Self-trapped bidirectional waveguides in saturable photorefractive medium,” Phys. Rev. E 68, 025601 (2003).
[CrossRef]

Kaiser, F.

K. Motzek, Ph. Jander, A. Desyatnikov, M. Belic, C. Denz, and F. Kaiser, “Dynamic counterpropagating vector solitons in saturable self-focusing media,” Phys. Rev. E 68, 06611–06614 (2003).
[CrossRef]

Kip, D.

D. Kip, C. Herden, and M. Wesner, “All-optical signal routing using interaction of mutually incoherent spatial solitons,” Ferroelectrics 135, 274–278 (2002).

Kolossovski, K. Y.

Kos, K.

K. Kos, H. Meng, G. Salamo, M.-F. Shih, M. Segev, and G. C. Valley, “One-dimensional steady-state photorefractive screening solitons,” Phys. Rev. E 53, R4330–R4333 (1996).
[CrossRef]

Krolikowski, W.

Lan, S.

Leach, P.

Lisak, M.

D. Anderson and M. Lisak, “Bandwidth limits due to incoherent soliton interaction in optical-fiber communication systems,” Phys. Rev. A 32, 2270–2274 (1995).
[CrossRef]

Meng, H.

H. Meng, G. Salamo, M. Shih, and M. Segev, “Coherent collisions of photorefractive solitons,” Opt. Lett. 22, 448–450 (1997).
[CrossRef] [PubMed]

K. Kos, H. Meng, G. Salamo, M.-F. Shih, M. Segev, and G. C. Valley, “One-dimensional steady-state photorefractive screening solitons,” Phys. Rev. E 53, R4330–R4333 (1996).
[CrossRef]

Motzek, K.

K. Motzek, Ph. Jander, A. Desyatnikov, M. Belic, C. Denz, and F. Kaiser, “Dynamic counterpropagating vector solitons in saturable self-focusing media,” Phys. Rev. E 68, 06611–06614 (2003).
[CrossRef]

Odoulov, S.

O. Cohen, T. Carmon, M. Segev, and S. Odoulov, “Holographic solitons,” Opt. Lett. 27, 2031–2033 (2002).
[CrossRef]

O. Cohen, R. Uzdin, T. Carmon, J. W. Fleischer, M. Segev, and S. Odoulov, “Collisions between optical spatial solitons propagating in opposite directions,” Phys. Rev. Lett. 89, 133901 (2002).
[CrossRef] [PubMed]

Salamo, G.

H. Meng, G. Salamo, M. Shih, and M. Segev, “Coherent collisions of photorefractive solitons,” Opt. Lett. 22, 448–450 (1997).
[CrossRef] [PubMed]

K. Kos, H. Meng, G. Salamo, M.-F. Shih, M. Segev, and G. C. Valley, “One-dimensional steady-state photorefractive screening solitons,” Phys. Rev. E 53, R4330–R4333 (1996).
[CrossRef]

M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. DiPorto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995).
[CrossRef]

Salamo, G. J.

Sammut, R. A.

Segev, M.

O. Cohen, R. Uzdin, T. Carmon, J. W. Fleischer, M. Segev, and S. Odoulov, “Collisions between optical spatial solitons propagating in opposite directions,” Phys. Rev. Lett. 89, 133901 (2002).
[CrossRef] [PubMed]

O. Cohen, S. Lan, T. Carmon, J. A. Giordmaine, and M. Segev, “Spatial vector solitons consisting of counterpropagating fields,” Opt. Lett. 27, 2013–2015 (2002).
[CrossRef]

O. Cohen, T. Carmon, M. Segev, and S. Odoulov, “Holographic solitons,” Opt. Lett. 27, 2031–2033 (2002).
[CrossRef]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[CrossRef] [PubMed]

H. Meng, G. Salamo, M. Shih, and M. Segev, “Coherent collisions of photorefractive solitons,” Opt. Lett. 22, 448–450 (1997).
[CrossRef] [PubMed]

M. Shih, P. Leach, M. Segev, M. H. Garrett, G. J. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996).
[CrossRef] [PubMed]

M. Shih, Z. Chen, M. Segev, T. Coskun, and D. N. Christodoulides, “Incoherent collisions between one-dimensional steady-state photorefractive screening solitons,” Appl. Phys. Lett. 69, 4151–4153 (1996).
[CrossRef]

K. Kos, H. Meng, G. Salamo, M.-F. Shih, M. Segev, and G. C. Valley, “One-dimensional steady-state photorefractive screening solitons,” Phys. Rev. E 53, R4330–R4333 (1996).
[CrossRef]

M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. DiPorto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995).
[CrossRef]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

Sheppard, A. P.

M. Haelterman, A. P. Sheppard, and A. W. Snyder, “Bimodal counterpropagating spatial solitary waves,” Opt. Commun. 10, 145–152 (1993).
[CrossRef]

Shih, M.

H. Meng, G. Salamo, M. Shih, and M. Segev, “Coherent collisions of photorefractive solitons,” Opt. Lett. 22, 448–450 (1997).
[CrossRef] [PubMed]

M. Shih, P. Leach, M. Segev, M. H. Garrett, G. J. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996).
[CrossRef] [PubMed]

M. Shih, Z. Chen, M. Segev, T. Coskun, and D. N. Christodoulides, “Incoherent collisions between one-dimensional steady-state photorefractive screening solitons,” Appl. Phys. Lett. 69, 4151–4153 (1996).
[CrossRef]

M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. DiPorto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995).
[CrossRef]

Shih, M.-F.

K. Kos, H. Meng, G. Salamo, M.-F. Shih, M. Segev, and G. C. Valley, “One-dimensional steady-state photorefractive screening solitons,” Phys. Rev. E 53, R4330–R4333 (1996).
[CrossRef]

Singh, S. R.

S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, “Higher-order space charge field effects on the evolution of spatial solitons in biased photorefractive crystals,” Opt. Commun. 130, 288–294 (1996).
[CrossRef]

Snyder, A. W.

M. Haelterman, A. P. Sheppard, and A. W. Snyder, “Bimodal counterpropagating spatial solitary waves,” Opt. Commun. 10, 145–152 (1993).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[CrossRef] [PubMed]

Strinic, A.

M. Belic, Ph. Jander, A. Strinic, A. Desyatnikov, and C. Denz, “Self-trapped bidirectional waveguides in saturable photorefractive medium,” Phys. Rev. E 68, 025601 (2003).
[CrossRef]

Uzdin, R.

O. Cohen, R. Uzdin, T. Carmon, J. W. Fleischer, M. Segev, and S. Odoulov, “Collisions between optical spatial solitons propagating in opposite directions,” Phys. Rev. Lett. 89, 133901 (2002).
[CrossRef] [PubMed]

Valley, G. C.

K. Kos, H. Meng, G. Salamo, M.-F. Shih, M. Segev, and G. C. Valley, “One-dimensional steady-state photorefractive screening solitons,” Phys. Rev. E 53, R4330–R4333 (1996).
[CrossRef]

M. Shih, P. Leach, M. Segev, M. H. Garrett, G. J. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996).
[CrossRef] [PubMed]

M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. DiPorto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995).
[CrossRef]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

Wesner, M.

D. Kip, C. Herden, and M. Wesner, “All-optical signal routing using interaction of mutually incoherent spatial solitons,” Ferroelectrics 135, 274–278 (2002).

Yariv, A.

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. Shih, Z. Chen, M. Segev, T. Coskun, and D. N. Christodoulides, “Incoherent collisions between one-dimensional steady-state photorefractive screening solitons,” Appl. Phys. Lett. 69, 4151–4153 (1996).
[CrossRef]

Electron. Lett.

M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. DiPorto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995).
[CrossRef]

Ferroelectrics

D. Kip, C. Herden, and M. Wesner, “All-optical signal routing using interaction of mutually incoherent spatial solitons,” Ferroelectrics 135, 274–278 (2002).

J. Nonlinear Opt. Phys. Mater.

E. DelRe, A. Ciattoni, B. Crosignani, and P. DiPorto, “Nonlinear optical propagation phenomena in near-transition centrosymmetric photorefractive crystals,” J. Nonlinear Opt. Phys. Mater. 8, 1–20 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, “Higher-order space charge field effects on the evolution of spatial solitons in biased photorefractive crystals,” Opt. Commun. 130, 288–294 (1996).
[CrossRef]

M. Haelterman, A. P. Sheppard, and A. W. Snyder, “Bimodal counterpropagating spatial solitary waves,” Opt. Commun. 10, 145–152 (1993).
[CrossRef]

Opt. Lett.

Phys. Rev. A

D. Anderson and M. Lisak, “Bandwidth limits due to incoherent soliton interaction in optical-fiber communication systems,” Phys. Rev. A 32, 2270–2274 (1995).
[CrossRef]

Phys. Rev. E

K. Kos, H. Meng, G. Salamo, M.-F. Shih, M. Segev, and G. C. Valley, “One-dimensional steady-state photorefractive screening solitons,” Phys. Rev. E 53, R4330–R4333 (1996).
[CrossRef]

M. Belic, Ph. Jander, A. Strinic, A. Desyatnikov, and C. Denz, “Self-trapped bidirectional waveguides in saturable photorefractive medium,” Phys. Rev. E 68, 025601 (2003).
[CrossRef]

K. Motzek, Ph. Jander, A. Desyatnikov, M. Belic, C. Denz, and F. Kaiser, “Dynamic counterpropagating vector solitons in saturable self-focusing media,” Phys. Rev. E 68, 06611–06614 (2003).
[CrossRef]

Phys. Rev. Lett.

O. Cohen, R. Uzdin, T. Carmon, J. W. Fleischer, M. Segev, and S. Odoulov, “Collisions between optical spatial solitons propagating in opposite directions,” Phys. Rev. Lett. 89, 133901 (2002).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef] [PubMed]

Science

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[CrossRef] [PubMed]

Other

Similar experiments were carried out in the photorefractive KLTN crystals considered in Ref. 2, but the effects were small because self-bending in such centrosymmetric crystals is tiny (E. DelRe, Universita dell’Aquila, L’Aquila, Italy, personal communication, 2004).

C. Denz, Institute of Applied Physics, Westfalische-Wilhelms-Universitat, Munster, Germany (personal communication, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated interaction between solitons propagating in opposite directions. Top, beam profiles at both faces: input beams (thick curves), output beams when the solitons are launched simultaneously (solid curves), and output beams when the solitons are launched individually (dashed curves). Middle, index change Δn at both faces when the beams are launched simultaneously (thin solid curves) and individually (dashed curves). Bottom left, trajectory of the peak of each soliton when the solitons are launched simultaneously (solid curve) and separately (dashed curve). Bottom right, sketch of the crystal, illustrating a top view of the beam trajectories and beam profiles at both faces. The bending of the exiting soliton at Face A is reduced by ∼13 µm compared with the self-bending of the individually propagating soliton (this change in bending acts as effective attraction between the solitons). The bending of the soliton exiting at face B is reduced by ∼2 µm compared with the self-bending of the individually propagating soliton (this change in bending acts as effective repulsion between the solitons).

Fig. 2
Fig. 2

Experimental setup for studying collisions between solitons propagating in opposite directions.

Fig. 3
Fig. 3

Experimental results: photographs and intensity profiles of the output beams at both faces for A, E, individually launched solitons; B, F, incoherently interacting solitons; C, G, coherently interacting solitons; and D, H, linearly diffracting beams (at zero voltage).

Fig. 4
Fig. 4

Decay of the reflection from the grating formed in a vector soliton made from mutually coherent counterpropagating beams, as one beam is blocked (see Ref. 17 for more details).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Esc=E01+I 1+0reNA Escx-KbTe Ix 11+I+KbTe 0reNA 2Escx2,
E=F(x, z)exp[i(kz-ωt)]+B(x, z)×exp[-i(kz+ωt)]+c.c.,
2Fx2+2ik Fz=-2k2Δn(I)n0F,
2Bx2-2ik Bz=-2k2Δn(I)n0B,

Metrics