Abstract

Small subwavelength apertures provide high spatial resolution that is not limited by the diffraction limit. However, application of these apertures to practical problems has been hindered by the critical problem of extremely low power transmission efficiency. Recently, we reported a specially designed subwavelength aperture that has a letter C shape (X. Shi, R. L. Thornton, and L. Hesselink, Opt. Lett. 28, 1320 (2003)]. A well-designed C aperture can provide both a high spatial resolution of ∼λ/10 and a high power throughput greater than 1. We present the underlying design ideas of the C aperture and report interesting general properties of optical transmissions through a single two-dimensional subwavelength aperture, based on numerical finite-difference time-domain simulations and fundamental observations. These results are expected to provide helpful information for both C-aperture applications and general studies of subwavelength metallic structures.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. H. Synge, “A suggested method for extending microscopic resolution into the ultramicroscopic region,” London, Edinburgh Dublin Philos. Mag. J. Sci. 6, 356 (1928).
  2. E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510 (1972).
    [CrossRef] [PubMed]
  3. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “De-velopment of a 500 Aa spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
    [CrossRef]
  4. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
    [CrossRef]
  5. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).
    [CrossRef]
  6. G. A. Valaskovic, M. Holton, and G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 34, 1215–1228 (1995).
    [CrossRef] [PubMed]
  7. D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68, 2491–2492 (1996).
    [CrossRef]
  8. T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  9. H. Ghaemi, T. Thio, D. Grupp, T. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
    [CrossRef]
  10. T. Kim, T. Thio, T. Ebbesen, D. Grupp, and H. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24, 256–258 (1999).
    [CrossRef]
  11. D. Grupp, H. Lezec, T. Thio, and T. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860 (1999).
    [CrossRef]
  12. J. Porto, F. Garcia-Vidal, and J. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  13. L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [CrossRef] [PubMed]
  14. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
    [CrossRef] [PubMed]
  15. S. Hohng, Y. Yoon, D. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. Park, K. Yoo, J. Kim, H. Ryu, and Q. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
    [CrossRef]
  16. F. Z. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 3901 (2002).
  17. H. Schouten, T. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
    [CrossRef]
  18. X. Shi, R. L. Thornton, and L. Hesselink, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28, 1320–1322 (2003).
    [CrossRef] [PubMed]
  19. X. Shi, R. L. Thornton, and L. Hesselink, “A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL),” Proc. SPIE 4342, 320–327 (2002).
    [CrossRef]
  20. K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210, 294–300 (2003).
    [CrossRef] [PubMed]
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 2000).
  22. XFDTD, 5.0, Remcom, Inc. (2000).
  23. L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995).
    [CrossRef] [PubMed]
  24. R. S. Elliott, An Introduction to Guided Waves and Microwave Circuits (Prentice-Hall, Englewood Cliffs, N.J., 1993).
  25. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

2003 (3)

H. Schouten, T. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

X. Shi, R. L. Thornton, and L. Hesselink, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28, 1320–1322 (2003).
[CrossRef] [PubMed]

K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210, 294–300 (2003).
[CrossRef] [PubMed]

2002 (2)

X. Shi, R. L. Thornton, and L. Hesselink, “A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL),” Proc. SPIE 4342, 320–327 (2002).
[CrossRef]

S. Hohng, Y. Yoon, D. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. Park, K. Yoo, J. Kim, H. Ryu, and Q. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

2001 (2)

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[CrossRef] [PubMed]

1999 (3)

T. Kim, T. Thio, T. Ebbesen, D. Grupp, and H. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24, 256–258 (1999).
[CrossRef]

D. Grupp, H. Lezec, T. Thio, and T. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860 (1999).
[CrossRef]

J. Porto, F. Garcia-Vidal, and J. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

1998 (2)

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. Ghaemi, T. Thio, D. Grupp, T. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

1996 (1)

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68, 2491–2492 (1996).
[CrossRef]

1995 (2)

1984 (2)

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “De-velopment of a 500 Aa spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

1972 (1)

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510 (1972).
[CrossRef] [PubMed]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).
[CrossRef]

1928 (1)

E. H. Synge, “A suggested method for extending microscopic resolution into the ultramicroscopic region,” London, Edinburgh Dublin Philos. Mag. J. Sci. 6, 356 (1928).

Ash, E. A.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510 (1972).
[CrossRef] [PubMed]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).
[CrossRef]

Blok, H.

H. Schouten, T. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Dutoit, B.

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68, 2491–2492 (1996).
[CrossRef]

Ebbesen, T.

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. Kim, T. Thio, T. Ebbesen, D. Grupp, and H. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24, 256–258 (1999).
[CrossRef]

D. Grupp, H. Lezec, T. Thio, and T. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860 (1999).
[CrossRef]

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. Ghaemi, T. Thio, D. Grupp, T. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Garcia-Vidal, F.

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

J. Porto, F. Garcia-Vidal, and J. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Ghaemi, H.

H. Ghaemi, T. Thio, D. Grupp, T. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Grupp, D.

D. Grupp, H. Lezec, T. Thio, and T. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860 (1999).
[CrossRef]

T. Kim, T. Thio, T. Ebbesen, D. Grupp, and H. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24, 256–258 (1999).
[CrossRef]

H. Ghaemi, T. Thio, D. Grupp, T. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Harootunian, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “De-velopment of a 500 Aa spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[CrossRef]

Hecht, B.

Hesselink, L.

X. Shi, R. L. Thornton, and L. Hesselink, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28, 1320–1322 (2003).
[CrossRef] [PubMed]

X. Shi, R. L. Thornton, and L. Hesselink, “A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL),” Proc. SPIE 4342, 320–327 (2002).
[CrossRef]

Hohng, S.

S. Hohng, Y. Yoon, D. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. Park, K. Yoo, J. Kim, H. Ryu, and Q. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Holton, M.

Isaacson, M.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “De-velopment of a 500 Aa spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[CrossRef]

Kim, D.

S. Hohng, Y. Yoon, D. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. Park, K. Yoo, J. Kim, H. Ryu, and Q. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Kim, J.

S. Hohng, Y. Yoon, D. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. Park, K. Yoo, J. Kim, H. Ryu, and Q. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Kim, T.

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Lenstra, D.

H. Schouten, T. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

Lewis, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “De-velopment of a 500 Aa spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[CrossRef]

Lezec, H.

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. Kim, T. Thio, T. Ebbesen, D. Grupp, and H. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24, 256–258 (1999).
[CrossRef]

D. Grupp, H. Lezec, T. Thio, and T. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860 (1999).
[CrossRef]

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. Ghaemi, T. Thio, D. Grupp, T. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Lienau, C.

S. Hohng, Y. Yoon, D. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. Park, K. Yoo, J. Kim, H. Ryu, and Q. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Malyarchuk, V.

S. Hohng, Y. Yoon, D. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. Park, K. Yoo, J. Kim, H. Ryu, and Q. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Martin-Moreno, L.

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Morrison, G. H.

Muller, R.

S. Hohng, Y. Yoon, D. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. Park, K. Yoo, J. Kim, H. Ryu, and Q. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Muray, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “De-velopment of a 500 Aa spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[CrossRef]

Nettesheim, S.

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68, 2491–2492 (1996).
[CrossRef]

Nicholls, G.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510 (1972).
[CrossRef] [PubMed]

Novotny, L.

Park, J.

S. Hohng, Y. Yoon, D. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. Park, K. Yoo, J. Kim, H. Ryu, and Q. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Park, Q.

S. Hohng, Y. Yoon, D. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. Park, K. Yoo, J. Kim, H. Ryu, and Q. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Pellerin, K.

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J.

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

J. Porto, F. Garcia-Vidal, and J. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Pohl, D. W.

L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995).
[CrossRef] [PubMed]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Porto, J.

J. Porto, F. Garcia-Vidal, and J. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Ryu, H.

S. Hohng, Y. Yoon, D. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. Park, K. Yoo, J. Kim, H. Ryu, and Q. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Schouten, H.

H. Schouten, T. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

Shi, X.

X. Shi, R. L. Thornton, and L. Hesselink, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28, 1320–1322 (2003).
[CrossRef] [PubMed]

X. Shi, R. L. Thornton, and L. Hesselink, “A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL),” Proc. SPIE 4342, 320–327 (2002).
[CrossRef]

Synge, E. H.

E. H. Synge, “A suggested method for extending microscopic resolution into the ultramicroscopic region,” London, Edinburgh Dublin Philos. Mag. J. Sci. 6, 356 (1928).

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[CrossRef] [PubMed]

Tanaka, K.

K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210, 294–300 (2003).
[CrossRef] [PubMed]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210, 294–300 (2003).
[CrossRef] [PubMed]

Thio, T.

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

D. Grupp, H. Lezec, T. Thio, and T. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860 (1999).
[CrossRef]

T. Kim, T. Thio, T. Ebbesen, D. Grupp, and H. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24, 256–258 (1999).
[CrossRef]

H. Ghaemi, T. Thio, D. Grupp, T. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Thornton, R. L.

X. Shi, R. L. Thornton, and L. Hesselink, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28, 1320–1322 (2003).
[CrossRef] [PubMed]

X. Shi, R. L. Thornton, and L. Hesselink, “A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL),” Proc. SPIE 4342, 320–327 (2002).
[CrossRef]

Valaskovic, G. A.

Visser, T.

H. Schouten, T. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

Wolff, P.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Yoo, K.

S. Hohng, Y. Yoon, D. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. Park, K. Yoo, J. Kim, H. Ryu, and Q. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Yoon, Y.

S. Hohng, Y. Yoon, D. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. Park, K. Yoo, J. Kim, H. Ryu, and Q. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

Zeisel, D.

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68, 2491–2492 (1996).
[CrossRef]

Zenobi, R.

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68, 2491–2492 (1996).
[CrossRef]

Adv. Mater. (1)

D. Grupp, H. Lezec, T. Thio, and T. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, “Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips,” Appl. Phys. Lett. 68, 2491–2492 (1996).
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

S. Hohng, Y. Yoon, D. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. Park, K. Yoo, J. Kim, H. Ryu, and Q. Park, “Light emission from the shadows: surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81, 3239–3241 (2002).
[CrossRef]

J. Microsc. (1)

K. Tanaka and M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210, 294–300 (2003).
[CrossRef] [PubMed]

London, Edinburgh Dublin Philos. Mag. J. Sci. (1)

E. H. Synge, “A suggested method for extending microscopic resolution into the ultramicroscopic region,” London, Edinburgh Dublin Philos. Mag. J. Sci. 6, 356 (1928).

Nature (2)

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510 (1972).
[CrossRef] [PubMed]

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).
[CrossRef]

Phys. Rev. B (1)

H. Ghaemi, T. Thio, D. Grupp, T. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Phys. Rev. E (1)

H. Schouten, T. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

J. Porto, F. Garcia-Vidal, and J. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[CrossRef] [PubMed]

Proc. SPIE (1)

X. Shi, R. L. Thornton, and L. Hesselink, “A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL),” Proc. SPIE 4342, 320–327 (2002).
[CrossRef]

Ultramicroscopy (1)

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “De-velopment of a 500 Aa spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[CrossRef]

Other (5)

F. Z. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 3901 (2002).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 2000).

XFDTD, 5.0, Remcom, Inc. (2000).

R. S. Elliott, An Introduction to Guided Waves and Microwave Circuits (Prentice-Hall, Englewood Cliffs, N.J., 1993).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Schematic drawing of the simulation setup for the aperture study.

Fig. 2
Fig. 2

Near-field intensity distributions of a 200-nm square aperture at various distances z away from the aperture on the transmission side.

Fig. 3
Fig. 3

Schematic picture showing aperture polarization effects.

Fig. 4
Fig. 4

Power-throughput comparison of three aperture geometries: Square, Rect_V and Rect_H.

Fig. 5
Fig. 5

Comparisons of the near-field (a) spot size, and (b) peak intensity of the Rect_V and Rect_H apertures.

Fig. 6
Fig. 6

Schematic picture showing the geometry change from a rectangular aperture to a C aperture by increasing the “arm” length b.

Fig. 7
Fig. 7

Plot of the power throughput versus the “arm” length b of the C aperture.

Fig. 8
Fig. 8

Plot of the near-field (a) peak intensity and (b) spot size versus the “arm” length b of the C aperture.

Fig. 9
Fig. 9

Near-field intensity distribution comparison of the C aperture and the 100-nm square aperture.

Fig. 10
Fig. 10

Study of the C1 aperture resonant transmission: (a) the incident pulse and probe field; (b) the transmission spectral response.

Fig. 11
Fig. 11

Four length parameters that determine the C-aperture shape.

Fig. 12
Fig. 12

Comparisons of the resonant-transmission wavelengths and the cutoff wavelengths of the C apertures.

Fig. 13
Fig. 13

Schematic drawing of the three processes determining optical transmission through a small aperture.

Fig. 14
Fig. 14

Comparison of the near-field intensity distributions among the C1, C2, and C3 apertures.

Fig. 15
Fig. 15

Transmission spectral responses for three cases: C1 with no filling, C3 with no filling, and C3 with glass filling. The resonant wavelength is redshifted in the glass material filling (n=1.5) case.

Fig. 16
Fig. 16

Comparisons of the (a) power throughput and (b) peak intensity, of the C1, C2, and C3 apertures as the aperture geometry is tuned. Note that the smaller the aperture, the sharper the transmission resonance becomes.

Fig. 17
Fig. 17

Three distinctive regions of power-throughput behavior of a single square aperture as the aperture size changes. Peak resonant transmission occurs at a subwavelength aperture size.

Fig. 18
Fig. 18

Resonant-transmission study for four apertures: (a) aperture geometries; (b) comparison of their normalized resonant wavelengths and the power throughputs at the resonant transmissions.

Fig. 19
Fig. 19

Comparisons of (a) power throughputs and (b) near-field spot sizes of square apertures for three cases: a PEC screen, a 120-nm-thick Ag plate, and a 240-nm Ag plate.

Fig. 20
Fig. 20

Comparison of the near-field intensity distributions of (a) C1 aperture and (b) 100-nm square aperture, in a 120-nm-thick Ag plate.

Fig. 21
Fig. 21

Comparison of the power-throughput change with the thickness of the Ag plate for three apertures: the original C1 aperture, the modified C1 aperture, and the 100-nm square aperture.

Tables (3)

Tables Icon

Table 1 Comparisons of the Power Throughput, the Near-Field Intensity, and the Spot Size of the C1, C2, C3, and 100-nm Square Aperturesa

Tables Icon

Table 2 Comparison of the Transmission Performance of a 100-nm Square Aperture in an Ag Plate of Various Thicknessesa

Tables Icon

Table 3 Comparison of the Transmission Performances of the C1 Aperture and the 100-nm Square Aperture in PEC Metal Screen Cases and in 120-nm-thick Ag Plate Casesa

Metrics