Abstract

We derived the relation between a figure of merit, M1, for the diffraction efficiency of acousto-optical devices and the Brillouin-gain coefficient, gB. We then estimated the values of gB and the phonon lifetime for typical As2S3 and As2Se3 chalcogenide glasses from known acousto-optical parameters. We found that the magnitude of gB for these two glasses is greater than 20 times that of fused silica.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).
  2. H. Li and K. Ogusu, “Transient stimulated Brillouin scattering in a fiber ring resonator and its effect on optical Kerr bistability,” J. Opt. Soc. Am. B 18, 93–100 (2001).
    [CrossRef]
  3. G. W. Faris, L. E. Jusinski, and A. P. Hickman, “High-resolution stimulated Brillouin gain spectroscopy in glasses and crystals,” J. Opt. Soc. Am. B 10, 587–599 (1993).
    [CrossRef]
  4. G. W. Faris, L. E. Jusinski, M. J. Dyer, W. K. Bischel, and A. P. Hickman, “High-resolution stimulated Brillouin gain spectroscopy in fused silica,” Opt. Lett. 15, 703–705 (1990).
    [CrossRef] [PubMed]
  5. H. Yoshida, M. Nakatsuka, H. Fujita, T. Sasaki, and K. Yoshida, “High-energy operation of a stimulated Brillouin scattering mirror in an L-arginine phosphate monohydrate crystal,” Appl. Opt. 36, 7783–7787 (1997).
    [CrossRef]
  6. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000).
    [CrossRef]
  7. J. M. Harbold, F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As–S–Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
    [CrossRef]
  8. M. Asobe, “Nonlinear optical properties of chalcogenideglass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
    [CrossRef]
  9. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256&257, 6–16 (1999).
    [CrossRef]
  10. K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, and M. Minakata, “Linear and nonlinear optical properties of Ag–As–Se chalcogenide glasses for all-optical switching,” Opt. Lett. 29, 265–267 (2004).
    [CrossRef] [PubMed]
  11. P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “Small-core As–Se fiber for Raman amplification,” Opt. Lett. 28, 1406–1408 (2003).
    [CrossRef] [PubMed]
  12. D. A. Pinnow, “Guide lines for the selection of acoustooptic materials,” IEEE J. Quantum Electron. QE-6, 223–238 (1970).
    [CrossRef]
  13. N. Uchida and N. Niizeki, “Acoustooptic deflection materials and techniques,” Proc. IEEE 61, 1073–1092 (1973).
    [CrossRef]
  14. Y. Ohmachi and N. Uchida, “Vitreous As2Se3: investigation of acousto-optical properties and application to infrared modulator,” J. Appl. Phys. 43, 1709–1712 (1972).
    [CrossRef]
  15. T. O. Woodruff and H. Ehrenreich, “Absorption of sound in insulators,” Phys. Rev. 123, 1553–1559 (1961).
    [CrossRef]
  16. H. Nasu, “Non-linear optical glass-state of the art,” New Glass 4, 13–20 (1990).

2004 (1)

2003 (1)

2002 (1)

2001 (1)

2000 (1)

1999 (1)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256&257, 6–16 (1999).
[CrossRef]

1997 (2)

M. Asobe, “Nonlinear optical properties of chalcogenideglass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
[CrossRef]

H. Yoshida, M. Nakatsuka, H. Fujita, T. Sasaki, and K. Yoshida, “High-energy operation of a stimulated Brillouin scattering mirror in an L-arginine phosphate monohydrate crystal,” Appl. Opt. 36, 7783–7787 (1997).
[CrossRef]

1993 (1)

1990 (2)

1973 (1)

N. Uchida and N. Niizeki, “Acoustooptic deflection materials and techniques,” Proc. IEEE 61, 1073–1092 (1973).
[CrossRef]

1972 (1)

Y. Ohmachi and N. Uchida, “Vitreous As2Se3: investigation of acousto-optical properties and application to infrared modulator,” J. Appl. Phys. 43, 1709–1712 (1972).
[CrossRef]

1970 (1)

D. A. Pinnow, “Guide lines for the selection of acoustooptic materials,” IEEE J. Quantum Electron. QE-6, 223–238 (1970).
[CrossRef]

1961 (1)

T. O. Woodruff and H. Ehrenreich, “Absorption of sound in insulators,” Phys. Rev. 123, 1553–1559 (1961).
[CrossRef]

Aggarwal, I. D.

Asobe, M.

M. Asobe, “Nonlinear optical properties of chalcogenideglass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
[CrossRef]

Bischel, W. K.

Cheong, S.-W.

Dyer, M. J.

Ehrenreich, H.

T. O. Woodruff and H. Ehrenreich, “Absorption of sound in insulators,” Phys. Rev. 123, 1553–1559 (1961).
[CrossRef]

Faris, G. W.

Fujita, H.

Harbold, J. M.

Hickman, A. P.

Hwang, H. Y.

Ilday, F. Ö.

Jusinski, L. E.

Katsufuji, T.

Kitao, M.

Lenz, G.

Li, H.

Lines, M. E.

Maeda, S.

Minakata, M.

Nakatsuka, M.

Nasu, H.

H. Nasu, “Non-linear optical glass-state of the art,” New Glass 4, 13–20 (1990).

Nguyen, V. Q.

Niizeki, N.

N. Uchida and N. Niizeki, “Acoustooptic deflection materials and techniques,” Proc. IEEE 61, 1073–1092 (1973).
[CrossRef]

Ogusu, K.

Ohmachi, Y.

Y. Ohmachi and N. Uchida, “Vitreous As2Se3: investigation of acousto-optical properties and application to infrared modulator,” J. Appl. Phys. 43, 1709–1712 (1972).
[CrossRef]

Pinnow, D. A.

D. A. Pinnow, “Guide lines for the selection of acoustooptic materials,” IEEE J. Quantum Electron. QE-6, 223–238 (1970).
[CrossRef]

Pureza, P. C.

Sanghera, J. S.

Sasaki, T.

Shaw, L. B.

Slusher, R. E.

Spälter, S.

Thielen, P. A.

Uchida, N.

N. Uchida and N. Niizeki, “Acoustooptic deflection materials and techniques,” Proc. IEEE 61, 1073–1092 (1973).
[CrossRef]

Y. Ohmachi and N. Uchida, “Vitreous As2Se3: investigation of acousto-optical properties and application to infrared modulator,” J. Appl. Phys. 43, 1709–1712 (1972).
[CrossRef]

Wise, F. W.

Woodruff, T. O.

T. O. Woodruff and H. Ehrenreich, “Absorption of sound in insulators,” Phys. Rev. 123, 1553–1559 (1961).
[CrossRef]

Yamasaki, J.

Yoshida, H.

Yoshida, K.

Zimmermann, J.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

D. A. Pinnow, “Guide lines for the selection of acoustooptic materials,” IEEE J. Quantum Electron. QE-6, 223–238 (1970).
[CrossRef]

J. Appl. Phys. (1)

Y. Ohmachi and N. Uchida, “Vitreous As2Se3: investigation of acousto-optical properties and application to infrared modulator,” J. Appl. Phys. 43, 1709–1712 (1972).
[CrossRef]

J. Non-Cryst. Solids (1)

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256&257, 6–16 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

New Glass (1)

H. Nasu, “Non-linear optical glass-state of the art,” New Glass 4, 13–20 (1990).

Opt. Fiber Technol. (1)

M. Asobe, “Nonlinear optical properties of chalcogenideglass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. (1)

T. O. Woodruff and H. Ehrenreich, “Absorption of sound in insulators,” Phys. Rev. 123, 1553–1559 (1961).
[CrossRef]

Proc. IEEE (1)

N. Uchida and N. Niizeki, “Acoustooptic deflection materials and techniques,” Proc. IEEE 61, 1073–1092 (1973).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (1)

Tables Icon

Table 1 Calculated Brillouin-Gain Coefficient gB and Phonon Lifetime TB of Fused-Silica, As2S3, and As2Se3 Glasses at λ=1.06 µm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M1=n7p122ρvA,
gB=2πn7p122cλ2ρvAΔνB=2π2n7p122TBcλ2ρνA=2π2cλ2M1TB,
TB=1αAvA.

Metrics